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Introduction 
Since the first description of renin by Tigerstedt and 
Bergman (1J in 1898, many papers have described the 
biochemistry and physiological roles of the renin
angiotensin system (2]. A critical component of this system 
is angiotensin-converting enzyme (ACE), a peptidase 
which cleaves the inactive peptide angiotensin (Ang) I to 
generate the potent vasoconstrictor Ang II. This enzyme 
also cleaves other peptides, including bradykinin. ItS 
activity increases blood pressure, and ACE inhibi[Qrs have 
become a mainstay in the treatment of hypertension and 
congestive heart failure. It has recently become possible to 

create mice which lack ACE. These mice have low systolic 
blood pressure, striking renal defectS and reduced male 
fertility, phenotypes which emphasize the familiar roles of 
ACE and provide insight into unexpected functions of this 
enzyme. 

Angiotensin-converting enzyme 
ACE is a zinc-dependent peptidase which is found as two 
isoforms in mammals: somatic ACE and testis ACE [3]. 
Somatic ACE is an ectoenzyme of M. 150000--180000 that 
is abundantly expressed by vascular endothelium. Not 
surprisingly, the highest ACE levels are found in the lung. 
Somatic ACE is also produced by several other tissues 
including the renal proximal tubule, Leydig cells, activated 
macrophages, gut epithelia and brain [4,5J. Cleavage of 
tissue ACE releases a soluble enzyme which circulates in 
the blood and cerebral spinal fluid. Testis ACE is a protein 
of M, 90000-110000, approximately half the size of the 
somatic isoform. In contrast to the wide tissue distribution 
of somatic ACE, testis ACE is expressed exclusively by 

elongating spermatids, and the testis has a very high level 
of ACE activity [6J. 

Molecular cloning of somatic ACE has revealed that the 
enzyme consists of twO homologous protein domains, each 
of which has an active catalytic site [7-9]. Both active sites 
have similar affinities for Ang I, but show greater 
differences for other peptide substrates. Testis ACE is 
identical to the carboxyl-terminal half of somatic ACE, 
except for the amino-terminal 66 amino acids which are 
unique to this isozyme [IO-12J. Testis ACE therefore 
contains only a single catalytic site. 

The best established physiological role for ACE is in the 
renin-angiotensin system. In this system renin is produced 
by juxtaglomerular cells in response to reductions in renal 
blood flow or blood pressure. Renin cleaves the circulating 
protein angiotensinogen, releasing the peptide Ang I, 
which contains 10 amino acids. This peptide is rapidly 
converted to Ang II by ACE. Ang II is a potent 
vasoconstrictor and has other effects, including release of 
aldosterone, reabsorption of salt and water by the gU(, 
stimulation of proximal tubular sodium reabsorption, 
stimulation of thirst and potentiation of sympathetic 
activity (13J. These effects act co-ordinately to elevate 
blood pressure. The renin-angiotensin system can be 
modeled as a biological mach ine in which the kidney acts 
as a sensor of hemodynamic statuS (l4J. During environ
mental stress the renin-angiotensin system maintains 
homeostasis of blood volume, blood pressure and body 
electrolyte composition. 

Although Ang I is the best known ACE substrate, the 
enzyme can cleave other peptides. ACE has long been 
known to degrade the vasodilatory peptide bradykinin, and 
ACE inhibition increases the effects of bradykinin. It has 
been suggested (15] that increased levels of this peptide 
are responsible for the cough associated with therapy with 
ACE inhibitors. Recent evidence [l6J suggests that ACE is 
physiologically active in degrading the stem cell growth
arresting peptide N-acetyl-Ser-Asp-Lys-Pro. Interest
ingly, this is one of the few peptides known to be cleaved 
primarily by the amino-terminal active site. ACE also has 
in-vino activity against several subsnates, including 
enkephalins, gastrin, substance P and luteinizing hor
mone-releasing hormone (17). There is, however, no 
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definitive evidence that ACE plays a role In the meta~ 
bolism of any of these peptides in vivo. 

Creation of angiotensin-converting enzyme 
deficient mice 
Technology exists which allows the creation of mice with 
defined genetic modifications (18,19J. The first step is the 
targeting and modification of a panicular genetic locus in 
cultured embryonic Stem cells. Injection of these targeted 
cells into a mouse blastocyst results in a chimeric mouse 
with tissues derived from both the blastocyst and the 
injected cells. Selective breeding of the chimeric mice 
produces offspring which are homozygous for the modified 
locus. Several groups, including our group, have used these 
techniques to genente mouse lines that lack ACE [20,21]. 
Mouse lines have also been created which lack other 
components of the renin-angiotensin system, including 
angiotensinogen and a subtype of the Ang II receptor 
[22-2S). 

Blood pressure 
Mice lacking ACE have profoundly reduced systolic 
blood pressures. The average systolic blood pressure is 
70 mmHg, approximately 40 mmHg lower than in nonnal, 
wild~type mice. This is a much greater change than the 
reduction of 10 mmHg in systolic blood pressure which 
occurs when healthy human subjects or rodents are ueated 
with ACE inhibitors [26] . This discrepancy suggests that 
the complete lack of ACE, achieved through genetic 
means, results in a greater effect on blood pressure than 
can be achieved with pharmacological blockade. Studies 
with ACE inhibitors may therefore underestimate the role 
of the renin-angiotensin system in maintaining normal 
blood pressure. The reduction in blood pressure observed 
in ACE~deficient animals is also greater than that found in 
mice which lack angiotensinogen. This implies that ACE 
substrates other than Ang I (e.g. bradykinin) are also 
imponant in the control of blood pressure. 

Kidney development 

Compared with control mice, mice which lack ACE 
produce a large volume of relatively dilute urine (Fig. 1). 
This urinary concentrating defect can be explained partly 
by the unusual renal histology observed in these mice. 
ACE~deficient mice have a marked thinning of both the 
renal medulla and the renal papilla. In exueme cases these 
mice have a significant expansion of the caliceal system, 
which represents nearly complete auophy of the renal 
medulla with small renal papilla (Fig. 2). Surprisingly, 
ACE~deiiciem mice present with medial hyperplasia of the 
imrarenal arteries, despite their low blood pressure. Renal 
vessels often show a marked perivascular mixed lympho
cytic infiltrate. Lymphocytic vasculitis is occasionally 
observed. Vascular and organ SUUCtural defects are both 
limited to the kidneys in these mice. 

Analysis of (a) total voIumII and (b) osmolality of 24·h urine coDected 
from wid·type (+/+), heterozygous (+/-) and angiotensin coovarting 
enzyme knoclcout (-/-) mice deprived of water for 6 h befOfe 
colkiction. Under these conditions, the knockout mice produced a 
twofold IaIger volume of urine that was less than half as concentrated. 
Adapted with permission (211. 

The defect in the ability to concentrate urine is consistent 
with the renal pathology, and indicates that the lesion is 
not secondary to urinary obsuuction. Interestingly, the 
magnitude of the defect does not correlate with the 
severity of the renal lesion. This suggests that the renin
angiotensin system might play a physiological role in 
urinary concentrating mechanisms. 

Several lines of evidence indicate that the maldevelop~ 
mem of che renal medulla is a direct result of the lack of 
Ang II generation within the kidneys of these mice. Mice 
which' lack angiotensinogen have renal pathology nearly 
identical to that in ACE-deficient mice clearly implicating 
Ang II [22,23]. Furthermore, neonatal rats treated with 
either an ACE inhibitor or an inhibitor of the Ang II type 1 
(AT!) receptor develop a similar renal lesion [27]. The 
medullary aefect is unlikely to be an indirect effect of the 



Typical histological features of a kidney from an angiotensm-convert~g 
enzyme knockout mouse (x 25). The kidneys from knockout mice often 
have a th~ned medu~a with papilal)' atresia and dilated renal calyces. 
Regions of inflammatory infiltrate are evident at the cortical medullary 
junction. Reproduced with pemission [211. 

inabili ty to concentrate urine or the low blood pressure. 
Mice with diabetes insipidus cannot concentrate urine but 
have no renal pathology and similarly, mice have been 
created which have low blood pressure but normal renal 
histology {25]. Ang II thus appears to be necessary for 
proper renal medullary development. 

Angiotensin II as a growth factor 
The role of Ang II in promoting the proper development 
of the kidney is only the latest addition to a growing set of 
data which suggests that Ang II can act as a growth factor. 
For example, chronic in-vivo infusion of low..close Ang II 
leads to a vascular hypenrophic response in blood vessels 
which is caused panly by non-pressor mechanisms (28]. 
Infusion of Ang II also markedly exacerbates the 
myoproliferative Ic:sions caused by balloon catheterization 
(29). ACE inhibitors have, conversely, been shown to 
decrease neointimal proliferation after vascular carotid 
injury [30]. In-vitro, Ang II increases protein synthesis in 
rat smooth muscle cells by 45% and DNA synthesis by 
56% during a 24-h incubation [31). Growth factor proper
ties of Ang II have been demonstrated in fibroblasts, 
adrenal conical cells, cardiac myocytes, renal proximal 
tubular cells and tumor cells [32]. The hemodynamic 
effeCts of Ang II are known in some detail, but its 
biochemical actions leading to cell growth are less clear. 
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Recent studies [33-37] in our laboratory have begun to 
clarify the possible mechanisms by which Ang II can have 
growth-promoting effects. These studies concern the 
intracellular signalling pathways initiated when Ang II 
binds to its cell surface receptor (now called the AT. 
receptor). There are two known sublypes of receptors for 
Ang II, but virtually all of the known physiological effects 
are mediated through the AT. subtype (321. This receptor 
is a protein with seven transmembrane domains which has 
the c1~ss ic structure of receptors believed to signal via 
heterotrimeric G-proteins [38,39]. 

The classic paradigm of growth factor action involves 
stimulation of cell surface receptors which in turn, lead to 
increased tyrosine phosphorylation of imponant signaling 
intermediaries. For example, platelet-derived growth factor 
causes tyrosine phosphorylation, stimulation of the Ros 
gene and activation of downstream signaling events (40). 
In one sense, a growth factOr uses tyrosine phosphorylation 
as the first step in a cascade of information from the cell 
surface into the cell cytoplasm and nucleus. This informa
tion flow leads to cellular responses which include cell 
proliferation. 

The cell surface receptor for Ang II is markedly different 
from that for growth factors. The AT! receptor lacks an 
intrinsic ability to phosphorylate other proteins on tyrosine. 
Despite this, our studies have clearly shown that tyrosine 
phosphorylation is an imponant intracellular signaling 
response initiated by Ang II. Both in vascular smooth 
muscle cells and in rat renal mesangial cells, Ang II leads to 
the tyrosine phosphorylation of phospholipase C-l' l 
[33,34]. This, in tum, is responsible for an increase in the 
intracellular calcium concentration and, funher down
stream, signaling events. The intracellular tyrosine kinase 
Src is critically imponant in this signaling pathway. 
Neutralization of this imponant signaling molecule with 
anti-Src antibodies interferes with the abili ty of Ang II to 
induce tyrosine phosphorylation (35). Ang II binding to its 
cell surface receptor thus stimulates Src activity in some 
manner. 

Ang II also induces tyrosine phosphorylation of other 
classes of intracellular tyrosine kinases. Binding of Ang II 
to the AT. receptor causes tyrosine phosphorylation and 
activation of the Jak kinases [36). These kinases stimulate 
the Signal Transducers and Activators of Transcription 
(STAT) family of uanscription factors, which provide a 
second imponant signaling pathway to convey information 
from the cell surface into the nucleus. Ang II also 
stimulates Ras activation (371. Ras acts as an important 
conuol switch within all cells. When bound to GOP, Ras is 
inactive. In contrast, Ras-GTP is fully active and 
panicipates in events often associated with cell prolifera
tion. Recent studies from our laboratory have demon
strated that Ang II, acting through the AT. receptor, 
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stimulates the conversion of Ras--GDP to Ras-GTP. This 
pathway is also critically dependent on the inuacellular 
funct.ion of Sec k.inases. 

Our studies of cell signaling provide an important link 
between the effects of Ang II on individual cells and its 
known growth-promoting effects. This, in tum, helps to 
explain the renal defect observed in mice that are deficient 
in Ang II production because of a lack of ACE or 
angiotensinogen. These studies clearly suggest that Ang 
II promotes the development of individual medullary cells. 
This hypothesis is supported by the observation that the 
renal medulla contains abundant ATI receptors. 

Male fertility 
Of all the cells which express ACE, male germ cells are 
unique in producing an isozyme with only a single catalytic 
domain. This occurs because these cells begin uanscrip
tion of the ACE gene far removed from the transcription 
start site used by somatic tissues. Male germ cells 
recognize a testis-specific promoter located in the middle 
of the ACE gene [41,42]. By understanding how develop
ing male germ cells are unique in recognizing testis ACE, a 
small window is opened on an important area of tissue 
differentiation. 

The testis ACE promoter is unusual because it drives the 
highest levels of ACE transcription but is active in a very 
restricted cell eype. This cOqlbination of strong transcrip
tion and high specificity suggests a complicated genetic 
element, but a study from our laboratory has shown chat 
only the 91 base-pairs upstream of the testis ACE 
transcription start site are required to target testis-specific 
expression of a reporter gene in transgenic animals [43]. 

The 91 bp testis ACE promoter contains a sequence similar 
[Q the consensus cAMP response element. It is now 
believed that the testis-specific, cAMP-dependent tran
scription factor CREM-"t binds m this site to induce testis 
ACE transcription [441. CREM-"[ is produced specifically 
by male germ cells os they make the uansition from diploid 
to haploid cells, consistent with the developmental stage in 
which testis ACE transcription is observed. This finding 
has not, however, been confirmed in vivo, pardy because 
mice which lack CREM-"[ have severe defects in 
spermamgenesls and do not produce mature male germ 
cells [45,461. 

The role of testis ACE is more complicated than that of 
CREM--r. The m~rphology of the testis is unremarkable in 
mice which lack testis ACE. These mice pmduce mature 
sperm which appear to be normal in number, morphology 
and motility. When male mice which lack ACE are mated 
to normal females, however, they sire litters that contain 
fewer pups than those sired by wild-type males. Specifi
cally, mice which lack ACE sire litters that are on average 

one-third the size of normal litters. ACE-deficient mice 
thus have a functional defect in male fertility despite 
sperm that appears normal. 

Interestingly, the defect in male fertility appears to be the 
only phenotype of ACE-deficient mice that is not related 
to the renin-angiotensin syste m. Angiotensinogen
deficient mice seem to have normal male fertility despite 
lacking Ang II [22]. ACE is known to cleave a variety of 
peptides, and some of these such as kinins and substance 
p, are known to influence sperm physiology [47,48]. We 
therefore speculate that one of these alternative peptides 
must be cleaved, inactivated or perhaps activated by ACE 
to achieve normal male fertility. 

Condusion 
Mice which lack ACE have low syslOlic blood pressure, 
reduced male fertility and a renal abnormality character
ized by medullary hypoplasia and the inability [0 

concenuate urine. The diverse phenotypes caused by 
inactivation of a single gene emphasize the many 
functional roles of ACE and the renin-angiotensin system. 
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