
VOLUME 23, NUMBER 25 PHYSICAL REVIEW LETTERS 22 DECEMBER 1969 

EXISTENCE OF TWO PHASE TRANSITIONS IN HUBBARD MODEL* 

W. Langert 
Goddard Institute for Space Studies, National Aeronautics and Space Administration, New York, New York 10025 

and 

M. Plischke and D. Mattis 
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033 

(Received 29 October 1969) 

We solve the Hubbard model, for one electron per atom in a simple cubic structure, 
using one-particle Green's functions. We determine the accuracy of this calculation to 
be good by comparison with an exact solution by Lieb and Wu of a one-dimensional lim­
iting case. When the Coulomb interaction U exceeds about 0.27 of the bandwidth in three 
dimensions we find there are two critical temperatures: TN' the Neel order-disorder 
transition temperature (O::U- 1 at large U) and a higher critical temperature T M • at 
which the atoms lose all vestige of localized moments and at which the insulator-metal 
transition occurs (T M 0:: U at large U). For U less than 0.27 of the bandwidth only T M 

exists. 

We report on extensive calculations of a Green's­
function solution to the Hubbard model 1 of inter­
acting electrons. To test the accuracy of our 
present procedure we first compared the ground­
state energy for a one-dimensional model with 
the exact results of Lieb and Wu2 and were 
pleased to find satisfactory agreement at all val­
ues of the coupling constant, becoming almost 
exact agreement in the weak-coupling limit. Our 
three-dimensional results agreed with the varia­
tional solutions of this problem given by des 
Cloizeaux3 and Penn.4 We also found confirma­
tion of remarks by one of us5 and by Richmond6 

concerning the staggered susceptibility of an in­
teracting electron gas, Le., that an incipient 
divergence in the low-temperature susceptibility 
is related to a metal-insulator "Mott transition." 
The Green's-function method has the advantage, 
of course, that in a subsequent approximation it 
yields quasiparticle lifetimes, collective modes, 
etc. But already at the initial stage of approxi­
mation we have found a result with immediate ex­
perimental consequences. 

This new result concerns the existence of two 
critical temperatures. A material which is mag­
netic at low temperature will magnetically disor­
der at a "critical temperature" T c (TN for an 
antiferromagnet) and will lose its atomic mo­
ments entirely at a second critical temperature 
T M • We find that in weak coupling TM can be be­
low T c, hence just below the temperature at 
which the local spins disappear (at which point 
the material makes a phase transformation to an 
ordinary Pauli-paramagnetic electron gas) there 
is hardly any magnetic disorder. In that case 
there is no order-disorder phase transformation 
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and only the disappearance of the magnetism at 
the critical temperature T M will be observed. 
But once the Coulomb interaction parameter U 
exceeds about one third of the bandwidth, we find 
that T c drops below T M and for very large U, T c 

becomes small (o:U- 1
) while TM becomes large 

(o:U) , and the Heisenberg model of magnetism7 

once more becomes conceptually applicable. So 
for a large class of intermediate-coupling mate­
rials, two critical temperatures with their cor­
responding specific-heat anomalies, critical 
fluctuation, etc. should be experimentally ob­
servable, in a large variety of intermetallic 
transition-series alloys and oxides. 

We support these conclusions with a calculation 
on the Hubbard model, assuming a Simple-cubic 
lattice and a band structure based on the tight­
binding scheme, with one electron per atom. It 
has often been remarked 3 -6 that this specifies a 
situation which is incipiently unstable against 
antiferromagnetism and that the antiferromagnet­
ic state which one obtains in this model is char­
acterized by an energy gap which turns the model 
into an insulator at low temperautres. Above a 
temperature T M the gap disappears and the prop­
erties are those of an interacting paramagnetic 
electron gas, Le., there is no local moment. 
Below T M on each atom there is a finite spin po­
larization, the magnitude of which depends on the 
temperature (as is discussed below and shown in 
the figures). The calculation of T M in our model 
is easy enough; it is the temperature at which an 
energy gap vanishes and the Mott transition oc­
curs, and is of course characterized experimen­
tally by a jump in electrical conductivity. We 
estimate TN by the molecular-field approxima-
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tion, which should be reasonably accurate. The reason is that in strong coupling the results are pat­
ently correct, and that in weak coupling the effective forces become weak but very long ranged, which 
is precisely the limit in which molecular field theory is presumed to be exact. 8 We hope subsequently 
to give detailed confirmation of these statements by evaluating the temperature-dependent magnon dis­
persion relation U: q =D(T)q and the spin-spin correlation functions, all of which can be obtained from 
the two-particle Green's functions. We have already started the somewhat more elaborate calculation 
of these Green's functions and have obtained the magnetic susceptibility X(O) and the staggered mag­
netic susceptibility X(Q) as a function of the temperature. 

Because of the anticipated antiferromagnetism we introduce ab initio two sublattices, A and B, and 
write the Hamiltonian which describes our many-body system as 

(1) 

where the sum on i,j is over nearest neighbors in a Simple-cubic structure and Clot, Cia are the crea­
tion and annihilation operators for an electron of spin a at site i. Tlj is the kinetic energy in the band 
and U is the Coulomb repulsion between the particles on the same site. The chemical potential, J.L, 

has been introduced to conserve the number of particles. 
Let 

(2) 

This allows for a possible antiferromagnetic ordering on sublattices A and B. We assume translation­
al invariance within each sublattice. The parameters y and (}' measure the magnitude of the atomic 
moment. We solve for the double-time Zubarev9 single-particle Green's function «Pi t; C) = G(ei ie). 
The equation of motion for G(CitiACjtA) '" GttAA is 

(3) 

or 

To find a solution we make the simplest possible decoupling for the two-particle Green's function, 

«nnACjt t; C) _ (ni A)« Ci i; e), (5) 

so that (4) becomes 

(6) 

Fourier transforming (6) and writing out the other one-particle Green's functions we have 

where T(k) = +To(coskx +cosky+coskz ) for the simple cubic lattice and where we take To=t correspond­
ing to a bandwidth of three. Solving (7) we find 

(8) 

where 
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The correlation functions (C t C) may be obtained from the Green's functions 9
: 

(CrtACtA) =2E~k) 1[U; +E(k)]f(U{E(k)-Jl)-[U;-E(k)]f(UJ+E(k)-Jl)f, (9) 

where f(x) = [1 +e Ilxl-l and {3= 1/kT. 
The results for (Cr jtACk IB) are obtained from (9) letting x - -x. Similarly 

(Ct jtACt j B) = 2E~k) ~ T(k)f(U{ -E(k)- Jl)- T(k)j (UJ +E(k)- Jl)f . (10) 

We will evaluate our equations for a half-filled band where y = a +y = 1. (Penn calculated his results 
for various electron concentrations.) 

To find x and Jl we use 

6t(Cr tAC;A) =na, 6t(Ct tAC;A) =ny. (11) 

The sum extends over the Brillouin zone of a sublattice (the sublattices are fcc lattices) and n is the 
number of particles in A. 

Our self-consistency conditions are 

From (12a) Jl has the solution U /2. This result 
has also been proved as a rigorous theorem. 5 

It remains to solve for x from (12b): 

x" U ;3E(k) 
x = 2n 4- E(k) tanh-2-· 

k 

(13) 

Knowing x as a function of U, To. ;3 enables us to 
find the internal energy (H): 

(H) = -2/n 6t T(k)(CttACtB) + U /4(1-X2). (14) 

From (10) 

1" T2(k) ;3E(k) U 2 
(H)AF= -;, ~ E(k) tanh-2-+4"(1-x ). (15) 

k 

(12a) 

(12b) 

exact at small U and good even at relatively 
large U ~ 2To• 

In Fig. 2 we show the variation of the size of 
the local moment in three dimensions as a func­
tion of 2To/U and U /kT. At zero temperature 
there is always a nonzero local moment and as 
the temperature is raised this moment gradually 
disappears and the system undergoes a phase 

-0.7,------------,----------, 

-0.6 

To = 0.5 

kT =0.0 

When the only solution of (13) is x = 0 the system -0.5 

becomes paramagnetic with internal energy 

1" - 113 -] U (H)p=; ~ T(k) tanh L'2 T (k) +'4' (16) 

k 

These results are independent of dimensional­
ity. In one dimension we compare the ground­
state energy given by (15) with the exact result 
of Lieb and WU,2 which is 

where J o and J 1 are Bessel functions. 
The comparison of our energies with the exact 

results is shown in Fig. 1. The agreement is 
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FIG. 1. Comparison of approximate ground-state en­
ergy in one dimension to the exact result of Lieb and 
Wu. 
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FIG. 2. A plot of the three-dimensional solution for 
the local moment: (a) as a function of temperature for 
various ratios B =' 2T o/U, (b) as a function of B for 
various fixed values of the temperature. 

transition at a temperature T M. 

From (13) we find the following equation for the 
critical temperature T M: 

1-~ "" tanhT(k)/2kTM (18) 
- 2n ~ T(k) . 

k 

This is precisely Richmond's equation6 obtained 
by him on the basis of summation of an infinite 
set of polarization diagrams. 

In the antiferromagnetic state we also have 
spin waves which can cause an order-disorder 
transition. If we suppose a Heisenberg antiferro­
magnetic Hamiltonian we may estimate the 
strength of the spin-spin interaction by 

1 ~ ~ I I ZNX2 -2:4Jij (Sj.S)= ErEp ~-8-' 
IJ 

(19) 

where E A and E p are the zero-temperature en­
ergies in the antiferromagnetic and paramagnetic 
states, and where Z is the number of nearest 
neighbors. A simple molecular-field-theory cal­
culation for the Heisenberg spin-~ antiferromag­
net gives 

(20) 

In Fig. 3 we have plotted the curves k TN(U) and 
k T M( U) against U. At a critical Uc ~ 0.8 the 

1.0 r----~r----___,r_--___, 

x 
U -0.5 

0.5 hl------_ U "0.0 

0,OO.~0-----0.L5-----'I.LO ___ -1 

kT 

1.2 r--r--r_-r-~r_---,,----,---, 

1.0 

0,8 

t; 0.6 

0,4 

0,2 

0,0 ""-''--'---'---'---'---'-----"'-------' 
o 1.0 2.0 3.0 4,0 5,0 6,0 7.0 

u 

FIG. 3. (a) The order-disorder transition tempera­
ture TN and the insulator-metal transition tempera­
ture T M as a function of U. (b) Plot of X as a function 
of temperature for U= 0 and U= 0.5. 

curves cross each other. An exact calculation 
might show the two curves merging rather than 
crossing. 

We have calculated the static magnetic suscep­
tibility X= (fJm/fJhh= 0 from the one-particle 
Green's functions and find the form 

(21) 

We have plotted X as a function of temperature 
in Fig. 3(b) for U = 0 and U =~. The gap in the 
energy spectrum causes X to drop sharply to 
zero near T = O. When U = 0, however, X goes to 
a finite value at T = O. X has a wide peak for any 
finite U in the region of the critical temperature 
T M • 
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