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V i s C o m p l e t e :  A u t o m a t i n g  S u g g e s t i o n s  f o r  V i s u a l i z a t i o n  P i p e l i n e s

David Koop, Carlos E. Scheidegger, Steven P. Callahan, Juliana Freire, and Claudio T. Silva

Abstract— Building visualization and analysis pipelines is a large hurdle in the adoption of visualization and workflow systems by 
domain scientists. In this paper, we propose techniques to help users construct pipelines by consensus—automatically suggesting 
completions based on a database of previously created pipelines. In particular, we compute correspondences between existing 
pipeline subgraphs from the database, and use these to predict sets of likely pipeline additions to a given partial pipeline. By presenting 
these predictions in a carefully designed interface, users can create visualizations and other data products more efficiently because 
they can augment their normal work patterns with the suggested completions. We present an implementation of our technique in a 
publicly-available, open-source scientific workflow system and demonstrate efficiency gains in real-world situations.

Index Terms—Scientific Workflows, Scientific Visualization, Auto Completion

------------------------------  ♦  ------------------------------

1 In t r o d u c t io n

Data exploration through visualization is an cffcctivc means to un­
derstand and obtain insights from large collections of data. Not sur­
prisingly. visualization has grown into a mature area with an es­
tablished research agenda [27], and a number of software systems 
have been developed that support the creation of complex visualiza­
tions [18. 6. 24. 36. 19. 30. 13. 37]. However, a wider adoption of 
visualization systems has been greatly hampered due to the fact that 
these systems are notoriously hard to use. in particular, for users who 
are not visualization experts.

Even for systems that have sophisticated visual programming inter­
faces. such as DX. AVS and SCIRun. the path from the raw data to 
insightful visualizations is laborious and error-prone. Visual program­
ming interfaces expose computational components as modules and al­
low the creation of complex visualization pipelines which combine 
these modules in a dataflow, where connections between modules ex­
press the flow of data through the pipeline. They have been shown 
to be useful for comparative visualization and efficient exploration 
of parameter spaces [2], Through the use of a simple programming 
model (i.e.. dataflows) and by providing built-in constraint checking 
mechanisms (e.g.. that disallow a connection between incompatible 
module ports), they ease the creation of pipelines. Notwithstanding, 
without detailed knowledge of the underlying computational compo­
nents. it is difficult to understand what series of modules and connec­
tions ought to be added to obtain a desired result. In essence, there is 
no “roadmap”; systems provide very little feedback to help the user 
figure out which modules can or should be added to the pipeline. A 
novice user (i.e.. an experienced programmer that is unfamiliar with 
the modules and the dataflow of the system), or even an advanced user 
performing a new task, often resorts to manually searching for exist­
ing pipelines to use as examples. These examples are then adapted 
and iteratively refined until a solution is found. Unfortunately, this 
manual, time-consuming process is the current standard for creating 
visualizations rather than the exception.

Recent work has shown that provenance information (the metadata 
required for reproducibility) can be used to simplify the process of 
pipeline creation by allowing pipelines to be refined and queried by 
example [31]. For example, a pipeline refinement can act as an anal­
ogy template for creating new visualizations. This is a powerful tool
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and can be helpful in situations when the user knows in advance what 
they want the end result to be. However, during pipeline creation, it 
is not always the case that the user has an analogy template readily 
available for the visualization that is desired. In these cases, the user 
is relegated to manually searching for examples.

In this paper, we present VisComplete. a system that aids users in 
the process of creating visualizations by using a database of previously 
created visualization pipelines. The system learns common paths used 
in existing pipelines and predicts a set of likely module sequences that 
can be presented to the user as suggestions during the design process. 
The quality and nature of the suggestions depend on the data they are 
derived from. Whereas in a single-user environment, suggestions are 
derived based on pipelines created by a specific user, in a multi-user 
environment, the “wisdom of the crowds” can be leveraged to derive 
a richer set of suggestions that includes examples the user is not fa­
miliar with. User collaboration and social data reuse has proven to 
be a powerful mechanism in various domains, such as recommenda­
tion systems in commercial settings (e.g.. Amazon. e-Bay. Netflix). 
knowledge sharing on open Web sites (e.g.. Wikipedia). image label­
ing for computer vision (e.g.. ESPGame) and visualization creation 
(e.g.. ManyEyes). The underlying theme shared by these systems 
is that they use information provided by many users to solve prob­
lems that would be difficult otherwise. We apply a similar concept to 
pipeline creation: pipelines created by many users enable the creation 
of visualizations by consensus. For the user. VisComplete acts as an 
auto-complete mechanism for pipelines, suggesting modules and con­
nections in a manner similar to a Web browser suggesting URLs. The 
completions are presented graphically in a way that allows the user to 
easily explore and accept suggestions or disregard them and continue 
working as they were. Figure 1 shows an example of VisComplete 
incorporated into a visual programming interface and Figure 2 shows 
some example completions for a single module.
Contributions and Outline. We propose a recommendation system 
that leverages information in a collection of pipelines to provide advice 
to users of visualization systems and aid them in the construction of 
pipelines. By modeling pipelines as graphs, we develop an algorithm 
for predicting likely completions that searches for common subgraphs 
in the collection. We also present an interface that displays the recom­
mended completions in an intuitive way. Our preliminary experiments 
show that VisComplete has the potential to reduce the effort and time 
required to construct visualizations. We found that the suggestions de­
rived by VisComplete could have reduced the number of operations 
performed by users to construct pipelines by an average of over 50%. 
Note that although in this paper we focus on the use of VisComplete 
for visualization pipelines, the techniques we present can be applied 
to general workflows.

The rest of this paper is organized as follows. In Section 2 we dis­
cuss related work. In Section 3 we present the underlying formalism 
for generating pipeline suggestions, and in Section 4 we describe a
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Fig. 1: The VisComplete suggestion system and interface, (a) A user starts by adding a module to the pipeline, (b) The most likely completions 
are generated using indexed paths computed from a database of pipelines, (c) A suggested completion is presented to the user as semi-transparent 
modules and connections. The user can browse through suggestions using the interface and choose to accept or reject the completion.

practical implementation that has been integrated into the VisTrails 
system [36]. We then detail the use cases we envision in Section 5, 
report our experiments and results in Section 6, and provide a discus­
sion of our algorithm in Section 7. We conclude in Section 8, where 
we outline directions for future work.

2 R e l a t e d  W o r k

Visualization systems have been successfully used to bring powerful 
visualization techniques to a wide audience. Seminal workflow-based 
visualization systems such as AVS Explorer [37], Iris Explorer [28], 
and Visualization Data Explorer [13] have paved the way for more 
recent systems designed using an object-oriented approach such as 
SciRun [30] for computational steering and the Visualization Toolkit 
(VTK) [19] for visualization. Systems that incorporate standard point- 
and-ciick interfaces and operate on data at a larger scale, such as 
Visit [6] and Para View [18], still use workflows as their underlying 
execution engine. Development in workflow systems for visualization 
is ongoing, as seen in projects such as MeVisLab [25] for medical vi­
sualization and VisTrails [36] for incorporating existing visualization 
libraries with other tools in a provenance capturing framework. Our 
completion strategy can be combined with and enhance workflow and 
workflow-based visualization systems.

Recommendation systems have been used in different settings. Like 
VisComplete, these are based on methods that predict users' actions 
based solely on the history of their previous interactions [12]. Exam­
ples include Unix command-line prediction [20], prediction of Web 
requests [8,29], and autocompletion systems such as IntelliSense [26]. 
Senay and Ignatius have proposed incorporating expert knowledge 
into a set of rules that allow automated suggestions for visualization 
construction [32], while Gilson et al. incorporate RDF-based ontolo­
gies into an information visualization tool [9]. However, these ap­
proaches necessarily require an expert that can encode the necessary 
knowledge into a rule set or an ontology.

Fu et al. [8] applied association rule mining [1] to analyze Web 
navigation logs and discover pages that co-occur with high frequency 
in navigation paths followed by different users. This information is 
then used to suggest potentially interesting pages to users. VisCom­
plete also derives predictions based on user-derived data and does so 
in an automated fashion, without the need for explicit user feedback. 
However, the data it considers is fundamentally different from Web 
logs: VisComplete bases its predictions on a collection of graphs and 
it leverages the graph structure to make these predictions. Because 
association rule mining computes rules over sets of elements, it does 
not capture relationships (other than co-occurrence) amongst these el­
ements.

In graphics and visualization, recommendation systems have been 
proposed to simplify the creation of images and visualizations. Design 
Galleries [23] were introduced to allow users to explore the space of 
rendering parameters by suggesting a set of automatically generated 
thumbnails. Igarashi and Hughes [14] proposed a system for creating 
3D line drawings that uses rules to suggest possible completions of 3D 
objects. Suggestions have also been used for view point selection in 
volume rendering. Bordoloi and Shen [39] and Takahashi et al. [34] 
present methods that analyze the volume from various view points to 
suggest the view that best shows the features within the volume. Like 
these systems, we provide the user with prioritized suggestions that the 
user may choose to utilize. However, our suggestions are data-driven 
and based on examples of previous interactions.

An emerging trend in image processing is to enhance images based 
on a database of existing images. Hays and Efros [10] recently pre­
sented a system for filling in missing regions of an image by searching 
a database for similar images. Along similar lines Lalonde et al. [21] 
recently introduced Photo Clip Art, a method for intelligently insert­
ing clip art objects from a database to an existing image. Properties 
of the objects are learned from the database so that they may be sized 
and oriented automatically, depending on where they are inserted into 
the image. The use of databases for completion has also been used for 
3D modeling. Tsang et al. [35] proposed a modeling technique that 
utilizes previously created geometry stored in a database of shapes to 
suggest completions of objects. Like these methods, our completions 
are computed by learning from a database to find similarities. But 
instead of images, our technique relies on workflow specifications to 
derive predictions.

Another important trend is that of social visualization. Web-based 
systems such as VisPortal [3, 15] provide the means for collaborative 
visualization from disjoint locations. Web sites such as Sens.us [11], 
Swivel [33], and ManyEyes [38] allow many users to create, share, 
and discuss visualizations. One key feature of these systems is that 
they leverage the knowledge of a large group of people to effectively 
understand disparate data. Similarly, VisComplete uses a collection of 
pipelines possibly created by many users to derive suggestions.

3 G e n e r a t in g  Da t a - d r iv e n  S u g g e s t io n s

VisComplete suggests partial completions (i.e., a set of structural 
changes) for pipelines as they are being created by a user. These sug­
gestions are derived using structural information obtained from a col­
lection ‘S' of already-completed pipelines.

Pipelines are specified as graphs, where nodes represent modules 
(or processes) and edges determine how data flows through the mod­
ules. More formally, a pipeline specification is a directed acyclic graph
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Fig. 2: Three of the first four suggested completions for a “vtkDataSetReader” arc shown along with corresponding visualizations. The visual­
izations were crcatcd using these completions for a time step of the Tokamak Rcactor dataset that was not used in the training data.

G(M,C). where M  consists of a set of modules and C is a set of con­
nections between modules in M. A module is a complcx objcct which 
contains a set of input and output ports through which data flows in 
and out of the module. A connection between two modules ma and 
connccts an output port of ma to an input port of mt,.
Problem Definition. The problem of deriving pipeline completions 
can be defined as follows. Given a partial graph G. wc wish to find a set 
of completions C( G) that rcflcct the structures that exist in a collcction 
of completed graphs. A completion of G. Gr. is a supcrgraph of G.

Our solution to this problem consists of two main steps. First, wc 
prc-proccss the collcction of pipelines 'S' and crcatc 'S’path. a compact 
representation of 'S’ that summarizes relationships between common 
structures (i.e.. scqucnccs of modules) in the collcction (Scction 3.1). 
Given a partial pipeline p . completions arc generated by querying 
'Spath to identify modules and connections that have been used in con­
junction with p in the collcction (Scction 3.2).

3.1 Mining Pipelines
To derive completions, wc need to identify graph fragments that co­
occur in the collcction of pipelines 'S’. Intuitively, if a ccrtain fragment 
always appears conncctcd to a sccond fragment in our collcction. wc 
ought to predict one of those fragments when wc see the other.

Bccausc wc arc dealing with directed acyclic graphs, wc can iden­
tify potential completions for a vertex v in a pipeline by associating 
subgraphs downstream from v with those that arc upstream. A sub­
graph S is downstream (upstream) of a vertex v if for every v' € S. 
there exists a path from v to v' (V to v). In many eases where wc wish 
to complete a graph, wc will know either the downstream or upstream 
structure and wish to complete the opposite direction. Note that this 
problem is symmetric: wc can change one problem to the other by 
simply reversing the direction of the edges.

However, due to the (very) large number of possible subgraphs in 'S’. 
generating predictions based on subgraphs can be prohibitively expen­
sive. Thus, instead of subgraphs wc use paths, i.e.. a linear sequence 
of conncctcd modules. Specifically, wc compute the frequencies for 
each path in 'S’. Completions arc then determined by finding which 
path extensions arc likely given the existing paths.
Generating the Path Summary. To efficiently derive completions 
from a collcction of pipelines 'S’. wc begin by generating a summary 
of all paths contained in the pipelines. Bccausc completions arc de­
rived for a specific vertex v in a partial pipeline (wc call this vertex 
the completion anchor). wc extract all possible paths that end or begin 
with v and associate them with the vertices that arc directly conncctcd 
downstream or upstream of v. Note that this leads to many fewer en­
tries than the alternative of extracting all possible subgraph pairs. And 
as wc discuss in Scction 6. paths arc cffcctivc and lead to good predic­
tions.

More concretely, wc extract all possible paths of length N. and split 
them into a path of length N — 1 and a single vertex. Note that wc do 
this in both forward and reverse directions with respect to the directed 
edges. This allows us to offer completions for pipeline pieces when 
they arc built top-down and bottom-up. The path summary 'S’path is 
stored as a set of (path, vertex) pairs sorted by the number of occur­
rences in the database and indexed by the last vertex of the path (the 
anchor). Since predictions begin at the anchor vertex, indexing the 
path summary by this vertex leads to faster acccss to the predictions.

As an example of the path summary generation, consider the graph 
shown in Figure 3. Wc have the following upstream paths ending with 
D: A —► C —► D. B —► C —► D. C —► D. and D. In addition, wc also have 
the following downstream vertices: E  and F. The set of correlations 
between the upstream paths and downstream vertices is shown in Fig­
ure 3. As wc compute these correlations for all starting vertices over 
all graphs, some paths will have higher frequencies than others. The 
frequency (or support) for the paths is used for ranking purposes: pre­
dictions derived from paths with higher frequency arc ranked higher.

Besides paths, wc also extract additional information that aid in the 
construction of completions. Bccausc wc wish to predict full pipeline 
structures, not just paths, wc compute statistics for the in- and out- 
degrces of each vertex type. This information is important in deter­
mining where to extend a completion at each iteration (see Figure 4). 
Wc also extract the frequency of connection types for each pair of 
modules. Since two modules can be conncctcd through different pairs 
of ports, this information allows us to predict the most frequent con­
nection type.

3.2 Generating Predictions

Predicting a completion given the path summary and an anchor module 
v is simple: given the set of paths associated with v. wc identify the 
vertices that arc most likely to follow these paths. As shown in the 
following algorithm, wc iteratively develop our list of predictions by 
adding new vertices using this criteria.

path vertex
A ^ C ^ D E
A ^ C ^ D f
B ^ C ^ D E
B ^ C ^ D f

C —* D E
C D f

D E
D

Fig. 3: Deriving a path summary for the vertex D.

Authorized licensed use limited to: The University of Utah. Downloaded on February 23,2010 at 14:49:25 EST from IEEE Xplore. Restrictions apply.



1694 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008

Fig. 4: Predictions are iteratively refined. At each step, a prediction can be extended upstream and downstream; in the second step, the algorithm 
only suggests a downstream addition. Also, predictions in either direction may include branches in the pipeline, as shown in the center.

Generate-Predictions(P)
predictions <— FlRST-PREDICTION(P) 
result«— [ ]
while | predictions | >  0

do prediction «— R em ove-first (predictions) 
new-predictions «— Refine (prediction) 
if | new-predictions | =  0 

then result«— result+ prediction 
else predictions «— predictions +  new-predictions

At each step, we refine existing predictions by generating new predic­
tions that add a new vertex based on the path summary information. 
Note that because there can be more than one possible new vertex, we 
may add more than one new prediction for each existing prediction. 
Figure 4 illustrates two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor mod­
ules (provided as input). At this point, each prediction is simply a base 
prediction that describes the anchor modules and possibly how they 
connect to the pipeline. After initialization, we iteratively refine the 
list of predictions by adding to each suggestion. Because there are a 
large number of predictions, we need some criteria to order them so 
that users can easily locate useful results. We introduce confidence to 
measure the goodness of the predictions.

Given the set of upstream (or downstream depending on which di­
rection we are currently predicting) paths, the confidence of a single 
vertex c(v) is the measure of how likely that vertex is. given the up­
stream paths. To compute the confidence of a single vertex, we need 
to take into account the information given by all upstream paths. For 
this reason, the values in r6’pmh are not normalized; we use the exact 
counts. Then, as illustrated by Figure 5. we combine the counts from 
each path. This means we do not need any weighting based on the 
frequency of paths; the formula takes this into account automatically. 
Specifically.

Zp<=UpSmam{v)COUnt(v\P)
v)-

^ P&ipsrream{ v) C'OUnt(P)

Then, the confidence of a graph G is the product of the confidences of 
each of its vertices:

c(G)=
vs G

While each vertex confidence 
gives a reasonable approx imat 
Because we perform our pred

s not entirely independent, this measure 
on for the total confidence of the graph, 
ctions iteratively, we calculate the con­

fidence of the new prediction p,+1 as the product of the confidence of 
the old prediction pi and the confidence of the new vertex v:

c(pi+i) = c(pi)-c(v)

For computational stability, our implementation uses log-confidences 
so the products are actually sums.

Because we wish to derive predictions that are not just paths, our re­
finement step begins by identifying the vertex in the current prediction 
that we wish to extend our prediction from. Recall that we computed 
the average in- and out-degree for each vertex type in the mining step. 
Then, for each vertex, we can compute the difference between the av­
erage degree for its type and its current degree for the current predic­
tion direction. We choose to extend completions at vertices where the 
current degree is much smaller than the average degree. We also in­
corporate this measure into our vertex confidence so that predictions 
that contain vertices with too many edges are ranked lower:

c>/( v) =  c( v) +  degree-difference( v)

We stop iteratively refining our predictions after a given number of 
steps or when no new predictions are generated. At this point, we sort 
all of the suggestions by confidence and return them. If we have too 
many suggestions, we can choose to prune our set of predictions at 
each step by eliminating those which fall below a certain threshold.

3.3 Biasing the Predictions

The prediction mechanism described above relies primarily on the fre­
quency of paths to rank the predictions. There are. however, other fac­
tors that can be used to influence the ranking. For example, if a user 
has been working on volume rendering pipelines, completions that em­
phasize modules related to that technique could be ranked higher than 
those dealing with other techniques. In addition, some users will pre­
fer certain completions over others because they more closely mirror 
their own work or their own pipeline structures. Again, it makes sense 
to bias completions toward user preferences. We can adapt our algo­
rithm to include such bias by incorporating a weighting factor in the 
confidence computation. Specifically, we adjust our counts by weight­
ing the contribution of each path according to a pipeline importance 
factor determined by a user s preferences.

4 Im p l e m e n t a t io n

Our implementation is split into three specific steps: determining when 
completion should be invoked, computing the set of possible comple­
tions. and presenting these suggestions to the user. Computing the 
possible completions requires the machinery developed in the previ­
ous section. The other steps are essential to make the approach usable. 
The interface, in particular, plays a significant role in allowing users to 
make use of suggestions while also being able to quickly dismiss them 
when they are not desired.
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Fig. 5: At cach iteration, wc examine all upstream paths to suggest a new downstream vertex. Wc select the vertex that has the largest frequency 
given all upstream paths. In this example, "vtkDataSetMapper” would be the selected addition.

4.1 Triggering a Completion

We want to provide an environment where suggestions arc offered au­
tomatically but do not interfere with a user’s normal work patterns. 
There arc two circumstances in pipeline creation where it makes sense 
to automatically trigger a completion: when a user adds a new module 
and when a user adds a new connection. In cach of these cases, wc arc 
given new information about the pipeline structure that can be used to 
narrow down possible completions. Because users may also wish to 
invoke completion without modifying the pipeline, wc also provide an 
explicit command to start the completion process.

In cach of the triggering situations, wc begin the suggestion process 
by identifying the modules that serve as anchors for the completions. 
For new connections, wc use both of the newly connected modules, 
and for a user-requested completion, wc use the selected module! s). 
However, when a user adds a new module, it is not connected to the 
rest of the existing pipeline. Thus, it can be difficult to offer mean­
ingful suggestions since wc have no surrounding structure to leverage. 
Wc address this issue by first finding the most probable connection to 
the existing pipeline, and then continue with the completion process.

Finding the initial connection for an added module may be difficult 
when there arc multiple modules in the existing pipeline than can be 
connected to the new module. However, because visual programming 
interfaces allow users to drag and place new modules in the pipeline, 
wc can use the initial position of the module to help infer a likely con­
nection. To accomplish this, wc compute the user’s layout direction 
based on the existing pipeline, and locate the module that is nearest to 
the new module and can be connected to it.

4.2 Computing the Suggestions
As outlined in the previous scction, wc compute possible completions 
that emanate from a set of anchor modules in the existing pipeline 
using path summitries derived from a database of pipelines, and rank 
them by their confidence values. Depending on the anchor modules, 
a very large set of completions can be derived and a user is unlikely 
to examine a long list of suggestions. Therefore, wc prune our pre­
dictions to avoid rare cases. This both speeds up computation and 
reduces the likelihood that wc provide meaningless suggestions to the 
user. Specifically, because our predictions arc refined iteratively, wc 
prune a prediction if its confidence is significantly lower than its par­
ent's confidence. Currently, this is implemented as a constant thresh­
old, but wc can use knowledge of the currcnt distribution or iteration 
to improve our pruning.

VisComplete provides the user with suggestions that assist in the 
creation of the pipeline structure. Parameters arc also essential com­
ponents in visualizations, but because the choice of parameters is fre­
quently data-dcpendent, wc do not integrate parameter selection with 
our technique. Instead, wc focus on helping users complete pipelines, 
and direct them to existing techniques [17, 16, 22, 2] to explore the 
parameter space. Note that it might be beneficial to extend VisCom- 
plete to identify commonly used parameters that a user might consider 
exploring, but wc leave this for future work.

4.3 The Suggestion Interface
In concert with our goal of unobtrusiveness, wc provide an intuitive 
and efficient interface that enables users to explore the space of pos­
sible completions. Auto-complete interfaces for text generally show 
a set of possible completions in a one-dimensional list that is refined 
as the user types. For pipelines this task is more difficult because it is 
not feasible to show multiple completions at once, as this would result 
in visual clutter. The complexity of deriving the completion is also 
greater. For this reason, our interface is two-dimensional: users can 
select from a list of full completions and then increase or decrease the 
extent of the completion.

Currcnt text completion interfaces defer to the user by showing 
completions but allowing the user to continue to type if he docs not 
wish to use the completions. Wc strive for similar behavior by auto­
matically showing a completion along with a simple navigation panel 
when a completion is triggered. The user can choose to interact with 
the completion interface or disregard it completely by continuing to 
work, which will cause the completion interface to automatically dis­
appear. The navigation interface contains a set of arrows for selecting 
different completions (left and right) and depths of the currcnt com­
pletion (up and down). In addition, the rank of the currcnt completion 
is displayed to assist in the navigation and accept and cancel buttons 
arc provided (see Figure 1(c)). All of these completion actions, along 
with the ability to start a new completion with a selected module, arc 
also available in a menu and as shortcut keys.

The suggested completions appear in the interface as semi­
transparent modules and connections, so that they arc easy to distin­
guish from the existing pipeline components. The suggested modules 
arc also arranged in an intuitive way using a set of simple heuristics 
that respect the layout of the currcnt pipeline. The first new suggested 
module is always placed near the anchor module. The offset of the 
new module from the anchor module is determined by averaging the 
direction and distance of cach module in the existing pipeline. The 
offset for cach additional suggested module is calculated by applying 
this same rule to the module it is appended to. Branches in the sug­
gested completion arc simply offset by a constant factor. These heuris­
tics keep the spacing uniform and can handle upstream or downstream 
completions whether pipelines arc built top-down or left-right.

5 U s e  C a s e s

We envision VisComplete being used in different ways to simplify the 
task of pipeline construction. In what follows, wc discuss use cases 
which consider different types of tasks and different user cxpcricncc 
levels. The types of tasks performed by a user can range from the 
very repetitive to the unique. Obviously, if the user performs tasks that 
arc very similar to those in the database of pipelines, the completions 
that arc suggested arc very full—almost the entire pipeline can be cre­
ated using one or two modules (see Figure 2 for examples). On the 
other hand, if the task that is being performed is not often repeated 
and nothing similar in the database can be found, VisComplete will 
only be able to assist with smaller portions of the pipeline at a time.
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Fig. 6: One of the test visualization pipelines applied to a time step of the Tokamak Reactor dataset. VisComplete could have made many 
completions that would have reduced the amount of time creating the pipeline. In this case about half of the modules and completions could 
have been completed automatically.

This can still aid the user by showing the possible directions to proceed 
with pipeline construction, albeit at a smaller scale.

The experience level of users that could take advantage of VisCom­
plete also varies. For a novice user, VisComplete replaces the process 
of searching for and tweaking an example that will perform their de­
sired visualization. For example, a user who is new to VTK and desires 
to compute an isosurface of a volume might consult documentation 
to determine that a “vtkContourFilter” module is necessary and then 
search online for an example pipeline using this module. After down­
loading the example, they may be able to manipulate it to produce the 
desired visualization. Using VisComplete, this process is simplified—  
the user needs only to start the pipeline by adding a “vtkContourFilter” 
module and their pipeline will be constructed for them (see Figure 1). 
Multiple possible completions can easily be explored and unlike ex­
amples downloaded from the Web, VisComplete can customize the 
suggestions by providing completions that more closely reflect a spe­
cific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits. 
Because experts may not wish to see full pipelines as completions, 
the default depth of the completions can be adjusted as a preference 
so that only minor modifications are suggested at each step. Thus, 
at the smallest completion scale, a user can leverage just the initial 
connection completion to automatically connect new modules to their 
pipeline. The user could also choose to ignore suggested completions 
as they add modules until the pipeline is specific enough to shrink 
the number of suggestions. Unlike the novice user who may iterate 
through many suggestions at each step, the experienced user will likely 
choose to ignore the suggestions until they provide the desired com­
pletion on the first try.

6  E v a l u a t io n

6.1 Data and Validation Process
To evaluate the effectiveness of our completion technique, we used a 
set containing 2875 visualization pipelines along with logs of the ac­
tions used to construct each pipeline. These pipelines were constructed 
by 30 students during a scientific visualization course.1 Throughout 
the semester, the students were assigned five different tasks and carried 
them out using the VisTrails system, which captures detailed prove­
nance of the pipeline design process: the series of the actions a user 
followed to create and refine a set of related pipelines [7].

lhttp://www.vistrails.org/index.php/SciVisFall2(X)7

The first four tasks were straightforward and required little exper­
imentation, but the final task was open-ended: users were given a 
dataset without any restrictions on the use of available visualization 
techniques. As these users learned about various techniques over the 
semester, their proficiency in the area of visualization presumably pro­
gressed from a novice level toward the expert level.

To predict the performance gains VisComplete might attain, we 
created user models based on the provenance logs captured by Vis­
Trails. User modeling has been used in the HCI community for many 
years [4, 5], and we employed a low-level model for our evaluation. 
Specifically, we assumed that at each step of the pipeline construction 
process, a VisComplete user would either modify the pipeline accord­
ing to the current action from the log or select a completion that adds 
a part of the pipeline they would eventually need. We assumed that a 
user would examine at most ten completions and could select a sub­
graph of any of these suggestions.

Because VisComplete requires a collection of pipelines to derive 
suggestions, we divided our dataset into training and test sets. The 
training sets were used to construct the path summaries while the test 
sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the 
completed pipeline, and this certainly is not always the case. Still, 
we believe this simple model approximates user behavior well enough 
to gauge performance. We also assumed a greedy approach in our 
model: a user would always take the largest completion that matched 
their final pipeline. Note that this might not always yield the best 
performance because the quality of the suggestions may improve as 
the pipeline is further specified.

6.2 Results
Figure 6 shows one of the test pipelines with the components that Vis­
Complete could have completed highlighted along with its resulting 
visualization. To evaluate the situation where a set of users create 
pipelines that all tend to follow a similar template, we performed a 
leave-one-out test for each task in our dataset. Figure 7 shows that our 
suggestion algorithm could have eliminated over 50%, on average, of 
the pipeline construction operations for each task. Because Task 1 
was more structured than the other tasks, it achieved a higher percent­
age of reduction. Because Task 4 was more open-ended, although the 
average percentage is also high, the results show a wider variation (be­
tween 30% and 75%). This indicates that the completion interface can 
be faster and more intuitive than manually choosing a template.
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Fig. 7: Box plot of the percentages of operations that could be com­
pleted per task (higher is better). The statistics were generated for each 
user by taking them out o f the training data.

Fig. 8: Box plot of the percentages of operations that could be com­
pleted given two types of tasks, novice and expert. The statistics were 
generated by evaluating the novice tasks using the expert tasks as train­
ing data (novice) and by evaluating the expert tasks using the novice 
tasks as training data (expert).

Because it is much more likely that our collection will contain 
pipelines from a variety o f tasks, we also evaluated two cases that ex­
amined the type of knowledge captured by the pipelines. Since Task 5 
was more open-ended and completed after the other four tasks, we ex­
pected that most users would be proficient using the tool and closer 
to the expert user described in Section 5. We ran the completion re­
sults using Tasks 1 through 4 as the training data (2250 pipelines) and 
Task 5 (625 pipelines) as the test data to represent a case where novice 
users are helping expert users, but we also ran this test in reverse to 
determine if pipelines from expert users can aid beginners. Figure 8 
shows that both tests achieved similar results: this implies that the va­
riety of pipelines from the four novice tasks balanced the knowledge 
captured in the expert pipelines.

Our testing assumed that users would examine up to ten full com­
pletions before quitting. In reality, it is likely that users would give up 
even quicker. To evaluate how many predictions a user might need to 
examine before finding the desired completion, we recorded the index 
of the chosen completion in our tests. Figure 9 shows that the the cho­
sen completion was almost always among the first four. Note that we 
excluded completions that only specified the connection between the 
new module and the existing pipeline because these trivial completions 
are possible at each prediction index.

Our results show that VisComplete can significantly reduce the 
number of operations required during pipeline construction. In ad­
dition, the completion percentages might be higher if our technique 
were available to the users because it would likely change user's work 
patterns. For example, a user might select a completion that contains 
most o f the structure they require plus some extraneous components 
and then delete or replace the extra pieces. Such a completion would 
almost certainly save the user time but was not captured with our user 
model. Finally, the parameters (e.g., pruning threshold, degree weight­
ing) for the completion algorithms were not tuned. We plan to evaluate 
these settings to possibly improve our results.

Fig. 9: Box plot of the average prediction index that was used for the 
completions in Figure 7 (lower is better). These statistics provide a 
measure of how many suggestions the user would have to examine 
before the correct one was found.

The completion examples shown in the figures of this paper, with 
the exception of Figure 6, used the entire collection of pipelines to 
generate predictions. Figure 6 used only the pipelines from Tasks 1-4.

7 D is c u s s io n

To our knowledge, VisComplete is the first approach for automatically 
suggesting pipeline completions using a database of existing pipelines. 
As large volumes of data continue to be generated and stored and as 
analyses and visualizations grow in complexity, the creation of new 
content by consensus and the ability to learn by example are essential 
to enable a broader use of data analysis and visualization tools.

The major difference between our automatic pipeline completion 
technique and the related work on creating pipelines by analogy [31] 
is that instead of using a single, known sequence of pipeline actions, 
our method uses an entire database of pipelines. Thus, instead o f com­
pleting a pipeline based on a single example, VisComplete uses many 
examples. A  second important difference is that instead of predict­
ing a new set of actions, our method currently predicts new structure 
regardless of the ordering of the additions. This also means that Vis­
Complete only adds to the structure while analogies will delete from 
the structure as well. By incorporating more provenance information, 
as in analogies, VisComplete might be able to leverage more informa­
tion about the order in which additions to a pipeline are made. This 
could improve the quality of the suggested completions.

We note that there will be situations where data about the types 
o f completions that should occur are not available. Also, some sug­
gestions might not correspond to the user's desires. If there are no 
completions, VisComplete will not derive any suggestions. If there 
are completions that do not help, the user can dismiss them by either 
continuing their normal work or by explicitly canceling completion. 
Currently we determine the completions in an offline step (by pre­
computing the path summary. Section 3). We could update the path 
summary as new pipelines are added to the repository, incorporating 
new pipelines as they are created. In addition, we could learn from user 
feedback by, for example, allowing users to remove suggestions that 
they do not want to see again. Completions could be further refined by 
assigning greater weight to those that more closely mirror the current 
user's actions, even if they are not the most likely in the database.

One important aspect of our technique is that it leverages the visual 
programming environment available in many visualization systems. In 
fact, it would be difficult to offer suggestions without a visual environ­
ment in which to display the structural changes. In addition, the in­
formation for the completions comes from the fact that we have struc­
tural pipelines from previous work. Without an interface to construct 
pipeline structures, it would be more difficult to process the data used 
to generate completions. However, we should note that turnkey appli­
cations that are based on workflow systems, such as Para View [18], 
may also be able to take advantage of completions in a more limited
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way by providing a more intelligent set of default settings for the user 
during their explorations.

8 C o n c l u s io n s  a n d  F u t u r e  W o r k

We have described VisComplete, a new method for aiding in the de­
sign of visualization pipelines that leverages a database of existing 
pipelines. We have demonstrated that suitable pipeline fragments can 
be computed from the database and used to complete new pipelines in 
real-time. Furthermore, we have shown how these completions can be 
presented to the user in an intuitive way that can potentially reduce the 
time required to create pipelines. Our results indicate that substantial 
effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue. 
As described above, we would like to update the database of pipelines 
incrementally, thus allowing the completions to be refined based on 
current information and feedback from the user. We plan to refine the 
quality of the results by formally investigating the confidence measure 
and its parameters. We would also like to explore suggesting finished 
pipelines from the database in addition to the constructed completions 
we currently generate. For finished pipelines, we could display not 
only the completed pipeline structure but also a thumbnail of the result 
from an execution of that pipeline. Finally, we plan to conduct a user 
study to further evaluate our technique.
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