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Abstract—Vector quantization is a very powerful technique 
for data compression and consequently, it has attracted a lot 
of attention lately. One major drawback associated with this 
approach is its extreme computational complexity. This paper 
first considers vector quantization that uses the L, distortion 
measure for its implementation. The L, distortion measure is 
very attractive from an implementational point of view, since 
no multiplication is required for computing the distortion mea
sure. Unfortunately, the traditional Linde-Buzo-Gray (LBG) 
method for designing the code book for the L{ distortion mea
sure involves several computations of medians of very large ar
rays and can become very complex. We propose a gradient- 
based approach for codebook design that does not require any 
multiplications or median computations. Convergence of this 
method is proved rigorously under very mild conditions. Sim
ulation examples comparing the performance of this technique 
with the LBG algorithm show that the gradient-based method, 
in spite of its simplicity, produces codebooks with average dis
tortions that are comparable to the LBG algorithm. The code
book design algorithm is then extended to a distortion measure 
that has piecewise-linear characteristics. Once again, by ap
propriate selection of the parameters of the distortion measure, 
the encoding as well as the codebook design can be imple
mented with zero multiplications. Finally, we apply our tech
niques in predictive vector quantization of images and dem
onstrate the viability of multiplication free predictive vector 
quantization of image data.

I .  I n t r o d u c t i o n

The advantages associated with representing, transmit
ting, and storing information in digital form are well 
known. Perhaps the most serious disadvantage associated 
with the conversion of information from analog to digital 
form is the substantial increase in storage and/or trans
mission bandwidth requirements. This disadvantage can 
be mitigated by operating on the data with an appropriate 
data compression algorithm prior to transmission or stor
age. Vector quantization is particularly effective, but 
computationally intensive, class of algorithms that has at
tracted a lot of interest in recent years. These algorithms 
take their name from the fact that they operate on entire 
^-dimensional vectors of waveform samples at once, 
rather than one sample at a time. They can be applied to 
a variety of waveforms such as speech [8], images [1 1 ], 
and modem signals [14], and they promise to be of great
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value in a variety of applications involving such wave
forms.

The simplest form of a vector quantizer operates as fol
lows. First, a codebook of ^-dimensional vectors is cre
ated using a training set representative of the waveforms. 
Once the codebook is designed and the representative 
vectors are stored, the process of encoding the incoming 
waveform can begin, k consecutive samples of the wave
form are grouped together to form a ^-dimensional vector 
at the input of the vector quantizer. The input vector is 
successively compared with each of the stored vectors and 
a metric or distance is computed in each case. The rep
resentative vector closest to the input vector is identified, 
and the index of the closest vector is available at the out
put for transmission or storage.

Clearly, the full search vector quantizer described above 
can become computationally very intensive, depending on 
the distortion measure employed. For example, if the Eu
clidean distance measure, given by

k

d2(X, Y) =  E  \xt -  j, |2. (1)
/ = 1

(x, and yt are the ith elements of the ^-dimensional vectors 
X  and Y, respectively) is employed, and the transmission 
rate of the compressed data is b b/sample, vector quan
tization of the incoming waveform requires 2kb multipli
cations/sample. One very easy way of reducing the com
plexity is to use the L x distortion measure where the 
distance between two vectors X  and Y is computed as

k

dx (X, K) = 2  \Xi - y , \ .  (2)
i — 1

It is evident from the above equation that vector quanti
zation using the L, distortion measure requires zero mul
tiplication for its implementation. However, the L x dis
tortion measure may not be appropriate in all applications. 
For such cases, we will consider a piecewise-linear dis
tortion measure given by

k

d,(X, Y) = 2  f(x, -  y,) (3)
i= 1

where

f(e) =  aj\e\ +  t j (4)

is a piecewise-linear function and a, and 7 , are functions
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of \e\ and can take values from a finite set depending on 
which of the preselected intervals contain \e\. In practice, 
a, and yj are chosen such that/is convex and continuous. 
Fig. 1 shows a typical /  versus e curve. Note that if the 
slope values a /s  are selected to be integer powers of 2, 
the vector quantizers that make use of the distortion mea
sure in (3) can be implemented without any multipliers. 
Furthermore, by appropriate choice of the thresholds t/s  
Fig. 1, we may be able to approximate several other dis
tortion measures using the piecewise-linear distortion 
measure, and therefore, make the vector quantizer per
form similar to those that use other distortion measures 
and at the same time implement it with highly reduced 
computational complexity. In a large number of applica
tions, such approximations will result in quantized wave
forms with subjective quality that is comparable to that of 
the waveforms quantized using the “exact” distortion 
measure even when the approximations are relatively 
crude.

This paper deals with multiplication free vector quan
tization using the L] and piecewise-linear distortion mea
sures. In spite of the availability of several digital signal 
processing chips that can implement additions and mul
tiplications in approximately the same time, reduction or 
elimination of the number of multiplications required to 
implement algorithms is important because: 1) there ex
ists a large number of digital computers that require larger 
execution times to implement multiplications than addi
tions, and 2) even in those processors that can execute 
multiplications and additions in comparable times, mul
tipliers take up much larger chip areas than adders. It must 
be pointed out that there are several schemes such as tree- 
search vector quantizers [1] and lattice vectors quantizers 
[13] that are available in the literature that considerably 
reduce the computational complexity of vector quantizer 
systems. Our approach, if employed in conjunction with 
the above schemes, will reduce the complexity of such 
methods even further. However, the impact of our scheme 
is most dramatic on full search vector quantizers. The 
computational simplifications discussed in the paper are 
mostly useful in hardware realizations of vector quantiz
ers and can help to simplify the design of several hard
ware and VLSI implementations of vector quantizers that 
have appeared in the literature [4], [12]. This paper first 
considers the design of a codebook when the L, distortion 
measure is used. The traditional Linde-Buzo-Gray (LBG) 
algorithm [7] when used with the L, distortion measure 
requires computation of the median values of several large 
sequences and can become computationally very com
plex. A gradient-based approach that does not require any 
multiplications or median computations for its implemen
tation is presented in the next section. The convergence 
properties of the algorithm will be established under very 
mild conditions. This method is then extended to vector 
quantizers employing the piecewise-linear distortion mea
sure. Finally, the technique is applied to predictive vector 
quantization of images. The implementation of the pre
dictive vector quantizer is made multiplication free by se-

Fig . 1. An exam ple o f a function that describes the p iecew ise-linear d is
tortion m easure.

lecting the coefficients of the predictor to be (possibly 
negative) integer powers of two.

II. C o d e b o o k  D e s i g n  f o r  t h e  L\ D i s t o r t i o n  

M e a s u r e

The traditional approach to codebook design for vector 
quantizers is a clustering method known as the LBG al
gorithm [7]. Given a representative training sequence and 
an initial codebook, the LBG method consists of encoding 
the training sequence and then replacing each code vector 
by the centroid of all the training vectors that were mapped 
into the code vector. This is repeated until convergence 
is achieved. For the Lx distortion measure, the centroid is 
the vector whose elements are the medians of the corre
sponding elements of all the training vectors that were 
mapped into it. Calculation of the median of a large set 
of numbers can become very complicated and time con
suming. This section presents a gradient-based algorithm 
that works very well in spite of the fact that it does not 
require any multiplications or median calculations.

A. Gradient Algorithm for Codebook Design
Let {Yu Y2, • • • , Yp} denote the training sequence and 

C(0) = {C0 ,, C0 2, ' ' ' , Q.a/} denote the initial code
book. At the mth iteration, encode Ym using codebook C(m
-  1). Let /3m = Ym -  C,„ I L denote the quantization
error vector where Cm is the code vector closest to Ym
in C(m — 1). The new codebook C(m) is obtained by re
placing Cm_) L in C(m -  1) with

=  c

ac,m — 1, L
d\ (Ym, Cm_ 1L) (5)

(6)l L + /x sign {/3m}
where sign {•} is a vector consisting of the signum func
tion of the corresponding elements of {•}, and /x is a small 
convergence constant.

Note that the implementation does not require multi
plications or median calculations.

B. Proof of Convergence
Note that the algorithm in (6) is very similar to the sign 

algorithm [5], [9] employed in adaptive filtering. In fact,
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the convergence analysis here is an adaptation of the one 
in [5] to our particular situation. The only assumption that 
will be made is that as the number of training vectors be
comes very large, the number of training vectors that are 
mapped into code vectors corresponding to each index (i 
=  1 ,2 , • • • , M) will also become very large. This will 
eliminate the possibility that only part of the codebook is 
used during the algorithm and the optimization is effec
tively done for a smaller sized codebook than what is de
sired.

Let CB(m) denote a vector of Mk elements formed by 
concatenating the elements of C(m),  i.e.:

CB(m) = (C j,„  C l'2, • • • , CTmM)T (7)

where (-)T denotes the matrix transpose of (•). Similarly, 
let Copt denote another vector of Mk elements formed by 
the elements of an “ optimal”  codebook that minimizes 
the total distortion in encoding the training sequence. Note 
that any codebook that minimizes the total distortion will 
suffice. Furthermore, the ordering of the M  optimal code 
vectors in Copt can be arbitrary.

As before, let Cm_ liL denote the closest vector in C(m
-  1) to Ym. Define an Mk vector G(m) as

G{m) = (0, 0, • • • , 0, 0 l ,  0, 0, • • • , 0)r . (8)

That is, G(m) is a vector of zero elements, except for the 
positions corresponding to the codebook element in C(m
— 1) that is closest to Ym.

From (6) and the definitions above:

CB(m) = CB(m — 1) + fi sign {G(m)} (9)

where sign {0} is taken to be zero. Let

V(m) = CB(m) -  Copt. (10)

Subtracting Copt from both sides and taking the squared 
norm of both sides of (9), we obtain

II n ^ )  II2 \V(m - + iu k

+ 2n V T(m — 1) sign {G(m)}

= || V(m -  1)||2 + fi2k

+ 2fj.{Cm- i . i , -  Copt i } sign {(3m} . (11)

The last term comes from the fact that all other elements 
of G(m) are zero. Also, Copti denotes the Lth &-tuple in 
Copt(m -  1). Note that

" m - I ,  L ôpt, L

(Xm Copt.l) (Ym Cm-1  ,l) 7  m (12)

where y m is the quantization error vector when Ym is en
coded using Copt L. Recognizing that

ftm sign /3m d] (Ym, Cm _ j )̂ (13)

is the distortion when Ym is encoded using C(m -  1) and 

sign {I3m} < y Tm sign { y m} = d x (Ym, Copt L) (14)

and denoting the encoding distortion in (13) by e(m) and 
the distortion in (14) by e(m), we can obtain the following 
result:

\\V{m)\\2 < ||V(m - II2 + f k 2fie(m) + 2 .

(15)

Iterating the inequality in (15) m times, we obtain the fol
lowing inequality:

|K(m)||2 <  ||F(0)||2 +  n2mk

2 / jl 2  e(i) 
i= 1 + 2fj. 2  e(/).

i = i
(16)

Since || K(m) ||2 > 0, the above implies that

1 v  II (̂0)112 ti , 1 v
2fim 2  m  i=\m i=\

Taking the limit as m goes to infinity:

1 m
lim sup — 2  e(i) < f  ~ k (18)

m -*■ oo Ttl i = 1 2

where f  is the average distortion produced by mapping the 
training sequence into the optimal codebook. The map
ping is such that whenever a training vector Ym is closest 
to the ith code vector of the codebook C(m — 1), it is 
mapped into the ith &-tuple of the Mk vector Copt. Even 
though this may not in general be the optimal mapping, 
the above result shows that the algorithm converges and 
that there is a one-to-one mapping from the codebook 
being designed and the optimal codebook such that the 
long-term average of the distortion during codebook de
sign exceeds that due to the above mapping into the op
timal codebook by (ix/2)k or less. Note that the ordering 
of the optimal code vectors in Copt was arbitrary. In par
ticular, if we choose the above one-to-one mapping to be 
the “ best”  possible one that minimizes the long-term av
erage of the distortion produced by the mapping on the 
training sequence, the long-term average of the distortion 
produced by the codebook during the design process will 
still not exceed the performance of the optimal codebook 
and the one-to-one mapping by more than f ik/2.  Even 
though there is a possibility that this mapping may be very 
different from the optimal one, all the experiments that 
we have done have produced results that are comparable 
to that of the LBG algorithm.

C. Remarks
1) Note that M  subsequences of the training sequences 

are generated during the codebook design process. Each 
subsequence trains one element of the codebook. By ap
plying the above analysis to each vector separately, it is 
very straightforward to show that each code vector se
quence converges to the centroid of the subsequence cor
responding to that vector.

2) The bound in (18) was developed under the assump
tion that we have an infinitely long training sequence. In 
practice, we have only finitely many training vectors on
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which we can train the codebook. In such situations, we 
will iterate the algorithm on the training sequence several 
times until the desired performance level has been 
achieved.

During each iteration, the algorithm will attempt to cre
ate a codebook that consists of the centroids of the sub
sequences discussed in 1). Thus the gradient algorithm 
tries to do the same thing that the LBG algorithm does 
(without computing the centroids). Therefore, we would 
expect the overall performance of both the algorithms to 
be similar.

To develop a stopping criterion for the algorithm, the 
following definition of average distortion over the whole 
training sequence during the rth pass was used. (One pass 
is defined as the process of updating the codebook ele
ments using every training sequence vector once each. 
During the next pass, the algorithm will start with the 
codebook obtained from the previous pass and refine it 
further using all the elements of the training sequence):

1 p
dist (r) = -  X  e(i, r ) . (19)

p  ;=i

In (19) e(i, r) denotes the distortion in encoding Yt during 
the rth pass. At the end of the rth pass, we will stop 
iterating if

| dist (r -  1) -  dist (r)| < 
dist (r) — e

where € is a preselected threshold.
3) The foregoing analysis suggests that the algorithm 

will perform well, regardless of the initial codebook. This 
author has found that populating the initial codebook by 
starting with only one code vector and then increasing the 
codebook size using the (binary) splitting technique [7] 
does give some improvement in the performance over ar
bitrary selection of the initial codebook.

D. Experimental Results
The results in Table I present a comparison of the per

formance of the gradient descent method and the LBG al
gorithm for codebook design. Both codebook design tech
niques were implemented in Fortran on a Sun 3/50 
workstation. Table I contains the results when the training 
sequence was a zero mean, pseudorandom Gaussian se
quence obtained by passing a zero-mean and white 
Gaussian sequence with unit variance through a first-order 
autoregressive filter with transfer function:

The two algorithms were compared for a vector dimen
sion of four and several codebook sizes. For the gradient 
method, the convergence parameter was chosen to be 
0.004. Both the methods used e = 0.001 for the stopping 
criterion and populated the codebook beginning with one 
vector. The training sequence was 20 000 vectors long. 
The results show that the average distortions produced by

TA B LE I
C omparison of the  Perform ance of the G radient  and  LBG  
A lgorithms in V ector Q uantizer C odebook D esign for L, 

D istortion M easure

N um ber o f C ode V ectors

G radient M ethod LBG A lgorithm

A verage
D istortion

N um ber o f 
Iterations

A verage
D istortion

N um ber o f 
Iterations

1 7 .34 2 7.34 1
2 4.78 3 4 .78 4
4 3.36 3 3.36 6
8 2.69 3 2.69 7

16 2.20 4 2.22 8
32 1.85 6 1.86 13
64 1.58 9 1.59 13

128 1.34 10 1.34 14
256 1.12 15 1.12 13

the two methods are comparable. The table also contains 
information about the number of iterations (passes) on the 
training sequence before each algorithm converged. Note 
that the gradient method converges faster than the LBG 
algorithm in most instances. Since the gradient methods 
do not require median calculations, and it seems to con
verge faster than the LBG algorithm, the author believes 
that it is a better approach to codebook design when the 
L, distortion measure is employed.

III. C o d e b o o k  D e s i g n  f o r  P i e c e w i s e - L i n e a r  

D i s t o r t i o n  M e a s u r e s

Since in many data compression systems the ultimate 
objective is to produce quantized signals with a minimum 
amount of subjective distortion rather than produce quan
tized signals that minimize certain quantitative distortion 
measure, we must keep in mind that the L\ distortion 
measures may not be the most suitable one for many ap
plications. In order to overcome this limitation, we pro
pose the use of piecewise-linear approximations for dis
tortion measures that give rise to more complex encoding 
procedures. The functional form of the distortion measure 
is as given in (3) and (4). As stated earlier, if we choose 
the slopes a ,’s of the piecewise-linear functions to be in
teger powers of two, the encoding can be done with only 
bit shifts, additions, and comparisons.

The codebook design algorithm of (6) can be easily ex
tended to this case. We will use the same notations as in 
the previous section. Let /3m = Ym -  C™ 1 be the quan
tization error vector that is due to the code vector that 
minimizes the piecewise-linear distortion measure in (3). 
Let a,- (m) correspond to the slope of the piecewise-linear 
function in (4) that corresponds to the /th element of j3m. 
Define a diagonal matrix A(m) as

A(m) = diag { a x{m), a 2(m), • • ■ , a k(m)} . (22)

Then the update equation for the gradient descent code
book design algorithm becomes

C l  = C T { + ixA(m) sign {0m} . (23)
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Again, note that the codebook design algorithm can be 
implemented using zero multiplications.

In the next section we will apply the above method to 
predictive vector quantization of digital images.

I V .  A p p l i c a t i o n  t o  P r e d i c t i v e  V e c t o r  

Q u a n t i z a t i o n  o f  I m a g e s

Researchers have found that predictive vector quanti
zation algorithms outperform direct vector quantization 
much as linear predictive coding algorithms work better 
than PCM in scalar quantization schemes [3], [10], [15], 
There are two main reasons why predictive vector quan
tization algorithms are attractive: first, the prediction er
ror sequence will in general have a smaller dynamic range 
than the original input waveform, and compression of the 
prediction error sequence can, in most cases, be done 
more effectively than the input waveform itself. The sec
ond reason addresses a problem that is typical of all vector 
quantization algorithms. Since the codebook is designed 
for a training sequence that is representative of the input 
waveforms to the quantizer, any variations in the structure 
of the input waveforms from that of the training sequence 
will degrade the performance of the vector quantizer. The 
prediction error sequences will have far less structure in 
them than the waveforms themselves, and therefore, a 
vector quantizer working on prediction error sequences 
will be more robust to variations in the structure of the 
input waveforms.

In this section we apply the results of the previous sec
tion to predictive vector quantization of digital images. 
The block diagram of the predictive vector quantizer is 
shown in Fig. 2. In the figure, x(n, m) corresponds to the 
input image and B is an estimate of the mean value of the 
image. The rest of the notation is self-explanatory. The 
predictor coefficients are all chosen to be (possibly nega
tive) integer powers of two, and therefore, the structure 
is truly multiplication free.

Note that the prediction filter predicts the current input 
vector using previous input vectors and the resulting error 
sequence is vector quantized. The codebook is designed 
from a set of training images. The predictor coefficients 
for the images are first estimated. Starting with an initial 
codebook, the mean-removed training image is quantized, 
and the codebook is updated each time after an input vec
tor is quantized as described in Section III.

We now present a comparative study of the perform
ances of the predictive vector quantizer when the distor
tion measures employed are the L2 and piecewise-linear 
measures. The original image that is quantized is entitled 
“ woman” and is shown in Fig. 3. It consists of 512 x 
512 pixels with 8-b resolution. The predictor equations 
when the piecewise-linear distortion measure is used are 
given in Table II. The notational convention employed in 
Table II is shown in Fig. 4. These equations have been 
adopted with minor changes from those used in [15]. Even 
though these coefficients are not necessarily the optimal 
set of power-of-two predictor coefficients, they seem to

Fig. 2. Block d iagram  fo r predictive vec to r quantization  o f im ages.

Fig. 3. O riginal “ w om an”  im age used in the experim ents.

A1 A2 A3 A4 A5

A6 a b c d

A7 e 9 h

A8 i j k !

A9 m n 0 P

i-1 , j-1 i-1 J

i ,H ' .j

t
Pixels in this block 
are not yet encoded.

Fig. 4 . B lock and pixel notations fo r the predictive vecto r quantizer. A l -  
A9  are decoded p ixels in b locks (i -  1 , j  -  1), / -  1, j )  and ( i , j  -  1). a 
p  are pixels in block j )  that are predicted using A I - A 9 .  (a) Pixel nota
tion. (b) B lock rotation.

TA BLE 11
Predictor Equations for the  P redictive  V ector Q u a ntizer . 

~  D enotes P redicted  Q uantities

/ =  043 +  A l ) / 2  
b = ( / +  A 3 ) /2  
e = ( f + A l ) / 2  
a =  ( / +  A l + A3 + A l )  /  4  
p  = f +  (A5 + A9)  / 4  -  A 1 /2  
n =  / +  (p  +  A 9 ) /4  -  A 3 /2  
i = ( / +  n + A l  + A 9 ) /4  
h =  / +  (p  + .4 5 ) /4  -  A l / 2

c = ( /  +  h +  A3  +  A 5 ) /4  
d  = (h + A 5 ) /2  
m = (n + A 9 ) / 2  
g  =  ( / + / > ) / 2  
/=  (/+  «)/ 2 
f  = (h + p ) / 2  
o  =  (« +  p ) / 2  
k = ( f + h  + n +  p )  /  4

work well in our application. The author’s experience is 
that the vector quantizer can compensate for a certain 
amount of suboptimality in the predictor. Design of pre
dictors with power-of-two coefficients can, in general, be 
done as in [6]. For the L2 distortion measure, the predictor
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tain mapping of the training sequence into the optimal 
codebook. Also, comparisons with the LBG algorithm 
showed that the gradient-descent algorithm produced 
codebooks that were comparable to the former. This ap
proach was extended to the case when a piecewise-linear 
distortion measure is employed. This method was applied 
to predictive vector quantization of images and compari
sons showed that the subjective quality of the encoded 
images obtained using the L2 norm and the piecewise-lin- 
ear distortion measure were similar. The ease of imple
mentation and the quality of encoding associated with the 
methods suggest that they are very viable candidates in 
waveform coding applications involving vector quantiza
tion.
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