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As a fraction of bonds p is removed from a lattice, we find a threshold PQ above which all 
eigenstates are nonpropagating (Anderson localized). This occurs well before the classical per­

colation threshold. For example, in two dimensions where the classical threshold is Pc = +, we 

find PQ =0. 

Anderson introduced the concept of disorder­
induced localization of eigenstates of a wave equa­
tion. 1 Subsequently, Licciardello and Thouless2 and 
Abrahams, Anderson, Licciardello, and Ramakrish­
nan3 have given reasons for all such eigenstates to be 
localized in two dimensions (d = 2) at arbitrarily 
small values of the random potential V. Such locali­
zation has long been known to be a feature of one 
dimension,4 whereas in four or more dimensions, the 
disorder parameter I vi must exceed a critical magni­
tude Vc before eigenstates become localized. The 
critical magnitude Vc depends, of course, on the 
number d of dimensions. 

Now, a number of questions concerning localiza­
tion in d = 2 or 3 have not been definitively 
answered. For example, of the most recent various 
studies of the random potential model, we have on 
the one hand those of Soukoulis and Economou5 and 
the renormalization-group (RG) analysis of Domany 
and Sarker6 which confirm the predictions of Refs. 2 
and 3, finding Vc = 0 in d = 2. While on the other 
hand, we find the accurate numerical analysis of 
Stein and Krey7 and a variant RG analysis by Lee8 

which contradict Refs. 2 and 3, by obtaining a sizable 
Vc (of the order of one-sixth the bandwidth) for 
d = 2. Considerations of the relative merits of the 
various calculations aside, it is entirely possible that 
in d = 2 (and perhaps d = 3) the behavior is 
"nonuniversal," hence sensitive to the precise 
method of solution as well as to the nature of the 
disorder. We believe this to be the case for d = 2, as 

we apply the very methods of Stein and Krey7 to a 
variant model, and obtain results quite different from 
theirs. 

Our work centers on the random-bond-dilution 
model, well known in connection with classical per­
colation, diffusion, and conductivity, 9 having a host 
of applications to solids, liquids, gases, lasers, etc. It 
is desired to obtain the effects on eigenstates of re­
moval, at random, of a fraction P of the bonds. \0 

One would not expect any extended states to persist 
once P exceeds the classical percolation threshold Pc, 
and indeed, we find that the quantum threshold PQ is 
lower. With an estimated uncertainty of ±0.05, our 
results indicate PQ ::::::0,0.63, and 0.77 in d = 2,3, 
and 4 dimensions, respectively. This may be com­
pared with Pc:::::: 0.50, 0.75, and 0.80 in d = 2, 3, and 4 
dimensions. I I For the trivial case d = 1 where Pc = 0, 
we also obtain PQ =0 and have nothing to add to the 
known results.4 

We base our analysis on a numerically efficient 
"trick," the tridiagonalization of a Hamiltonian 
which has interactions limited to nearest neighbors 
on a generalized cubic lattice [lattice sites at 
R; = a (n,m, ... ) where n,m, ... are integers]. Tridi­
agonalization was first applied to a related problem 
when Haydockl2 used it to study the mobility edge on 
a Cayley tree lattice, which is in some sense 
equivalent to infinite d. Recently, this method was 
chosen by Stein and Krey7 for their previously noted 
analysis, and by Mattis and Raghavan l3 for a 
rederivation of Wigner's famous semicircular density 
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of states for a totally random matrix. Tridiagonaliza­
tion requires far fewer steps than diagonalization, and 
often yields greater insights, as we shall see. We 
refer the interested reader to a rapidly evolving litera­
ture on the subject of tridiagonalization, 14 and limit 
explanatory remarks hereto the few details necessary 
to describe the model. A fraction P of nearest­
neighbor bonds is removed from the lattice; the 
remaining bonds have magnitude T' Let us intro­
duce the parameter Eij which is [I,O] depending on 
whether the bond is [present, absentl and write the 
Hamiltonian as 

H=-T ~Eij(c/cj+H.c.) . 
(;j) 

(I) 

The distributions of Eij is "frozen in." We then con­
sider an eigenstate propagating out from some initial 
site R i . This connects to the shell of nearest neigh­
bors through the extant bonds, thence to the next 
shell, etc. The (real) matrix element bn connecting 
the nth shell to the (n + 1)st is obtained after nor­
malizing the operators at each shell. Our symmetric, 
tridiagonal matrix consists of the bn above and below 
the main diagonal, and zero everywhere else. 

As we vary the initial site Ri or vary the statistical 
sample for a given value of p, we find the bn's 
change but asymptotic (n - 00) properties do not. 
These properties will be the main focus of discussion 
in this paper. Our analysis is based on sample of well 
over 20000 sites in d = 2, 3,4 dimensions and a large 
number of numerical experiments. The experiments 
could be run quickly, as tridiagonalization is a very 
rapid and efficient procedure l4 compared with other 
numerical procedures. 

In d = 4 (and d = 3) at small dilution, the matrix 
elements bn rapidly approach an asymptotic value boo 
which we plot as a function of p in Fig. 1. Beyond a 
certain critical dilution, which is denoted PQ and indi­
cated by a star in the figure, oscillations persist out to 
the largest attainable shell index n and, presumably, 
boo ceases to exist. However, when this occurs, we 
find that the amplitude of the oscillations-the noise 
in bn-does approach an asymptotic, stable value. 
Figure I shows the dependence of boo on P in the 
range, P < PQ, for which an asymptotic value is ob­
tained. Significantly, such a value is never obtained 
in d = 2, however large the sample we have used and 
however large the shell index (up to n = 150), 
whereas the "noise" parameter is always asymptoti­
cally stable in d = 2. Thus, the appropriate curve for 
d = 2 shrinks to a point at P = 0, boo = 2. 

The significance of the noisy asymptotic behavior is 
to be found in the nature of eigenfunctions in one 
dimension. Tridiagonalization is tantamount to the 
extraction of the one-dimensional manifold of states 
having non vanishing amplitudes at the chosen initial 
site R i . The eigenstates of the tridiagonal form are 
eigenstates of the total Hamiltonian. As the tridiago-
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FIG. 1. Asympto.tic boo as a functio.n o.f dilutio.n p in the 
d-dimensio.nal cubic lattices. Fo.r P > PQ (indicated by a 
star) the matrix elements bn do. no.t approach an asympto.tic 
value boo, but co.ntinue to. o.scillate indefinitely. This o.ccurs 
immediately fo.r d = I (no.t shown) and for d = 2 (indicated 
by a star). 

nal form is isomorphic to a semi-infinite linear chain, 
all the well-known theorems of one dimension4 apply 
to it and, in particular, that which states that if 
I bn+1 - bn I does not vanish at large n, all the eigen­
states are localized. The converse, however, is not 
true. For even if the bn approach an asymptotic 
value, some or all the eigenstates could be localized. 
Thus, the threshold we shall calculate will be an 
upper bound. 

Figure 2, drawn from three dimensions, is an ex­
ample which clearly shows the difference between the 
smooth approach to an asymptotic value at low dilu­
tion, and the noisy behavior for P > PQ' It is in-

FIG. 2. Typical behavio.r of bn as a function of shell index 
n. This example, in d = 3 dimensions, shows the approach 
to. asymptotic co.nstancy at small dilutio.n, the increasing 
"noise" with increasing dilution, and the lack o.f asymptotic 
constancy in bn (tantamount to localization of all the eigen­
states) at p =0.75. 



RAPID COMMUNICATIONS 4793 

0.8 

0.7 

0.6 

0.5 
<I 

0.4 

0.3 

0.2 

0.1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

P 
FIG. 3. Plot of the numerically computed parameter A(p) 

Eq. (2), for various d. Our data indicate PQ (the value at 
which A vanishes) to be 0, 0.63, and 0.77 for d = 2. 3.4 as 
compared with classical Pc =0.50, 0.75, and 0.80. Thus for 
d = 2 (as well as d = I ), eigenstates are localized except 
when P =0. 

teresting that the point P =0.75 which illustrates the 
noisy behavior is in fact the classical percolation 
threshold in d = 3; we find the onset of noisy 
behavior to have occurred at PQ =0.63 (not illustrat­
ed) for this case. 

Finally, Figure 3 shows the noise parameter Il we 
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have chosen to calculate defined as follows: 

Error bars (omitted for clarity) would show an uncer­
tainty in Il of not more than ±0.05. The "knee" 
seen in the d = 2 figure at small P (the noise does not 
decrease rapidly as P -0) falls within this error bar, 
and could be an artifact. Nevertheless, it is clear that 
for d = 2 the critical PQ for localization is very much 

less than the classical Pc = + and is either zero or 
very close to it. In d = 3,4 we also find that Po is 
substantially below Pc. Clearly, the phenomenon of 
quantum percolation differs from the classical version 
and is deserving of further study. 

ACKNOWLEDGMENTS 

One of us (R.R.) is grateful to Professor David 
Huber for a useful discussion and to the computer 
center at Riverside Research for the facilities used in 
this project. One of us (D.C.M.) is grateful to 
AFOSR for grant support during the term of this in­
vestigation. 

a voluminous subsequent literature. 
lOIn much of the literature, P is used for the fraction of sites 

that remain, hence is 1 - P with our usage. 
11M. F. Sykes, D. S. Gaunt, and 1. W. Essam, 1. Phys. A 9, 

L43 (1976); M. F. Sykes, O. S. Gaunt, and M. Glen, ibid. 
~, 1705 (1976); O. S. Gaunt, M. F. Sykes, and H. Ruskin, 
ibid. ~, 1899 (1976); O. S. Gaunt and H. Ruskin, ibid. 
ll, 136 (1978). Further studies in classical percolation in 
d=2 • ...• 7 by H. Nakanishi and H. E. Stanley [Phys. 
Rev. B 22,2466 (1980)] suggest d=6 as a critical dimen­
sionality in the classical percolation problem. 

12R. Haydock, Philos. Mag. 37,97 (1978). 
130. C. Mattis and R. Raghavan, Phys. Lett. 75A,313 

(1980). ----
14See the entire Vol. 35 of the series Solid State Physics. 

edited by H. Ehrenreich, F. Seitz, and D. Turnbull 
(Academic, New York, 1980). Also, O. C. Mattis, in 
Physics in One DimenSion, edited by 1. Bernasconi and T. 
Schneider (Springer, Berlin, 1980). 


