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An integral equation theory for polymer solutions: 
Explicit inclusion of the solvent molecules
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Self-consistent Polymer Reference Interaction Site Model (P R IS M  calculations and molecular 
dynamics (MD) simulations were performed on athermal solutions of linear polymers. Unlike most 
previous treatments of polymer solutions, we explicitly included the solvent molecules. The 
polymers were modeled as tangent site chains and the solvent molecules were taken to be spherical 
sites having the same intermolecular potential as the polymer sites. The PRISM theory was solved 
self-consistently for both the single chain structure and intermolecular correlations as a function of 
chain length and concentration. The rms end-to-end distance from PRISM theory was found to be 
in agreement with corresponding MD simulations, and exhibited molecular weight dependence in 
accordance with scaling predictions in the dilute and concentrated solution limits. The presence of 
explicit solvent molecules had a significant effect on the packing of the polymer by inducing 
additional structure in the intermolecular radial distribution function between polymer sites. Using 
the direct correlation functions from the athermal solution and the random phase approximation, we 
were able to estimate the spinodal curves for solutions when polymer and solvent attractions were 
turned on. We found significant deviations from Flory-H uggins theory that are likely due to 
compressibility and nonrandom mixing effects. ©  2 0 0 1  A m erican  Institute o f  Physics.
[DOI: 10 .1063/1 .1397333]

I. INTRODUCTION

The modeling of polymers in solution has been a topic of 
great interest and activity among polymer scientists for many 
years starting with the pioneering work of Flory.1 Notewor­
thy advances were subsequently made in dilute and concen­
trated solutions using perturbation theory,2 self-consistent 
field theory,3 4 and scaling theory.5 Monte Carlo (M C),6-8 as 
well as molecular dynamics MD ,9 simulations have also 
proven to be invaluable to understanding how polymers be­
have in solution. Until recently, however, most of the work 
carried out on polymer solutions did not treat the solvent 
explicitly. Rather, the polymer solution was treated as a low 
density gas of polymers in a vacuum or in a continuum fluid. 
Our purpose in the present investigation is to model polymer 
solutions by explicitly including the effects of the solvent 
molecules on the equilibrium structure and thermodynamics 
of polymer solutions.

An explicit inclusion of solvent molecules in computer 
simulations of polymer solutions, especially dilute solutions, 
is challenging because 1 much of the computational effort 
is spent on the solvent thereby providing significantly poorer
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polymer statistics compared to concentrated solutions or 
polymer melts for the same computational effort, and 2 
excluded volume and hydrodynamic screening that allows 
the use of relatively small periodic simulation cells for simu­
lations of concentrated solutions and melts are not operative 
in dilute solutions. The latter effects necessitate the use of a 
larger simulation cell than is required for concentrated solu­
tions and melts, further compounding the computational ex­
pense of dilute solution simulations. Despite these chal­
lenges, recent coarse-grained10 and atomistic11 simulations 
have been carried out on dilute polymer solutions. These 
simulations showed interesting polymer conformational ef­
fects as a function of solvent size and density.

Curro and Schweizer12 developed a theory for polymers 
based on integral equation methods. This theory, called the 
p o lym er referen ce  interaction site m odel or PRISM theory, 
has been successfully applied to polymer melts13,14 and 
blends.1516 A number of studies17-19 used PRISM theory 
self-consistently to compute the chain conformation of a 
polymer system as a function of concentration over the com­
plete range from zero to melt densities. Solvent molecules 
were not explicitly accounted for in these computations. It 
was observed that the mean square end-to-end distance R e2 
scaled as N 2 where N  is the number of monomeric units.

0 0 2 1 -960 6 /20 0 1 /115 (12)/56 6 9 /10/$18.00  5669  © 2001  A m erican  Institute of P h ysics

Downloaded 27 Aug 2009 to 155.97.13.46. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276287215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jgcurro@sandia.gov
http://jcp.aip.org/jcp/copyright.jsp


5670 J. Chem. Phys., Vol. 115, No. 12, 22 September 2001 Mendez et al.

The Flory exponent changed from 3/5 at a low concentra­
tion of polymer to 1/2 at concentrations characteristic of the 
melt in agreement with scattering experiments, computer 
simulations and self-consistent field theory. Recently 
Khalatur and Khokhlov20 21 employed self-consistent PRISM  
theory to treat the infinitely dilute solution of a polymer in an 
athermal monatomic solvent. They found that the Flory ex­
ponent was 3 /5 , characteristic of a good solvent, when the 
solvent diameter and monomer diameters were equal. Inter­
estingly, they also observed the polymer chains to collapse 
when the solvent is much larger than the monomer size as in 
a polymer/colloid system. The infinitely dilute polymer solu­
tion was also recently treated with other integral equation 
theories in separate studies by Gan and Eu,22 and Taylor and 
Lipson.23

In the current investigation, we employ self-consistent 
PRISM theory to study the conformation of polymers in so­
lutions of a monatomic solvent. Here we study the confor­
mation of polymers in solution as a function of concentration 
from dilute solutions to the melt. In addition, we carry out 
MD simulations on the same system of polymer and solvent 
at various concentrations. These simulations permit us to 
calibrate our PRISM solvation potential and to make detailed 
comparisons between theory and simulation for the polymer 
conformation and the intermolecular packing as a function of 
concentration. Furthermore, we are able to compare (R 2e ) for 
our system with solvent with the corresponding chain di­
mensions for a single polymer chain in a vacuum.

Once we establish the intra and intermolecular structure 
of the athermal solution we then use this information to de­
duce the phase behavior when attractions are turned on or 
the temperature is low ered- The Flory-H uggins theory1 of 
polymer solutions has been remarkably successful in describ­
ing the miscibility behavior of solutions. However, as is well 
known, Flory-Huggins theory employed the dual approxi­
mations of incompressibility and random mixing. By con­
trast, PRISM theory includes both compressibility and non­
random mixing effects. In this work we compare the PRISM  
theory with Flory-H uggins theory for the miscibility of 
polymer solutions to see the effect of these approximations.

We begin by briefly describing self-consistent PRISM  
theory, where in particular we introduce the solvation poten­
tial that represents the effects of the solvent molecules. We 
also describe our MD simulation techniques. We then com ­
pare the mean square end-to-end distance of the polymer 
chains from theory and simulation in the dilute solution, the 
50/50  mixture, and the pure polymer melt for chain lengths 
of N =  10, 20, 40 , and 80. Finally we employ the random 
phase approximation (RPA) to compute the spinodal curves 
for various polymer solutions and chain lengths.

II. THEORY AND COMPUTATIONAL METHODOLOGY

A. Modeling the structure of the solution using 
PRISM theory

PRISM theory is an integral equation theory developed 
by Curro and Schweizer12,24-26 as an extension to polymers 
of the reference interaction site model RISM theory of 
Chandler and Andersen.27,28 In PRISM theory each molecule

FIG. 1. Model of tangent site polymer chains immersed in solvent mol­
ecules.

is envisioned as a collection of spherically symmetric inter­
action sites or beads as depicted in Fig. 1. For simplicity 
the solvent molecules are modeled as single sites; more com­
plex solvent architectures could be constructed from addi­
tional sites28 if desired to model specific solvent molecules. 
All monomers of the chains are considered to be equivalent 
and end effects are neglected. The polymer and solvent mol­
ecules interact only through pairwise interactions between 
sites; no local nematic ordering is included in the model. For 
the case of polymers in solution, we seek to calculate the 
three independent infermolecular radial distribution func­
tions, g ss( r ) , g pp( r ) , g sp( r ) ,  where s refers to solvent andp  
to polymer sites. The corresponding intermolecular direct 
correlation functions, Css( r ) ,  Cpp( r ) ,  Csp( r ) ,  can be de­
fined through the generalized Ornstein-Zernike-type
equation 12,27,28 In Fourier transform space, this equation is

H (k) =  f t ( k)-  C (k ) - [ f t ( k) +  H (k )] , 1

where the overcaret denotes Fourier transformation with 
wave vector k. In real space, C a r( r ) is the direct correlation 
function matrix and the matrix H a J  r ) is defined in terms of
the pair correlation functions as

^ a y (r ) PaPy[g ay(r ) 1 ] ’ 2

where and are s or p , and is the density of sites of 
type a .  The intramolecular structure of the single chain has 
the form

1 v ,  / sin k r ;A

k r ij
3

with the summations i , j  being taken over all sites on a single 
chain with N  beads and the brackets indicate an ensemble 
average over all polymer chains. Since a solvent molecule 

consists of a single site, Qss( k ) =  1; the cross term can be
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shown to be H sp( k ) =  0. We obtain the intramolecular struc­
ture from a single chain Monte Carlo simulation in a solva­
tion potential discussed below.

Knowing the intramolecular ^ y( k ) matrix, we use Eq. 

(1) to solve for the intermolecular function H a 7( k ) .  This can 
only be done by having a closure approximation for the di­

rect correlation function matrix C a r ( k ) .  We employ the well 
known Percus-Yevick (PY ) approximation12,29 for this pur­
pose. In real space, its form is

C ay( r )  =  {1  -  exp[/3 u ieJ  r ) ] } [ H a r( r )  +  1 ], (4)

where (3 =  1/kBT and u ^ r ) is the repulsive interaction po­
tential between intermolecular sites and . Only repulsive 
interactions are used since at high, liquid-like densities, it is 
well established29 that the repulsive branch of the interaction 
potential determines the intermolecular packing g ay( r ) in 
liquids. We decompose the full Lennard-Jones 6 -12  potential 
following Weeks, Chandler, and Anderson30 into a repulsive, 
reference part,

u Z (  r )  =  4e,ay

12 6
l / ay I  ̂ay r  2 1/6, ' a y2 ,

urap( r )  =  0, r > < r a y2 1/6, 

and an attractive, or perturbative, part,

u f T( r ) = -  r < a a y21/6,

12 6

5a

5b
, r  2 1/6,

where r  is the distance between sites and . and 
are the usual Lennard-Jones parameters. It should be noted 
that rep att must hold in order for Eqs. 5a and 5b to add 
up to the full Lennard-Jones potential. We, however, ap­
proximate the perturbative part of the potential to have a 
separately controllable attractive parameter att that will per­
mit us to turn on an attractive potential independently with­
out having to recompute the repulsive reference system.

For a given intramolecular structure function H pp( k ), 
Eqs. 1 and 4  can be solved numerically to give the inter- 
molecular pair correlation functions g a y( r ). As a first ap­
proximation one could follow Flory’s hypothesis1 and deter­

mine Hia ( k ) for a melt of ideal chains with no long range 
excluded volume interactions. This is inadequate, however, 
for a polymer solution because excluded volume interactions 
are known to be important at lower concentrations of poly­
mer. In fact, one would expect the intramolecular structure 
and the intermolecular packing to be coupled. Therefore, for 
our purposes we must solve the PRISM theory in a self- 
consistent manner for both the intra and intermolecular 
structure.12-1417-19 The first step of our iterative scheme in­

volves finding H aa( k ) through a Monte Carlo simulation. 
The total potential energy in the simulation is12

U ( R ) = U E + W i J R ) , 6

where R  represents the set of coordinates that define the 
instantaneous polymer conformation of the entire chain mol­
ecule. UE is the sum of all pairwise, repulsive interactions

u rep along the chain, and the N -body solvation potential, 
Waa(R ) , mimics the effect of the solvent acting on a chain. 
In order to make the problem tractable, we approximate the
solvation potential to be pairwise additive and to have the
form12,31,32

p W p a i k ^ - K ^  C a i(k )S ij(k )C ja (k )  ,
i,J

where the partial structure factors are defined as

S o,y(k) •

7

8

The summations i and j in Eq. 7 are over polymer a  and 
solvent s sites. Within our approximation, the same solva­
tion potential Wpp( r a r) acts between all intramolecular pairs 
of sites along the polymer backbone. As will be seen later in 
Sec. III, W aa( r  ) is attractive at short distances reflecting 
the fact that the other chains in the system tend to cause a 
given test macromolecule to contract. At larger distances, 
oscillations in the solvation potential due to packing of the 
solvent molecules are seen. The essence of the Flory ideality 
hypothesis1 is that the repulsive excluded volume interac­
tions and the medium induced attractions in Eq. 6  cancel 
each other out. Because of the approximate nature of the 
solvation potential we include a coefficient K  in Eq. 7 that 
controls the overall strength of the field. Our strategy is to 
see if a constant value of K  is adequate to capture the correct 
scaling behavior across the complete concentration range 
from the dilute solution to melt.

The first simulation in our iterative computational 
scheme can be performed with the initial guess of Waa( r )

0 to calculate the first form of the intramolecular structure. 
At this point, one is able to solve the integral equations in 

Eqs. (1) and ( 4  for H ar ( k ) and C ar ( k ) . With these func­
tions, we can then calculate the static structure factor and 
solvation potential matrix from Eqs. 7 and 8 . The newly 
calculated medium-induced potential is compared to the one 
used previously. If the difference between these two is 
greater than some predefined value, then we go into another 

iteration using an updated value of Wpp( k ) in the Monte 
Carlo simulation. In this single chain simulation, the updated 
medium- induced potential is added to the repulsive 
Lennard-Jones interaction to define the total interaction be­
tween monomer sites. The solvation potential acts to com­
press the polymer chains whereas the repulsive potential 
causes expansion. This self-consistent iterative scheme, 
eventually, provides the correct balance of inter and intramo­
lecular interactions, and thus yields both the equilibrium in­

tramolecular structure H aa( k ) and intermolecular pair corre­
lation functions gpa(r ) , g ss( r ) , and g Sp ( r ).

The single chain Monte Carlo simulations employ pivot 
moves made by randomly selecting a bond, then randomly 
rotating about the dihedral angle. Along with this pivot 
move, the bond angle is randomly varied between 0 and 40  
degrees. The Monte Carlo moves are accepted or rejected 
according to Metropolis importance sampling.33 Monte Carlo 
reweighing is used so that the simulation did not have to be 
repeated during each iteration step.14,34
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B. Estimation of the spinodal curve 
from PRISM theory

The self-consistent PRISM theory we have outlined pro­
vides us with a complete description of the intra and inter- 
molecular structure of the polymer solution. These structural 
calculations are carried out for the athermal reference system 
where we use the repulsive potential in Eq. (5a). We can use 
this information on the reference system to deduce the phase 
behavior of the polymer solution when the attractions are 
turned on. Curro and Schweizer35 derived an exact expres­
sion for the spinodal condition of a compressible, binary sys­
tem,

1 -  PpN Cppi 0 ) -  PsCssi 0 )

+  PpPsN [C p p (0 ) C ss (0 ) -  C % (0 ) ]  =  0, (9)

5672 J. Chem. Phys., Vol. 115, No. 12, 22 September 2001

written for the polymer solution case. For illustrative pur­
poses, we make use of the random phase approximation 
RPA ,29 valid for weak attractions, as a way of estimating 

how the direct correlation functions depend on the attractive 
parts of the potentials:

Cppi 0 ) =  c °p p - (3 U fp (0 ) ,

Cssi 0 ) = £ 0 s - /* u  sa“( 0 ) ,  (10)

Ospi 0 ) = c ? p - /? u  sp(0);

c 0 (  0  )  is obtained for the athermal reference system by ex­
trapolating to the zero wave vector. After some algebraic 
manipulations, we can express the spinodal temperature, 
T s , as

Mendez et al.

k BTs"

1
0)| J ^ - c p ^ 0 ) I - C ( 0 ) |  - - c u 0 )  I - 2 c l ( 0 ) u p 0 )

1

1 c0 s (0 )  c 0p p (0 )
11

PsPpN p„N
cCs0s 0  cC0pp 0  cC0sp 0sp

2

The Fourier transform of the attractive potential in Eq. 5b , 
uCatt ( 0 ) ,  can be found analytically in the zero wave vector 
limit:

pp =  x p , P s = ( 1 ~ x ) p , 

1 x  ( 1 — x)
(14)

f  — 647T€att O"3 
5fT(0) = 4 7 rJo r 2u f y{ r ) d r  = ------ ^  ay. (12)

Substituting the above results into the previous equation for 
the spinodal temperature we obtain

k bTBT S'
64w(x3

9 ^ 2

PpN

1

( 1

c 0 , ) + f t - c 0 ^ 2 c p "

cC0 cC0
pp

, (13)

PsPpN p „N  p s
c  0 c  0 _c  02c ssc pp c sp

where we ake he Lennard-Jones 's  o be he same for bo h 
he polymer and he solven .

From Eq. 13 i can be seen ha once he direc corre- 
la ion func ions from he reference sys em are de ermined a 
he zero wave vec or, he spinodal empera ure Ts  can be 

rela ed o he solven and polymer densi ies. The informa ion 
regarding he packing of he solven is con ained in hese 
direc t correlation func tions. In order to comple tely charac ter- 
ize the spinodal curve we must also have an equation of state 
for the mixture that relates p and s at constant pressure. 
For simplicity, we make the assumption that the volume 
change on mixing is zero. With this approximation we can
write15

where x  is the site fraction of the polymer and , 0p , s0 are 
the densities of the solution, pure polymer, and pure solvent, 
respectively. Estimates based on a hard sphere equation-of- 
state for tangent site chains36 suggest that the density of the 
monatomic solvent would be about 9%  lower than the poly­
mer density of p0 =  0 .85o ’_ 3 at constant pressure. In view of 
the already approximate nature of the calculation due to Eqs.

10 and 14 , for illustrative purposes we make additional 
assumptions by taking the pure component densities of 
the polymer and solvent to be equal and maintain the over­
all density of the mixture fixed at 0 .8 5 0 - - 3 and by neglect­
ing thermal expansion effects. It is important to recognize 
that the zero volume change of mixing approximation in 
Eq. 14 does not imply that the solution is incompressible. 
As an alternative, the volume change of mixing could be 
obtained from PRISM theory through the Kirkwood-Buff

37equations.3'
If we impose the incompressibility constraint together 

with the random mixing approximation, one would expect 
the general RPA approximation in Eq. ( 1 3  to reduce to the 
Flory-H uggins result for the spinodal condition. For the case 
of random mixing, all the radial distribution functions are 
equal. This also implies that the direct correlation functions 
of the polymer and the solvent are also equal which leads to 

c 0 p( 0 ) =  c ° s(0 )  =  C°p(0 ) .  The isothermal compressibility
T can be related to the direct correlation functions through 

the Kirkw ood-Buff relations to give35,37

0
p

1att
ss
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1

Kj-—  = kBT 2  P aP ySay (0 )- 15
ay

For an incompressible system k t =  0 and Eq. ( 1 5 ,  together 

with Eqs. (1) and (8), imply that Cpp(0 )  =  <C°?s(0^ =  C!°p(0 )
. With these restrictions it can be seen that Eq. 13 

reduces to

k BJ S ~
64^ cr3p (e p p+ e'. - 2 e )sp

9 J 2  [1 /x N +  1 / ( 1 -  x ) Y
16

This is indeed what the Flory-H uggins theory would predict 
for the spinodal condition of a polymer solution with a 
parameter suitably generalized to continuous space:

x~-
32iro-3p ( e % + e S S - 2 e S p )  

9 \/2 k b j
(17)

FIG. 2. The interaction potentials for N 200 PRISM calculations. The 
dotted curve represents the purely repulsive (shifted Lennard-Jones) poten­
tial. The polymer-polymer component of the medium-induced interaction 
Wpp(r ) for a polymer melt and polymer in an infinitely dilute solution are 
shown with closed and open circles, respectively. The solid and dashed lines 
correspond to the sum of the repulsive and medium-induced potentials for 
the melt and dilute solutions cases.

C. Molecular dynamics simulations of polymer 
solutions

As part of this investigation, we also carry out MD simu­
lations of infinitely dilute 1 polymer molecule per simula­
tion b o x  and concentrated (x  =  0.5) solutions using only the 
repulsive part of the Lennard-Jones (6-12) potential [Eq. 
(5a)] to describe s -  s , s - p , and p  - p  interactions. The poly­
mer chains consist of N  (N =  10, 20, 40 , and 80) beads each 
of which is connected with neighboring beads by a bond of 
length of . Bond lengths are constrained during simulations 
using the SHAKE algorithm38 while other intramolecular de­
grees of freedom are unrestricted resulting in a flexible 
freely-jointed representation of polymer chains. Solvent mol­
ecules are explicitly included in simulations as single beads 
that are identical to those that comprise the polymer chains. 
In simulations of infinitely dilute solutions a single polymer 
chain is dissolved in a large number of solvent molecules 
(Nsoivent~ 7 0 0 0  for N =  10 and 20, and N solvent~  22  000  for 
N  4 0  and 80 to avoid possible artifacts due to the correla­
tion of a polymer molecule with its own image from periodic 
boundary conditions. For all systems at dilute solutions the 
ratio of the chain radius of gyration (R g) to the simulation 
box length (L) is less than 0 .17 which is lower than the 
acceptable limit for this ratio (R g / L«* 0 .2 -0 .3 )  determined 
by Dunweg and Kremer9 in their simulations of polymer 
solutions. For the concentrated solutions the systems contain 
1 4 0 -3 4 0  polymer chains and 3 4 0 0 -1 1 2 0 0  solvent mol­
ecules (depending on the length of the polymer chain). Simu­
lations are performed in a NVT ensemble at density p* 
=  pcr3 =  0 .85 and temperature T* =  k BT / e =  1.0. NVT condi­
tions are implemented using the N ose-H oover thermostat 
and explicit reversible integrators described elsewhere.39 
Production runs over 1 0 .0 -1 5 .0 x  106 for (dilute solutions) 
and 2 .0  X 106 (for concentrated solutions) integration time 
steps [A f =  0.001 r , where r = c r (m /e )1/2] are conducted to 
sample conformational and structural properties of solutions 
after equilibrating each system over 2 .0  X 106 integration 
steps.

III. RESULTS AND DISCUSSION

A. Intramolecular dimensions

The PRISM calculations on the repulsive reference sys­
tem are performed at a total density of 0.85o--3  at all con­
centrations of the polymer. To keep our model simple, we
take (Tss=crsp =  crpp =  cr and k B j / e = 1  ^ s ^ ^ p  =  epp =  e).
To determine the solvation field strength K, we calculate the 
mean square end-to-end distance ( R 2e) as a function of chain 
length N  for the infinitely dilute solution, a polymer melt, 
and a solution with 50% polymer concentration. For these 
three conditions, MD data is collected for a comparison with 
PRISM results. The solvation potential in Eq. 7 is calcu­
lated from self-consistent PRISM theory. In Fig. 2  we show 
Wpp( r ) for an infinitely dilute solution and polymer melt 
along with the total interaction potentials upp( r ) +  Wpp( r ). 
The solvation potential is mostly attractive, but oscillations 
occur due to packing of the polymer and solvent. Wpp( r ) 
eventually dampens to zero as r increases beyond 5 . The 
total interaction potentials both have minima at r  slightly 
greater than 1 . In order to optimize the agreement between 
PRISM and MD data, the field strength K  in Eq. 7 is set 
equal to 0 .90. Larger values of K ~  1 lead to chain collapse in 
a dilute solution, while smaller values of K  give chain di­
mensions in the melt limit that are too large. In all our 
PRISM calculations shown in this paper K  is maintained at
0.90.

It can be observed from Fig. 2  that the solvation poten­
tial, at distances less than r  , is more attractive for the 
dilute solution than for the polymer melt. This region of 
Wpp( r ) is not relevant, however, since the bare repulsive 
interactions UE at short distances dominate the total potential 
that the polymer chain sees. At larger distances ( r  ) the 
solvation potential for the polymer melt is more attractive 
than for the dilute solution. Since the bare interactions are 
small for r  , the solvation potential controls the total site/ 
site potential that the polymer chain feels at larger distances. 
Furthermore, it can be seen from the figure that the solvation
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FIG. 3. {R2} vs N for the case of a polymer in an infinitely dilute solution. 
The line shown is a fit of the PRISM (closed diamonds) data. The closed 
circles are the results obtained from MD simulations run under the same 
conditions. The open diamonds are from MC simulations Ref. 8 of a poly­
mer in a vacuum (no solvent present).

potential for the polymer melt decays to zero, and is less 
repulsive, at large distances than for the dilute solution. This 
is consistent with the notion that the excluded volume is 
‘‘screened out’’ in the melt. Thus from an examination of 
Fig. 2, we conclude that a polymer chain in the melt would 
be predicted to be more compact than a corresponding m ac­
romolecule in a dilute solution. This is clearly seen when one 
examines R e2 as one proceeds from the dilute solution to 
the melt.

Figure 3 shows a logarithmic plot of the mean square 
end-to-end distance, R e2 , versus the number of monomers, 
N , for an infinitely dilute solution. It can be seen that there is 
very good agreement between the PRISM theory predictions 
shown by the straight line and the MD simulations for N  
=  10, 20, 40, and 80 denoted by the solid points (see Table p . 
In these MD simulations the solvent molecules are explicitly 
included. A power law fit R e2 N 2 of these data show 
that v =  0 .5 9 ± 0 .0 7  and 0 .6 3 ± 0 .06  for PRISM and MD 
simulations, respectively. The error bars here and throughout 
this paper represent 80%  confidence limits. This is close to 
the approximately 3/5 value we expect for dilute solutions of 
a polymer in a good solvent. The open symbols in Fig. 3 are 
from MC simulations of Graessley and coworkers8 on a 
polymer chain in a continuum. It can be seen that although 
the scaling is the same ( v = 0 .5 9  for large N ) the actual { R 2e) 
values are greater than 50%  larger for a polymer in a con-

TABLE I. MD simulation results.

N
Dilute solution

<r 2>
50% polymer

<R2>
Melt Ref. 40

<R2>

10 13.86 13.71
20 36.58 32.46
25 37.9
40 80.64 67.39
50 80.2
80 197.30 140.03

100 167.0
200 340.0
350 590.0

1000

ci

cmA 100 ®
CC
v

1 0 ----------------------- ,---- ,--------------- ,----- ,— ................
10 100 1000

N
FIG. 4. A plot of {R2} vs N for the polymer melt case. A fit (excluding N 

10 and 20 of the PRISM diamonds data is shown as the line . The 
results Ref. 40 of the MD simulation for the polymer melt are the circles.

tinuum. So it appears that the monatomic solvent at the den­
sity studied is a poorer solvent for the polymer than a con­
tinuum solvent. This may not be surprising since density 
fluctuations are much smaller for the actual polymer solution 
than for a corresponding low density polymer. One might 
expect, therefore, that the polymer might reduce its chain 
dimensions in the less compressible medium. Previous 
studies22,23 of the infinitely dilute solution using other inte­
gral equation approaches also found the chain dimensions to 
contract with increasing density of an athermal solvent. Gan 
and Eu22 found v =  0 .545  whereas Taylor and Lipson23 ob­
served v =  0.58 for the Flory exponent at high solvent pack­
ing fractions characteristic of a liquid.

Let us now consider the opposite extreme of the dense 
polymer melt. A logarithmic plot of R e2 versus N  is shown 
in Fig. 4  for both the PRISM predictions and from MD simu­
lations of Dunweg and coworkers40 see Table I . Data is 
shown for 10 to 350 monomeric units. Disregarding the N  
=  10 and 20  data points from the PRISM data set, we obtain 
from a power law fit values of 0 .52  0 .04  and 0 .52  
± 0 .0 2  for the PRISM and MD data, respectively, in close 
agreement with the value of 1/2 we expect for the polymer 
melt. Note that although the scaling is the same, PRISM  
theory predicts that the polymer chains are somewhat more 
swollen than for the simulation.

Single chain statistics are likewise obtained for a solu­
tion with a 50%  concentration of polymers with N  10 
- 2 0 0 .  As seen in Fig. 5, the scaling of { R 2e)  with N  is similar 
for both theory and simulation with 0 .56  0.03 and 
0 .5 5 ± 0 .0 6  for PRISM and MD, respectively (see Table p . 
As with the polymer melt, we observe that the PRISM results 
exhibit chains that are somewhat more swollen than with 
simulation. In our self-consistent PRISM calculations we 
hold the strength of the solvation potential fixed. Obviously 
better agreement could have been achieved by allowing K  to 
depend on concentration. Nevertheless, we feel that a reason­
ably accurate description of the intramolecular structure over 
the complete concentration range, with the correct scaling 
behavior, is obtained in our theory with K  held fixed at 0 .90.

We performed additional PRISM calculations as a func­
tion of concentration to observe how the chain contracts as 
the concentration increases from dilute solutions. These re-
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FIG. 5. (R2) vs N from MD simulations (circles) and PRISM calculations 
(diamonds) for a solution with 50% polymer. A linear fit of the PRISM data 
was performed and the resulting line is shown.

sults for N  200  are plotted in Fig. 6  on a logarithmic scale. 
It can be seen that there is evidence of a semidilute regime, 
where the chain dimensions contract with an approximate 
power law. The line in the figure is drawn with a slope of 
- 1 / 4 ,  suggesting that ( R 2e) x ~ 1/4 holds in the semidilute re­
gime in accordance with scaling arguments.5 It should be 
pointed out, however, that chains of N  200  may not be 
large enough to establish a well defined semidilute regime.

B. Intermolecular packing

The intermolecular radial distribution functions g pp( r ), 
g ss( r ) , and g sp( r ) completely describe the packing of poly­
mer and solvent molecules in the mixture. Self-consistent 
PRISM and MD data are collected for a solution containing 
50%  polymer by volume. In Fig. 7  we compare these results 
for polymers chains with N  80. It can be seen from this 
figure that almost quantitative agreement is obtained between 
theory and simulation for both g ss(r )  and g ps(r ) .  For the 
correlations between polymer sites, however, significantly 
more structure in g pp( r ) is predicted by PRISM theory than 
is actually present in the MD simulations. A contributing 
factor to this difference is that the chains are somewhat more 
extended see Fig. 4  in the self-consistent PRISM calcula-

FIG. 7. Intermolecular radial distribution functions for a polymer with N 
80 in a solution with 50% polymer obtained from PRISM calculations and 

MD simulations. The PRISM results are shown with curved lines: solid 
g ss(r), long-dash gsp(r), and short-dash gpp(r). The open symbols corre­
spond to MD simulations: circles g ss(r), squares gsp(r), and diamonds 
gpp(r).

tion than in the MD simulation, resulting in a more intermo- 
lecular overlap of the polymer coils. This discrepancy in 
g pp( r ) may also indicate that the direct correlation function 
between polymer sites at low concentrations is longer range 
than assumed in the Percus-Yevick closure.

It is interesting to compare the PRISM predictions for 
intermolecular packing of the polymer in solution with the 
corresponding polymer in a continuum at the same polymer 
concentration. In Fig. 8 we plot g pp( r ) for 80 unit chains at 
various concentrations. Both the polymer with explicit sol­
vent molecules present and in a continuum solvent are shown 
for each site fraction x  of the polymer. Note that there is 
considerably more structure in the polymer packing when the 
solvent molecules are included in the calculation. We know

FIG. 6. A log-log plot of (Re) vs the fraction of polymer in solution, x. 
Results from PRISM calculations are represented by the circles. A line of 
slope 1/4 was drawn to show the transition to a semi-dilute regime.

FIG. 8. The polymer/polymer radial distribution function gpp(r) for N 
80 chains at various fractions x of polymer indicated in the figure. The 

solid circles refer to the results of PRISM calculations with solvent mol­
ecules included keeping the total density fixed at 0.85. The solid curves are 
the corresponding PRISM calculations with no solvent. The open circles 
correspond to results from MD simulations with a solvent present, while the 
dotted line is without a solvent. Some of the curves have been shifted along 
the y-axis for clarity.
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that the monatomic solvent packs with strong peaks in the 
radial distribution function g ss( r ) as seen in Fig. 7. It is not 
surprising, therefore, that the ordering of the solvent results 
in enhanced ordering in the polymer as well. Note also that 
the PRISM prediction for g pp( r ) is remarkably insensitive to 
the concentration of the polymer when the solvent molecules 
are present in the calculation. Similar trends have been ob­
served by Schweizer and coworkers41 based on PRISM cal­
culations that were not performed self-consistently. When the 
polymer is treated as a low density system without explicitly 
including the solvent molecules, however, g pp( r ) near con­
tact decreases and the correlation hole becomes of a longer 
range as the concentration is decreased.

In Fig. 8, we also show the results from MD simulations 
with and without a solvent present. The same trends are seen 
in the simulation, with the solvent inducing more ordering in 
the polymer, as predicted from self-consistent PRISM theory. 
It can also be seen that whereas PRISM theory predicts that 
g pp( r ) is very weakly dependent on concentration, the MD 
simulation shows that the strength of the polymer/polymer 
correlations increases significantly with concentration. This 
is probably related to a longer range character in the direct 
correlation function as discussed above. From  a comparison 
of the solid and dashed curves in Fig. 8, it can be seen that 
PRISM theory also predicts more structure in g pp( r ) than 
when no solvent is present. This is not surprising since it is 
well known12 that PRISM theory is most accurate at melt 
densities and becomes less reliable as the density is lowered. 
In the case we studied here, the monomer and the monatomic 
solvent had the same effective hard sphere diameter. In real 
polymer solutions, one might speculate that the multiplicity 
of length scales in actual solvent molecules might wash out 
some of the solvent-induced polymer packing seen in Figs. 7 
and 8.

Throughout this work we assumed that the attractive in­
teractions do not appreciably influence the packing of the 
polymer and solvent molecules. As a test of this hypothesis, 
we perform two sets of MD simulations on 20  unit chains in 
50% solution. In the first simulation we employ the W CA  
repulsive potential from Eq. 5a that we have used through­
out this paper. In the second simulation we use the full 
Lennard-Jones potential including attractions. Figure 9 com ­
pares the intermolecular radial distribution functions from 
both simulations. It can be seen that indeed the attractive 
branch of the potential, defined in Eq. 5b , has only a minor 
affect on the structure of the polymer solution. As seen in the 
N =  80 case at 50%  concentration, we find that PRISM  
theory gives almost quantitative agreement with simulation 
for the solvent/solvent and solvent/polymer correlations, but 
overestimates the correlations between intermolecular poly­
mer sites.

C. Phase behavior

We now use the structural information obtained on the 
purely repulsive reference system to estimate the phase be­
havior of the solution. Because of the apparent inaccuracy of 
PRISM theory predictions for g pp( r ), and by inference 

C pp(0 ) ,  at low polymer concentrations, we expect the spin-

FIG. 9. The effect of attractions on the structure of polymer solutions for a 
50% solution of N= 20 unit chains with explicit solvent molecules present. 
Open symbols: MD without attractions; solid symbols: MD with attractions 
e/kBT=  1.0; curves: PRISM theory without attractions.

odal calculation to be only approximate. In order to compare 
our theory with Flory-H uggins theory, we first consider a 
model mixture with the attractive interactions as follows:

e att =  e att= 0 ;  e att= - e ,  pp ss sp (18)

so that solvent/polymer interactions are repulsive and demix­
ing will occur at a sufficiently low temperature. Such a 
model was employed by Sariban and Binder42 in their Monte 
Carlo simulations of blends. It is important to emphasize that 
this is not a conventional Lennard-Jones system since the 
solvent/polymer interactions are repulsive and Berthelot 
scaling clearly does not hold for this model. For simplicity 
we also keep the total density of the solution fixed and inde­
pendent of temperature. We make an additional assumption 
that the direct correlation functions from the reference sys­

tem C 0 (0 ) ,  obtained at k BT / e =  1, can be used at other 
temperatures as well. Thus Eq. ( 1 3 ,  together with the zero 
volume change on the mixing condition in Eq. (14), can be 
used to estimate the spinodal curve of this model solution.

The results are shown in Fig. 10 along with the corre­
sponding Flory-H uggins prediction for this mixture. It can 
be seen that the PRISM calculations, which include nonran­
dom mixing and compressibility effects, predicts the solu­
tions to be significantly more unstable than Flory-Huggins 
theory would predict. Whether T S from PRISM theory is 
larger or smaller than from Flory-H uggins theory depends 

on the relative magnitudes of the athermal C 0 y(0 )  from the 
reference system. An examination of Eqs. (13) and ( 1 6  in­

dicates that the sign of the nonlinear term Cpp(0 ) C ss(0 )

-  C ps(0 ) ,  which turns out to be negative in our calculations, 
forces the PRISM spinodal curve to be above the corre­
sponding Flory-H uggins spinodal. Moreover, it can be ob­
served that PRISM theory predicts a stronger molecular 
weight dependence of the critical temperature than does 
Flory-H uggins theory.

As a final application of our theory, we consider the 
completely symmetric polymer solution defined by
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FIG. 12. Critical composition vs N 1/2 for a polymer solution with aptp 
asts astp . A linear fit of the data is shown.

FIG. 10. Spinodal curves generated with the output of PRISM calculations 
for polymer solutions (ep,p= 0, esp= e) for various values of N. The 
inset is the corresponding Flory-Huggins prediction under the same condi­
tions. Note that the y-axis is — kBT/ efp and, therefore, quantitatively differ­
ent than the reduced temperature of conventional Lennard-Jones systems.

pp sp . 19

Clearly such a mixture would be predicted to be completely 
miscible in Flory-H uggins theory since the ^  parameter, de­
fined in Eq. ( 1 7 ,  is zero. By contrast, as seen in Fig. 11, our 
prediction for this symmetric mixture shows that the solution 
is not completely miscible but instead appears to show an 
upper critical solution temperature (UCST). In this case the 
phase behavior is driven by nonrandom mixing and com ­
pressibility effects neglected in Flory-H uggins theory.

A similar solution was studied in the MC simulations of 
Gromov and coworkers43 in the vicinity of the critical point 
( k BT c / e = 1 .0 8 ,p ccr3 =  0.10) of the pure solvent. For these 
state points they found a closed loop phase diagram with 
both LCST and UCST temperatures. In their case the exis­
tence of the LCST may have been due to the very high com ­
pressibility of the solvent near the critical point. At our m ix­
ture density of 0.85, we are well to the right of the critical
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FIG. 11. Spinodal curves generated with an output of PRISM calculations
for polymer solutions ( ) for various values of N.

point and it is not unreasonable that we see only the UCST. 
These results, however, are complicated by the fact that re­
cent estimates44 based on Wertheim’s equation-of-state45 
suggest that at po-3 =  0 .85 and k BT / e ^  1, the pure chain melt 
may be slightly within the gas/liquid coexistence region. 
Thus if there indeed is a UCST in the polymer solution, it 
may be unobservable because it may be preempted by the 
gas/liquid coexistence curve. In Fig. 12 we show a plot of the 
critical concentration C from Fig. 11 as a function of chain 
length. It is interesting to note that the critical concentration 
scales as <j>C~ N ^ 1/2, as in Flory-H uggins theory, even 
though the Flory-Huggins parameter is zero for this solu­
tion.

IV. CONCLUSIONS

In this investigation we find that solvent packing effects 
can be incorporated into a theory of polymer solutions using 
self-consistent PRISM theory. Reasonable agreement is 
found with MD simulations using the solvation potential of 
Eq. 7 with an adjustable constant K  0 .90  characterizing 
the overall strength of the solvation field. The effect of in­
troducing the solvent explicitly into the calculation is to 
cause the chain to contract relative to chains in a continuum 
solvent at the same concentration. Approximately correct 
scaling of the mean square end-to-end distance with molecu­
lar weight is found over the complete concentration range 
from a dilute solution to the pure melt. Excellent agreement 
between theory and simulation is observed for the intermo- 
lecular pair correlations g ss( r ) and g sp( r ) .  PRISM theory is 
found to predict that the intermolecular polymer/polymer ra­
dial distribution function g pp( r ) is only weakly dependent on 
concentration in contrast to MD simulation. Furthermore we 
observe from both theory and simulation that ordering of the 
solvent molecules tends to induce an additional structure in 
the polymer/polymer pair correlation function that is not 
present when the polymers are in a continuum solvent me­
dium.

The phase behavior of the polymer solutions can be de­
duced from this theory using the RPA approximation for the 
effects of attractions on the direct correlation functions. In 
contrast to Flory-H uggins theory, this calculation accounts 
for compressibility and nonrandom mixing of polymer and

att att att
ss

att att
sp
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solvent. We find that a polymer solution characterized by 
symmetric energetics displayed UCST behavior, whereas 
Flory-H uggins theory would conclude that such a mixture 
was completely miscible. Future work will focus on MD  
simulations of this symmetric model to check these PRISM  
predictions.

Finally it should be emphasized that the PRISM calcu­
lations and MD simulations presented here were for a very 
idealized system consisting of completely flexible, tangent 
site chains, and monatomic solvent molecules of the same 
size as the monomers. Based on this model we observe sig­
nificant departures in the polymer structure induced by the 
solvent. Moreover, strong deviations from Flory-Huggins 
theory are evident in the two example cases studied. By con­
trast, real polymers have more complex monomeric structure 
with significantly higher chain stiffness and the solvent mol­
ecules are obviously not simple monatomic entities with a 
single length scale. The question of whether the significant 
solvent-specific effects we have observed here are actually 
present in real polymer solutions will have to await future 
self- consistent PRISM and simulation studies using atomis­
tic models.
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