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Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors
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Wc propose models of two-dimensional paramagnetic semiconductors where the intrinsic spin Hall effect is 
exactly quantized in integer units of a topological charge. The model describes a topological insulator in the 
bulk and a “holographic metal” at the edge, where the number of extended edge states crossing the Fermi level 
is dictated by (exactly equal to) the bulk topological charge. Wc also demonstrate the spin Hall effect explicitly 
in terms of the spin accumulation caused by the adiabatic flux insertion.
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I. INTRODUCTION

The intrinsic spin Hall effect is a novel phenomenon in 
condensed matter physics, where a dissipationless spin cur­
rent is proposed to be induced by an external electric field. 
The effect has been theoretically predicted both in p-doped 
semiconductors with Luttinger type of spin-orbit (SO) 
coupling1 and in ??-doped semiconductors with Rashba type 
of SO coupling.2 After these initial proposals, the issue of the 
stability of the intrinsic spin Hall effect was intensely de­
bated theoretically. It is now broadly believed that the vertex 
corrections due to impurity scattering exactly cancel the in­
trinsic spin Hall effect in the «-type Rashba model,3-5 while 
the vertex corrections vanishes for the p -type Luttinger6 and 
Rashba 7 models. In the latter case, the impurity scattering 
does not affect the intrinsic spin Hall effect in the clean limit. 
This conclusion is also supported by extensive numerical 
calculations.8 Remarkably, the spin Hall effect has been ex­
perimentally observed.9-10 The experiment of Ref. 10 was 
carried out in a two-dimensional hole gas (2DHG) in the 
clean limit, and the effect is likely of intrinsic nature.

The next logical question in the study of the emerging 
field of the spin Hall effect concerns the dissipationless na­
ture of the transport and possible quantization of the spin 
Hall conductivity. Murakami, Nagaosa, and Zhang proposed 
that the intrinsic spin Hall effect can even exist in insulators 
where the Fermi level lies within a band gap.11 In a spin Hall 
insulator, there is no charge current but spin currents, and the 
transport can be completely dissipationless. Bernevig and 
Zhang have proposed that the spin Hall effect can be quan­
tized in two dimensions.12 In their proposal, the Landau lev­
els arise from the gradient of the strain, rather than the mag­
netic field.

In the present paper, we propose a realization of the quan­
tum spin Hall effect (QSHE) by specializing the spin Hall 
insulator model of Ref. 11 to two dimensions. In the pres­
ence of mirror symmetry with respect to the .xy plane, the 
system is shown to be a topological insulator characterized 
by a momentum-space winding number n e Z, with spin Hall 
transport carried by gapless edge states in a cylindrical ge­
ometry, in a way similar to the quantum (charge) Hall sys­
tem. The evolution of the edge states owing to the adiabatic 
flux insertion can be traced by following the Laughlin- 
Halperin argument for the integer quantum Hall effect 
(IQHE),13-15 and it can be related explicitly to the spin accu­

mulation at the boundary. Our model therefore describes a 
bulk topological insulator and a “holographic metal” at the 
boundary, where the edge transport properties precisely en­
code the bulk topological invariant.

The rest of this paper is organized as follows. In Sec. II 
we introduce a systematic description of the quantum 
anomalous Hall effect (QAHE) in the most general two-band 
model in two dimensions that realizes the charge QHE with­
out an external magnetic field. It also provides a helpful 
mathematical preparation for understanding the QSHE. In 
Sec. Ill we show how the QSHE emerges in a two­
dimensional spin Hall insulator with an “inverted” band 
structure. Finally, Sec. IV is devoted to conclusions and a 
discussion.

II. QUANTIZED ANOMALOUS HALL EFFECT

To understand the topological quantization of the spin 
Hall effect, we shall first introduce a general class of 2D 
models, called quantum anomalous Hall insulators, in which 
the charge Hall effect is topologically quantized in the ab­
sence of an external magnetic field.

Historically, the first example of the QAHE was intro­
duced by Haldane,16 which is a tight-binding model defined 
on a honeycomb lattice with next-nearest-neighbor hopping 
and staggered flux. (Recently, Kane and Mele generalized 
Haldane's model and discussed the QSHE.17) Similar to the 
usual quantum Hall effect, the QAHE is also a consequence 
of momentum-space topology18 and is robust against local 
perturbations. We will show the topological nature of the 
spin Hall conductance in our general two-band model explic­
itly by a Kubo formula calculation.

The most general two-band Hamiltonian describing a 2D 
noninteracting system can be expressed in the following 
form:

«  = X « ( k ) ,  H(k) = e(k) + Vd„(k)an\  (1) 
k

where a" (a= 1 ,2 ,3 ) are the three Pauli matrices and 
k = (k x,k v) stands for the Bloch wave vector of the electron. 
The two bands may stand for different physical degrees of 
freedom depending on the context. If they are the compo­
nents of a spin-1/2 electron, rf„(k) describe the spin-orbit 
coupling. If they correspond to the orbital degrees of free­
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doms, then rf„(k) describe the hybridization between bands. 
The discussion below is completely independent of the 
physical interpretation of the Hamiltonian (1) and leads to a 
general understanding for the conditions for the QAHE.

The Hamiltonian (1) can be easily diagonalized to obtain 
the two-band energy spectrum as ZT±(k) = e(k)± Vrf(k), in 
which rf(k) is the norm of the three-vector rf„(k). The Hall 
conductivity can be calculated using the standard Kubo for­
mula to be

o> lim —Qxv(io + it
io—O to

Qxv(iv,„) = T T lS  tr[iA(k)G(k,/(w„ + i’„,))yv(k)G(k,/«„)],
1 lP kji

(2)

with the current operator (/ , j=x ,y )

8H(k) ^ ( k )  ¥ M„(k) „
Jj( k) = —- —  = —  + V—- — <f 1

8kj 8kj 8k;
(3)

and G(k,/C(j„) the Matsubara Green function.
From Eqs. (2) and (3), the Hall conductivity can be cal­

culated straightforwardly. The details of this calculation are 
given in the Appendix, with the resulting <xrv given by

2fl V  Mx 8ky
(4)

where rfn,(k)=rf„(k)/rf(k) is the unit vector along the direc­
tion of rf„(k). rf„(k) is singular if d(k) = ̂ dn(k)d"(k) van­
ishes for some k. However, here and below we are always 
interested in the insulating models, in which a full gap 
opens between the two bands £ +(k) and ZL(k); thus, 
£ +(k )-£ L (k )= 2 W (k )> 0  for all k. The gap opening condi­
tion is written explicitly as

minZT+(k) >  max£L(k). (5)
k  ee B Z  k  6 B Z

In this case, the system becomes a bulk insulator when the 
chemical potential lies inside the gap, which implies «_(k) 
=  1 and «+(k )= 0  for all k at zero temperature. Under such 
condition and taking the thermodynamic limit, the Hall con­
ductivity (4) can be simplified to

OY - M f  ■877 J JFBZdk,dkvd • d xd  X <9vd . (6)

which is a topological invariant defined on the first Brillouin 
zone (FBZ), independent of the details of the band structure 
parameters.19 Considering d(k):F 2^-S 2 as a mapping from 
the Brillouin zone to the unit sphere, the integrand 
d- o^d X d is simply the Jacobian of this mapping. Thus the 
integration over it gives the total area of the image of the 
Brillouin zone on S2, which is a topological winding number 
with quantized value 4mi ,n  e X. Thus the conductivity <xAV is 
always quantized as axv=- t i /2 i r  when the mapping covers 
S2 n times. A schematic picture of a typical d(k) configura-

FIG. 1. (Color online) The Skyrmion configuration of d(k) in 
the Brillouin zone of the system (7) with c = 1. ^  = 3.7. and n = 1. 
The vector d(k) starts from the north pole at the center of Brillouin 
zone and ends at the south pole at the zone boundary after covering 
the unit sphere once.

tion with winding number « = 1 is shown in Fig. 1. Although 
the single-electron states in this system are very different 
from the Landau levels in the usual IQHE, the quantizations 
of the conductivity in these two systems share the same to­
pological origin, which can be understood as Berry’s phase 
in k space. The exact formula (6) plays a key role for the 
QAHE which is similar to that of the Thouless-Kohmoto- 
Nightingale—den Nijs formula in the Landau-level 
problem.,8-20 Consequently, both of them are robust against 
weak disorder due to the topological reason,21 which is well 
known for the IQHE case. The general relationship between 
the momentum-space topology and the quantization of physi­
cal responses has been discussed extensively by Volovik in 
Ref. 22.

For an explicit discussion of the QAHE and the charac­
teristics of edge states, we consider the following choice of 
rffl(k) as an example:

d =  sin kv ■ sin kr.

d , = c(2 -  cos kx -  cos kv -  es) . (7)

When V/t  in Hamiltonian (1) is large enough, the insula­
tor condition (5) is satisfied and the Hall conductivity can be 
shown to be

o>
1/2 77, 0 < e s < 2 ,

-  1/277, 2  < e s- < 4 ,

0, t \  >  4 or t \  <  0,
(8 )

where the parameter c is taken to be positive. Physically, this 
model can be understood as a tight-binding model describing 
some magnetic semiconductor with Rashba-type SO cou­
pling, spin-dependent effective mass, and a uniform magne­
tization in the z direction. The experimental realization of 
such a QAHE will be discussed in future works.

To show the behavior of edge states, one can define such 
a Hamiltonian on a strip with the periodic boundary condi­
tion in the y direction and open boundary condition in the x 
direction, with vanishing wave function at x=0,Z .+1. In this
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Ti + ^72
H{k ) =  ~ k 2 + — (S ■ k ) 2, 

2m m
(9)

where the three components of S stand for the 4 X 4  angular 
momentum matrices of a J =3/2  electron. According to Ref. 
24, such a 4 X 4 Hamiltonian can be reexpressed by introduc­
ing five Dirac F matrices P ' = £/{£'', S'), a = \ ,2 , . . .  ,5, as

with

tf(k) = e(k) + y^,(k)P'

,(k) = ^ k 2, V = ^ .  
2 in in

d i = -  \l3k,,k„ </> = -  \f3kxk,.

( 10)

■ v 3 kxky, ■ ^ ( k x - k zy).

ds -(2  k : - k ; - k p .

FIG, 2, (Color online) (a) Energy spectrum of the QAHE system 
(7) when the open boundary condition is imposed in .v-direetion. 
The parameters are c = l , t !V = \ /3 .e s=0.5. The solid and dashed 
lines between two energy bands stand for the edge states at the right 
and left edge, respectively. The horizontal dotted line shows a typi­
cal chemical potential inside the gap. The two arrows mark the two 
gapless edge excitation with momentum &v=±0.167r. (b) the den­
sity distribution of the two edge states at fermi surface, calculated 
for a 50X50 lattice.

case the Bloch wave vector kv is a good quantum number 
and the single-particle energy is a function Em(kv) 
(m = 1 ... .  ,2 L). A typical energy spectrum is shown in Fig. 2. 
For a given kv, there are 2L states; two of these are localized, 
while the rest are extended. When the Fermi level lies in the 
bulk energy gap (as represented in Fig. 2 by a horizontal 
dotted line), the only gapless excitations are edge states. 
Similar to the usual 1QHE case, the edge states have a defi­
nite chirality. In the present case, the state localized at the 
left edge moves with velocity v v< 0  and that at the right 
edge with uv> 0 . This can be seen directly from the disper­
sion relation of the edge states. More generally, when 
a xv=n/27T, there are \n\ chiral edge states on each edge.

III. QUANTUM SPIN HALL EFFECT

Besides its interest in its own right, the above discussions 
of the QAHE also serve as a natural introduction to the 
QSHE. In fact, as we shall see, the QSHE can be understood 
as two copies of the QAHE; each breaks time-reversal sym­
metry while the whole system remains invariant under time 
reversal. In particular, let us consider the light-hole (LH) and 
heavy-hole (HH) bands in a semiconductor which can be 
described by the Luttinger model:23

and the matrices F" form the SO(5) Clifford algebra 
{^«)^ ,,}=2<y',,. [More details about the SO(5) representation 
of the Luttinger model can be found in Appendix A of Ref. 
24.] By using the Clifford algebra, the Hamiltonian (10) can 
be diagonalized to obtain the doubly degenerate eigenvalues

E±(k) = e(k) ± V^dada(k ) :
2 in

k2. (11)

In the present work, we will focus on the spin Hall insu­
lators described by y2> y i l 2  (Ref. 11) and specialize it to 
two dimensions. When the semiconductor described by the 
Hamiltonian (10) is made into a quantum well in the z direc­
tion, the effective Hamiltonian can be obtained by adding a 
potential well term U(z) to the original Luttinger Hamil­
tonian. When U(z) is narrow enough, the system can be con­
sidered as quasi-2D in the low-energy sector, for which one 
can write down a two-dimensional effective Hamiltonian 
H2d- The simplest way to obtain H2D is by replacing k, and 
kz in the original Hamiltonian (10) by their average in the 
lowest subband (k,) and (k respectively. When the poten­
tial is symmetric, U(z) = U(-z),  the parity symmetry with re­
spect to the x-y plane is respected and thus (kz) = 0, which 
means d l =d2 — 0, and the 2D Hamiltonian can be simplified

H2D : e(k) + W „(k)r"  (<* = 3,4,5),

d} = -  v3kxky, d4 =

- k ; - k ; ) .

-kt).

( 1 2 )

with es =  {kz) and k =(kx,kv).

085308-3



QI. WU. AND ZHANG PHYSICAL REVIEW B 74. 085308 (2006)

-12 . cr

FIG. 3. (Color online) (a) The energy spectrum in the case (18) 
with l/V=  4 and es=0.5. The isolated solid lines stand for the (dou­
bly degenerate) edge states, and the dashed line indicates a typical 
in-gap Fermi energy (with /j.=-4.2t). Each crossing of the Fermi 
energy and the edge-state spectrum defines two edge states on left 
and right boundary with opposite value of f 12. The solid and open 
circles near a Fermi level mark the particle and hole edge excita­
tions induced by adiabatic flux insertion. (See the text for details.) 
(b) Schematic picture of the edge states. Each red (blue) line stands 
for an edge state with f l2= + 1(-1 ). The double arrow shows the 
pseudo spin orientation of the current carried by the corresponding 
edge state when an electric field is applied in the y direction. For 
simplicity, only one edge state with a definite f 12 eigenvalue on 
each edge is drawn.

Noticing that F£t (a= 3 ,4 ,5 ) form a reducible representa­
tion of an SO(3) Clifford subalgebra, it is natural to see the 
similarity of the Hamiltonian (10) to the two-component one
(1) proposed in the previous section. To see such a similarity 
explicitly, define

Tab = [Ta,Tb]/2i (a,b=  1,2, ... ,5);

then,

[ r 12, r “] = 0 (0-= 3,4,5) => [F12, / / ,d] = 0. (13)

Therefore, F 12 serves as a “conserved spin quantum number” 
even in the presence of the SO coupling. The eigenvalues of 
F 12 are ±1 both with double degeneracy, and F 12 and all of 
F“ (a= 3 ,4 ,5 ) can be block diagonalized simultaneously. 
Since they form a representation of SO(3) Clifford algebra, 
the new expression of F" in the diagonal representation of 
F 12 can always be chosen as

• a
(14)

with a = 3 ,4 ,5  and cr“ (^ = 1 ,2 ,3 ) are the Pauli matrices. In 
this new representation, the 2D Luttinger Hamiltonian (10) is 
also block diasonal:

H( k) =
|e (k ) + Vrf£t(k)cr“

e(k) -  Vda{ k)cr“ y
(15)

In other words, the four-component spin-3/2 system is 
equivalent to a decoupled bilayer QAHE system, each with 
Hamiltonian (1), but with da(V) opposite in the two layers. 
According to the definition (6), the Hall conductivities of the 
two layers are opposite to each other. Since F 12 is odd under­
time-reversal transformation, the two layers are time-reversal 
partners, and the total Hamiltonian Hln remains lime- 
reversal invariant. The F 12 spin current is given by

j f  = j f - j j ,  i = x,v,  (16)

in which J f  is the current of electrons with F 1 2 = ± l .  Thus 
the Hall conductivity of JTX = is quantized as

4 i r II  ■J  J  FBZ
dk.dk..d ■ A d  x  A,d:

: — (n e Z).
TT

(17)

In general, such a quantized Hall conductivity of the con­
served charge F 12 leads to a nonvanishing spin Hall effect in 
the 2D insulator system (12), which is consistent with the 
three-dimensional spin Hall insulator model. What is more, 
the spin Hall transport in the two-dimensional system can be 
understood better by studying the edge states, as in the QHE 
and QAHE. To see the picture more clearly, a tight-binding 
regularization of </a(k) is specified as

d$(k) = -  y3 sin kxsin kv,

d^(k) = y3(cos kx -  cos kv), 

d5(k) = 2 - e s -  cos kx -  cos kY, (18)

which reduces to the continuum form in Eqs. (12) when 
kx,kv^ Q .  Direct calculations show that

o\.,
0 <  es <  4, 

es >  4 or es <  0;
(19)

thus, the topological charge is 2 when 0 <  es <  4 and ?/ V is 
small. The topological charge in this system is larger than the 
previous QAHE example (7) by one unit, since the d  wave 
functions here “wind around” in the momentum space more 
than the p-wave functions in the previous QAHE example. In 
this system there are four edge states on each boundary. For 
the F 12= + 1(—1) states, the uv> 0  state is localized on the 
left (right) edge, while the uv< 0  state is localized on the 
right (left) edge. The energy spectrum and the schematic dia- 
eram of the edse states are shown in Fie. 3.
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To study the evolution of the edge states in an infinitesi­
mal electric field, we consider the Laughl in-Halperin gauge 
argument.13-14 The system with the periodic boundary condi­
tion in the v direction and open boundary condition in the .t 
direction can be considered as a cylinder. When the flux 4>(f) 
threading the cylinder is adiabatically turned on from 
<I>(0) = 0 to 4>(r) = 2ir, the electric field in the y direction is 
given by

E j t )  :
BA Y(t) 1

“  L 'at a t
(20)

For convenience, the direction of the flux <J> is chosen so 
that Ev> 0 when $  increases. The effect of flux 
threading can be expressed by replacing kY- * k Y- A Y in the 
Hamiltonian or, equivalently, as a twisted boundary condi­
tion tp(x,y+L) = e,'l>ip(x,y). In such a picture, each single­
particle eigenstate <f>mk (x,y) = itmk (x)e'k>y will be adiabati­
cally transformed into <pmk (x,y){t) = umk __A (x)e'ik>̂ Ay)y. In 
particular, when the flux reaches 2 tt, the adiabatical evolu­
tion will result in

(21)

When the Fermi level lies in the bulk energy gap, the 
ground state of the system is given by |G)=II/? ink). 
When a 2tt flux is threaded through the cylinder, the final 
state is obtained by a translation of Fermi sea in momentum 
space: |G ') = II/? <lJ//i,fc + 27r/L). Since the bulk part of |G) 
is a product of ail k’s, it does not change under such a trans­
lation, which implies that the only difference between |G) 
and |G ') occurs to the edge states near the Fermi level. As 
shown in Fig. 3(a) by solid and open circles, near the Fermi 
level, each edge state on the Fermi surface with velocity 
uv> 0  will move out of the Fermi sea and become a particle 
excitation since SE=*vy$ c= 2 itvy/ L > 0 ,  while each one with 
uv< 0  will move into the Fermi sea and lead to a hole exci­
tation. Consequently, the final state |G ') can be expressed as 
a particle-hole excitation state as

|c') = IL ■ L 4 _ ci7._c« +|G>, (22)
Z=1

in which the label ± stands for the eigenvalue of F 12 carried 
by the edge state and L and R refer to the edge states on the 
left and right edges, respectively, n is the bulk topological 
number. In obtaining Eq. (22), we have used the chirality of 
the edge states— i.e., v / +> 0 , v / ^ < 0 , v K+< 0 , v K̂ >0 .  (A 
similar analysis of the usual IQHE case can be found in Ref. 
25.)

From Eq. (22) it is clear that the net effect of adiabatically 
turning on a 2ir flux is to transfer edge states with F 12= l 
from the right edge to the left one and to transfer edge states 
with F 12= - l  in the opposite way. This leads to an accumu­
lation of F 12 “spin” on the boundary. Since F 12 is related to 
Sz by S;= - i r 12- r 34 as shown in Ref. 24, such an accumu­
lation of F l2 in general leads to a nonvanishing spin Sz den­
sity on the boundary. On the other hand, such an accumula­
tion can also be considered as a consequence of the spin Hall

current j x induced by the electric field EY in Eq. (20), which 
implies that the physically observed spin Hall conductivity is 
proportional to the amplitude of spin accumulation after 
27r-flux threading. Since (S;) = - i ( F 12) - ( r 34), the corre­
sponding spin Hall conductivity also consists of two parts, 
where the conserved part c r^ ^ c r^ , corresponds to a trans­
port of F 12 spin carried by the motion of edge states, while 
the nonconserved part er["(') is just a precession effect due to 
the nonconserved nature of spin as represented by (F34) of 
each edge state. Consequently, it is only cr̂ J that counts as 
true transport of quantum states in the system and is pro­
tected by the bulk topological structure. These considerations 
give the physical justification of the conserved spin current 
operator defined in Ref. 24.

Finally, we consider the effect of breaking the z-axis mir­
ror symmetry, which can be induced by adding an asymmet­
ric potential U(z), such that U(z) +  U(-z),  in the Hamiltonian 
(10). Consequently, the average c =  (kz) in the lowest 2D 
subband becomes finite. And thus an extra term

Ha = V l^ lk jr1 + rf2(k)F2] = -  s3cV(kyr l + kxF2) (23)

should be added to the two-dimensional Hamiltonian (12). 
Since {F12,/? J= 0 , such a term will lead to a flip between the 
states with opposite F 12 pseudospin. Especially, a mixing be­
tween the left- and right-moving edge states will be induced, 
and thus a gap E ^ . ^ c V  is open on each edge. Conse­
quently, the system becomes a fully gapped insulator when 
the chemical potential /j, lies within the edge gap; however, 
the gapless edge excitations still exist if pt, is not in the edge 
gap but remains within the bulk gap. In this case, the spin 
Hall effect carried by the edge states can still survive, but not 
as robust as in the fully symmetric case, since it is not com­
pletely topology protected.

Spin currents in this spin Hall insulator model has also 
been discussed in Ref. 26.

TV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have proposed a topological mechanism 
for the quantum spin Hall effect, which are realized in a class 
of two-dimensional spin Hall insulators with mirror symme­
try. Mathematically, such a QSHE is the cousin of the quan­
tum Hall effect in band insulators without a magnetic field, 
the so-called quantum anomalous Hall effect. By carefully 
studying the Laughl in-Halperin gauge argument, insights are 
gained into the physical mechanism of the quantum spin Hall 
transport carried by the edge states. It also provides an un­
derstanding of the physical meaning of spin transport in the 
absence of spin conservation.

The QSHE models discussed in this paper can be experi­
mentally realized in two classes of 2D semiconductors. One 
class is the (distorted) zero-gap semiconductors such as 
HgTe, HgSe, /3-HgS, and a-Sn. The other class is the 
narrow-gap semiconductors such as PbTe, PbSe, and PbS.11 
As proposed above, topological quantization of the spin Hall 
effect shows up in the cases with mirror symmetry with re­
spect to the z axis, realizable when the 2D material is trapped 
in a symmetric quantum well. Once the quantum spin Hall
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total four pairs of edge states in the system, which will make 
a quantized contribution,28

FIG. 4. (Color online) The schematic curve of the conductance 
C versus Fermi level fi for a ballistic quantum well in the quantum 
spin Hall regime. The plateau with 0 ^ = ^  shows the residual 
conductance contributed by four edge states on two edges.

effect is realized in the ground state, it is protected against 
thermal fluctuations by the bulk energy gap Eg. At tempera­
ture T<^_Eg/kB, the quantum spin Hall effect is expected to 
be observable. Take the HgTe/Hg]_TCdTTe (001) quantum 
well for an example. As calculated in Ref. 27, the gap Eg 
between LH and HH bands is of the order of 10 meV for 
x = 0 J ,  which means the quantum spin Hall effect can beob- 
served in a wide temperature range T -<  100 K. Once the spin 
Hall effect in the pure system is established, it is not signifi­
cantly dependent on the mobility of the material.

However, the magnitude of edge spin accumulation in a 
steady state is in general dependent on the spin relaxation 
mechanism and the disorder in the system. To avoid ambi­
guity in estimating the edge spin accumulation, here we pro­
pose a more definite experimental prediction of the QSHE. 
As is shown above, there are two pairs of gapless edge states 
on each boundary, which are chiral in spin transport but non- 
chiral in the charge channel. In other words, each pair of 
edge states (with opposite F 12 on the same boundary) is 
equivalent to a spinless Luttinger liquid in two-terminal mea­
surements of charge conductance. Consequently, there are in

G- (24)

to the longitudinal charge conductance when the system is in 
a ballistic regime. The schematic curve of longitudinal con­
ductance versus the Fermi level is shown in Fig. 4. Com­
pared to the vanishing conductance in a trivial insulator, such 
a residual conductance provides a simple probe of the topo­
logically nontrivial edge states in the QSHE.
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APPENDIX: KUBO FORMULA CALCULATION OF <r,y

Here we propose a derivation of Eq. (6) from the Kubo 
formula. The single-particle Green function corresponding to 
the Hamiltonian (1) can be written as

p  p
G(k,/w„) = [iwn -  H(k)]_

iw„ -  E+(k) iwn -  £_(k)
(Al)

with

P±= - [ \ ± d aQi)o*].

Then the charge Hall conductivity can be calculated using 
the Kubo formula (2):

& v(»’J  = tr[yT(k)G(k,/(w„ + i 'J ) J v(k)G(k,/w„)]
l l Pk.n

= _ L  y  ^  tr[yT(k)p t(k)yY(k)p,(k)]
ttf3SJ=± k.„ [i(w„ + I’m) -  £s(k)][/(i>„ -  E,(k)]

1 ^  ^  tr[yT(k)P5(k)yv(k)P,(k)]r ................. .
= n 2 j 2 j  — :------ ,— k ( k) - »5(k)J. => o;w

f i M=± k l l ’m -  £*(k) + E,(k)

= lim— Qn ((0+iS)
w—o to '

/ tr[yT(k)/JJt(k)yY(k)/J,(k)]r „ ,

k [ ^ (k ) - ^ ( k )J2

= - ^  ^ H f e ? T ^ { t r [ ^ ( k ) / J+(kVv(k)/J_(k)] -  H.c.}. (A2)iI k 4y*t/(k)‘
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Here /s±(k) = e(k)± Vd(k) is introduced in the last line. The trace in Eq. (A2) can be worked out by substituting J TV(k) and 
P±(k) by their definition (3) and (Al), respectively:

i I ( de(k) ddjjk) \ - /  de(k) ddSk)  \ jn _ (k )-n ,(k )
— 2  Tr — + V ^ — <ra 1 -  d ao°) — (ja 1(1+ d aa a) -  H.c 1 +
4 f l*  \ \  dkx Sky j  \  c)kY dkY J(J\V  A (  \

k 4 Vldl

= - 4 ?  { '  T )^ e“'sT ' uk) ■ ''*<k)i' <A3>

For the last step, it should be noticed that only the 3-cra terms in the expansion make a nonvanishing contribution to the trace. 
Thus the final result is independent of coupling V, as expected from topological considerations. This finishes our derivation of 
formula (4) for the spin Hall conductance.
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