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STOCHASTICITY, COMPLEX SPATIAL STRUCTURE, AND THE FEASIBILITY OF THE 
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Abstract.—Sewall Wright’s shifting balance theory of evolution posits a mechanism by which a structured population 
may escape local fitness optima and find a global optimum. We examine a one-locus, two-allele model of underdom­
inance in populations with differing spatial arrangements of demes, both analytically and with Monte Carlo simulations.
We find that inclusion of variance in interpatch connectivities can significantly reduce the number of generations 
required for fixation of the more favorable allele relative to island and stepping-stone models. Although time to fixation 
increases with migration rate in all cases, the presence of one or two relatively isolated demes may reduce the number 
of generations by 80% or more. These results suggest that the shifting balance process may operate under less restrictive 
conditions than those found with a simple spatial arrangement of demes.
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During the first part of the 20th century, Sewall W right 
(1931) proposed an alternative mode of evolution. Influenced 
by his studies of interaction systems of genes (Provine 1971), 
W right became concerned that selection on simple additive 
traits may not provide a complete story of adaptive evolution. 
In particular, if interactions among genes are strong and rel­
atively common, a certain combination of alleles may provide 
intermediate fitness, a very different combination of alleles 
may endow higher fitness, and blends of these two alternative 
genotypes may be less fit than either one alone. This led to 
W right’s lasting metaphor of an adaptive landscape, where 
multiple peaks of relatively high fitness, each representing a 
particular combination of alleles, are separated by valleys of 
low fitness. Because Fisherian selection (Fisher 1930) may 
only increase the mean fitness of a population, it alone cannot 
account for transitions between isolated adaptive peaks sep­
arated by valleys of reduced fitness.

To explain these hypothetical transitions W right (1931) 
proposed his famous and controversial shifting balance the­
ory (SBT), a mechanism by which a given population may 
explore a rugged adaptive landscape. The shifting balance 
may only operate in a metapopulation and occurs in three 
phases. In phase I, a single subpopulation, or deme, wanders 
across an adaptive valley by drift alone, toward the domain 
of attraction of a higher peak. In phase II, natural selection 
drives the deme up to the higher peak, that is, the deme 
becomes fixed for the more fit combination of alleles. In phase
III, the deme now fixed at the higher peak exports individuals 
to the rest o f the population and thus incites a global shift 
to the fitter peak. Although W right imagined that demes with 
higher fitness would export more individuals, this is not re­
quired for the SBT.

W hether or not the SBT operates in nature has remained 
a subject of debate since the theory was proposed. Many 
authors have modeled various aspects of the process (Barton 
and Rouhani 1991, 1993; Crow et al. 1990; Phillips 1993; 
Gavrilets 1996; Coyne et al. 1997; Peck et al. 1998), often 
arriving at different conclusions regarding its theoretical

plausibility. Wade and Goodnight (1991) found that the pro­
cess may operate in Tribolium castaneum under laboratory 
conditions and a specific experimental structure (but for a 
different interpretation of these results see Coyne et al. 1997), 
and Blum (2002) found some evidence for phase III in a 
movement of a Heliconius hybrid zone. To date, there have 
been no uncontested observations of the shifting balance (SB) 
process in nature.

Coyne et al. (1997) published a thorough critique that as­
sessed the SBT from both theoretical and empirical perspec­
tives. They concluded ‘‘We have found no compelling evi­
dence that W right’s SBT accounts for the evolution of a 
single adaptation, much less a significant proportion of ad­
aptations, in nature’’ (1997, p. 665). Regarding the theoretical 
aspects, they admitted, ‘‘Theory shows that the SB can some­
times be an efficient mechanism of selection, but only under 
restrictive conditions’’ (p. 664).

Several authors responded with more favorable views of 
the SBT. Wade and Goodnight (1998, 2000) defended 
W right’s view from both empirical and theoretical perspec­
tives (for a response see Coyne et al. 2000). Peck e ta l. (1998, 
2000) argued that models that include local interactions 
among demes and stochastic migration facilitate the SBT. 
Their simulation model included stochastic migration among
49 demes arranged in a 7 7 lattice. For some parameter 
combinations phase III of the SBT proceeded, whereas in 
deterministic models it did not. Unfortunately, the analysis 
suffered from the low numbers of simulation replicates (only 
seven trials for each parameter combination) and restricted 
time scale examined (a maximum of 30,000 rounds for all 
trials).

In previous analyses of the SBT, many authors have as­
sumed a relatively simple spatial arrangement of demes. 
Some authors have restricted their analysis to only two demes 
(Crow et al. 1990; Phillips 1993; Peck et al. 2000), with one 
deme initially fixed for the more fit combination of alleles. 
Because the frequency of the more fit allele combination 
begins at 50%, these models probably do not correspond to
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Table 1. Parameters and values used in the simulation and mathematical model.

Symbol Values Description
5 0.01, 0.05, 0.1 relative advantage of AA and disadvantage of Aa
N 50, 100, 200 number of individuals per deme
mij many (0.0-0.05) per individual probability of migration from deme j  to deme i
m 0.000-0.035 mean global migration rate
D 10, 20, 40 number of demes
|X 0.0001 two-way mutation rate
de, di 0, 1, 2, 4 effect of isolation of demes on export and import (in nonuniform export MDK model)
k 0, 2, 3, 6 number of isolated demes (in MDK model)
y 0, 1, 5 strength of interdeme selection, relative to individual selection

SB as it may exist in the natural world (see Gavrilets 1996). 
In other cases either an island (Lande 1985; Barton and Rou- 
hani 1993) or a one- or two-dimensional stepping-stone (Bar­
ton and Rouhani 1991; Gavrilets 1996) model was used. U n­
der these assumptions and others regarding the strength of 
selection and probability of migration, analytic formulas for 
the distribution of demic states, probabilites of fixation, and 
times to fixation can sometimes be achieved (Lande 1979, 
1985; Barton and Rouhani 1993). Several authors have noted 
that fixation of underdominant mutations is more likely if  the 
initially fixed deme is at the edge of the world of demes 
(Boorman and Levitt 1980; Gavrilets 1996) or in a region of 
low neighborhood size (Barton and Rouhani 1991), but no 
studies have explicitly examined the impact of spatial com ­
plexity on the feasibility of the SBT.

In this paper we develop and analyze a model that relaxes 
the assumptions of simple population structure and deter­
minism. Our goals are twofold. First, we build upon Peck et 
al.’s (1998) results and present a thorough investigation of 
the SBT in a purely stochastic world. Second, we relax the 
assumption of simple population structure, defined as zero 
variance in interdeme connectivity, and compare the effi­
ciency of island and stepping-stone models to both random 
and clumped distributions of demes. We present simulations 
and a mathematical approximation. The model is general 
enough, in principle, to incorporate any distribution of in­
terpatch connectivities, as well as all three phases of the 
process.

M ethods

We examine a one-locus, two-allele model with hetero­
zygote disadvantage. The fitness of an aa individual is one, 
the fitness of the heterozygote is 1 5, and the fitness of the 
AA homozygote is 1 + 5 (see Table 1 for a list of parameters 
used).

The Simulation

The simulation takes place in discrete generations, with each 
generation involving three independent events; mutation, re­
production, and migration. The number of individuals of each 
genotype in each deme is an explicit variable in this individual- 
based model. Mutation takes place each round, with each allele 
mutating to the other type with probability .

Prior to selection, individuals are assumed to mate ran­
domly and produce a large number of zygotes in Hardy- 
W einberg proportions. To determine the composition of the

population in the next generation, zygotes are sampled with 
probabilities determined by genotypic fitnesses; for example, 
the probability of selecting an AA individual is p 2(1 + s)/ 
W(p), where p  is the frequency of the A allele and W(p) is 
the mean fitness of the population. Zygotes are sampled until 
the population contains exactly N individuals.

M igration takes place after mutation and selection in every 
generation. Given a patch connectivity mij, a group of m i­
grants was created that contained a Poisson distributed num­
ber of individuals with mean Nmij. Individuals were randomly 
removed from the source deme, independent of genotype. 
The individuals in the migrant group were then placed in the 
destination deme.

The Migration Model

Our goal was to render migration in a manner more similar 
to nature than island or stepping-stone models. Given an 
arbitrary distribution of demes on the unit torus, a matrix of 
connectivities between all demes was constructed such that 
the connectedness of demes i and j  was given by cij  =  (d | 
+  0.01)_1, where d ij  is the distance separating the demes. We 
assumed a fixed global per capita migration probability, m , 
such that each individual has probability m o f migrating in 
a given generation, irrespective of the distances to nearby 
demes. To accomplish this, the rows of the matrix of deme 
connectivities were divided by their average, divided again 
by the number of demes in the metapopulation, and then 
multiplied by m . Thus, the sum of each row in the matrix 
was m (ignoring the diagonal entries). The sums of the col­
umns of the matrix, which represent the likelihood of a deme 
to receive immigrants, were left to vary. Because the size of 
each deme was held constant at N , each deme exports on 
average Nm individuals per round, but demes vary in how 
many individuals they receive each round.

Generating Patchy Di5tributiom o f  Demes

In addition to assessing the effect of spatial distributions 
where the location of each deme was selected independently 
(random distributions), we also sought to examine clumpy 
patterns, where the variance in deme connectivity was in­
creased. Clumpy patterns were generated following Adler and 
Nuernberger (1994). We first define a clumpiness index, Gi, 
for each deme i such that

G i ~  d  -  1 0.01 +  d2j ' (1 )
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Fig. 1. (a) In the simulation, each deme has a large number of possible states (proportions of the A allele, represented by black area), 
and every location is unique. To simplify calculations, we make two assumptions: (b) every deme is always fixed for one or the other 
allele, and (c) only two locations exist, clumped and isolated. Migration probability between two demes is indicated by the weight of 
the line connecting them.

During each iteration of the algorithm, a new potential 
location is selected on the torus for every deme. The prob­
ability of moving a deme to this new location is an increasing 
linear function of the G-value at the new point. The procedure 
is repeated until patterns of desired clumpiness are obtained. 
Patterns can be described by the mean G over all demes. 
Random patterns produced an average G  of near 11. Patterns 
that match our intuitive notion of clumpy generally have a 
G-value greater than 20. In addition to random patterns, we 
examined patterns that had an average G  of 20 or 25. G was 
positively correlated with variance among column sums of 
the matrix of deme connectivities in the range of indices 
considered (correlation coefficient — 0.73). Demes were not 
moved during any simulation replicate, but new patterns were 
generated for each replicate for the random and clumped 
patterns.

A Markov Chain Approximation

Because our simulation has a finite number of states and 
probabilities of transitions between these states are, in prin­
ciple, calculable, a single Markov chain can describe the 
entire system. However, the number of states is too large (2N 
+ 1)D+1 to analyze, and thus we make two assumptions to 
simplify the calculations. First, we assume the demes spend 
their time fixed for one or the other allele. This reduces the 
number of states for a single deme from 2N  1 to 2. Second, 
we allow only two possible connectivities of demes, clumped 
and isolated. This assumption allows us to examine the effects 
of variance in deme connectivity, but not the importance of 
local effects because demes in each location class are iden­
tical. Because all demes in a given location receive the same 
number of immigrants (on average), the number of possible 
states for the entire metapopulation is greatly reduced (see 
Fig. 1).

We first calculate the probability that a single deme with 
J A alleles (and 2N — J a alleles) will have i A alleles after 
one generation. Each generation consists of one round of of 
mutation, selection, and given immigration rates of mA A

alleles and ma a alleles. Using this information, we can cal­
culate the probability that a deme fixed for a crosses the 
adaptive valley after a certain number of generations, and 
likewise for the transition from a to A. Because these prob­
abilities depend on the number of A and a alleles entering 
the deme (denoted by mA and ma, respectively), we express 
them as functions: P(mA, ma) for the transition from fixed for 
a to fixed for A and Q(mA, ma) for the reverse transition.

Second, we compute mA and ma for a given distribution of 
demes and deme states, and using P(mA, ma) and Q(mA, ma) 
we calculate the probability that a metapopulation with J 
demes fixed for A will switch to having i demes fixed for A . 
We do this first for an island model and then extend our 
analysis to a metapopulation with two types of demes, iso­
lated and clumped.

Modeling dynamics within demes

The mathematical model begins with a description of the 
dynamics within a particular deme. Because the number of 
possible allelic states is not too large and the simulations 
take place in discrete rounds, a Markov chain approach may 
be used to obtain a probability distribution for the state of a 
given deme at any time. Let the states of the system be the 
number of A alleles present; there are then 2N  1 possible 
states. The probability that a deme in state J in one round 
will be in state i the next round, TiJ, is a combination of three 
independent factors, mutation, migration, and selection. 
Thus, the matrix of transition probabilities may be decom­
posed into three matrices, one for each factor.

Let U be the matrix describing transition probabilities due 
to mutation alone. Each element, U j , may be expressed as 
the following:

2N
U i j =  2  B (j - i  +  k, J ,V )B  (k, 2N — J, |A), (2)

k=0

where B is the binomial probability density function
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B (m, n, p) p m (1 -  p ) r‘ (3)

The first function in the sum represents the probability that 
j  — i +  k of the j  A alleles present will mutate to a, the last 
function the probability that k of the 2N — j  a alleles will 
mutate to A . In the actual calculations, we ignored the pos­
sibility that mutation changed the number of A alleles in a 
deme by more than 10 in any given generation.

The matrix of transition probabilities due to selection, S, is

Si;
2N p WA( A

w  (p)
1 p WA( A

w  (p)

2N-i
(4)

where p  j /2N .
Finally, for a known probability of arrival of A alleles and 

a alleles, the matrix that describes transitions due to immi­
gration, R, can be found by noting that the number of A 
alleles that are replaced by an arrival of k individuals is a 
hypergeometric random variable with parameters 2N , j , and 
k . Because arrivals of both types of alleles are approximately 
Poisson distributed (we use the Poisson approximation of the 
binomial; Adler 2005), each element in the matrix is the sum 
of a number of alternative probabilities:

R i 2  2  H  (2N, k +  l, j, j  -  i +  k)
k= 0 l= 0

X MAA_(k, mAA)Maa(l, «aa), (5)

where k and l index the number of arriving A and a alleles, 
H  is the hypergeometric density function, MAA(k, mAA) rep­
resents the probability of receiving k A alleles given a Pois­
son-distributed flow of AA individuals with mean mAA, and 
similarly for M aa(l, maa). Given these three matrices, their 
product T = RSU gives the matrix of transition probabilities 
for allelic states within a single deme. T may then be used 
to calculate the probability of transition from the fixed for A 
state to any other state, and the reverse, given a known im­
migration rate of A and a alleles.

Modeling dynamics between demes

To apply the within-deme processes to the entire m eta­
population, we assume that demes are always either fixed for 
A or a. We call these states shifted and unshifted, or simply 
on or off, respectively. Although this assumption appears to 
contradict our earlier description of within-deme dynamics, 
an explicit within-deme process is still necessary to compute 
the P  and Q functions described above. Thus, we assume that 
selection is strong enough that few demes have intermediate 
fitness, which is consistent with W right’s idea of an adaptive 
valley that is difficult to cross by drift alone. We begin by 
considering the probability that a patch fixed for the a allele 
and receiving a Poisson-distributed flow of mA AA individuals 
and ma aa individuals per generation crosses the valley in a 
certain number of rounds, say r . This may be found by m ul­
tiplying a vector with all probability in the 0 state by T(mA, 
ma)r, and then taking the sum of v elements at the end of the 
vector that correspond to fixation for the A allele, where v 
depends on s in general, but was taken to be 100 for the 
results shown here. Repeating this process for a wide range 
of mA and ma combinations produces a matrix of probabilities

of transitions to the shifted state. Interpolating the values in 
this matrix yields a function that describes the probability of 
transition to the shifted state given a certain flow of A and 
a alleles, for a particular number of generations, which we 
call P (mA, ma). Put simply, P (mA, ma) describes the proba­
bility that a deme fixed for a and receiving a certain flow of 
AA and aa individuals becomes fixed for A in r generations. 
Similarly, the function Q(mA, ma) describes the probability 
of transition from the shifted to the unshifted state. For this 
analysis we chose r =  100 generations, approximately the 
time to fixation of an A allele, conditional on fixation.

Given the functions P(mA, ma) and Q(mA, ma), it is possible 
to calculate the probability of changes of state for the entire 
metapopulation. We begin here with the island arrangement 
and then expand our method to a pseudospatial model that 
approximates the more complex spatial structure used in the 
simulations.

For an island arrangement of demes, using our assumption 
that demes are always fixed for either one or the other allele, 
the entire metapopulation has only D  1 states, where D  is 
the number of demes. If there are j  demes fixed for A , and 
each of these exports m A alleles each round, then all demes 
experience a Poisson-distributed flow of jm  AA individuals 
and (D — j)m  aa individuals (from the remaining, unshifted 
demes) each generation. The probability of an unshifted deme 
becoming shifted is then P(jm, (D — j)m),  and the probability 
of a shifted deme becoming unshifted is Q(jm, (D — j)m). 
Thus the total number of demes that switch from unshifted 
to shifted is a binomial random variable with parameters D  
— j  and P(jm, (D — j)m )  and the number of off demes that 
switch to on is also binomially distributed but with param ­
eters j  and Q(jm, (D — j)m). Implicit in this framework is 
the assumption that demes shift only once during the r gen­
erations. This assumption is accurate for phases I and II of 
the process, because shifts are infrequent during this period, 
but potentially inaccurate during the midst of phase III. None­
theless, the approximation appears robust (see Comparison 
of Simulation and Mathematical Results, below).

To compute the probability that a world with j  demes on 
becomes a world with i demes on, we must sum over a number 
of different possibilities that represent different paths from 
j  to i. For instance, if j  is 3 and i is 5, we must include the 
probability that two additional demes turned on and zero 
turned off, as well as the probabilities that three demes turned 
on and one turned off and that four turned on and two turned 
off, and so on.

Putting all this together yields and expression for V j

D
k= 0 \

j P* (1 — P ) ° - j - k

X | j  . )Q k~i+j (1 -  Q)■'-*. 
k -  i +  j '

(6)
where the arguments to the P  and Q functions are (jm, (D -  
j)m).

A Pseudospatial Model

In principle, the above method could be applied to m eta­
populations of arbitrary spatial structure and number of

n

m

D
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demes. However, even with the two state approximation, the 
number of possible states is 2D+1 if every deme is unique. 
To further reduce the number of possible states, we con­
structed a model that captures some of the elements of com­
plex spatial structure, namely variance in immigration po­
tential among demes, but that uses only two types of demes. 
In this construction, we imagine k of the D  demes are isolated 
by a factor of d, such that immigration to these demes, given 
a particular m, is reduced to m(1 — d/k). To ensure that the 
global average migration rate remains equal to m , the re­
maining D — k demes experience increased migration of m(1 
+ dJ(D — k)). The parameter d  describes the degree of iso­
lation of the k demes and ranges between zero (no isolation 
of demes, which reduces to the island model) and k (demes 
are so isolated they receive no immigrants). We refer to this 
as the MDK model; often we write M DK(d , k) to indicate 
precise values of d  and k used for a given calculation. It is 
important to note that varying d  does not affect the mean 
migration rate in the metapopulation, it increases only the 
variance in deme connectivity.

To facilitate comparison to the spatial models, it would be 
convenient to calculate a G-value for an arbitrary MDK mod­
el. Unfortunately, an unambiguous G  cannot be calculated 
given an arbitrary matrix of connectivities because infor­
mation about the absolute distances is lost when distances 
are converted to connectivities. The m ost accurate compar­
ison between the MDK and spatial models is the coefficient 
of variation among column sums of the connectivity matrix, 
which is a more direct measure of variation in migration 
probabilities.

The MDK model has (k 1)(D k 1) possible states, 
and each state represents a unique number of shifted, isolated 
demes and shifted, nonisolated demes. The calculations for 
the transition matrix are similar to those for the island model, 
but both types of demes must be treated separately. For sim­
plicity, we refer to k demes that receive fewer migrants as 
the isolated demes and the remainder as the clumped demes.

For a given state index, let Ji indicate the number of isolated 
demes on and Jc indicate the number of clumped demes on. 
The number of isolated demes that switch from on to off in 
a given number of generations is assumed to be independent 
of the number of clumped demes that switch. Because all 
isolated demes are identical in terms of the expected number 
of migrants they receive and all demes are identical in terms 
of the migrants they export, a simple expression may be 
written for the probability of transitions between states of 
isolated demes alone. By definition, all isolated demes re­
ceive, on average, m(1 — d/k) individuals per round. Given 
Jc Ji shifted demes in a given generation (and D Jc Ji 
unshifted demes), every isolated deme experiences a mean 
flow of

d
m iA =  (j c +  Ji )m | 1

AA individuals per round and

(D -  J c ~  J i)m  1
k

aa  individuals per round. Thus, every isolated deme that is

off has independent probability P(miA, mi,a) of turning on. 
Similarly, every isolated deme that is on has an independent 
probability Q (m i,A, m i,a) of turning off.

As with the island model, the total number of isolated 
shifted demes that unshift and isolated unshifted demes that 
shift is the the sum of two binomial random variables with 
parameters P(mi,A, mi,a) and Q(miA, m i,a). To find the prob­
ability of transition to a particular number of isolated shifted 
demes, i i, we sum over all probabilities of transitions that 
lead to ii isolated shifted demes from Ji isolated shifted demes. 
The total probability that a world with Ji isolated shifted 
demes and Jc clumped shifted demes transitions to a world 
with ii isolated shifted demes is given by:

P (mA  mi l

X [1 — P (m a )] ̂ c ^

X I j  . Q (mi,A, m i,a)l Ji 1
\ l -  j i  -  v  , ,

X [1 -  Q(mi,A, m ,a)] l~l. (7)

where the arguments to P  and Q  are (m i,A, m i,a).
Similar reasoning follows for the probability of transition 

to a given number clumped demes. In this case mc,A and mc,a 
are given by

mcA =  (J c +  Ji)m 1 +
d

D k
and

(D -  J c -  Ji )m 1 + D k

respectively. M ultiplying the probabilities for the transitions 
between numbers of isolated shifted demes and numbers of 
clumped shifted demes, and taking care to index properly, 
yields a matrix with (k + 1)(D — k + 1) rows and columns 
that describes the probability of stochastic shifts between all 
possible states of the metapopulation.

Once this matrix has been calculated, a straightforward 
procedure leads to calculation of the expected first passage 
time (FPT; Bhat and M iller 2002), the expected number of 
rounds until the process, initially in state i, reaches state J 
for the first time. We are particularly interested in the ex­
pected number of rounds for the process to proceed from a 
state with zero shifted demes to a state with D  shifted demes. 
This was taken to be a combined measure of the efficiency 
of all three phases of the SBT.

Identification o f  Steady States

A deterministic approximation of this process may be ob­
tained by considering x, the fraction of demes that are shifted 
at a given time. If the total number of demes is large, we 
may ignore stochastic fluctuations in the numbers of shifted 
demes and focus, for the moment, on identifying equilibria. 
The change in x after one r-round time step may be found 
by using the functions P (mA, ma) and Q(mA, ma). In an island 
model, all demes export and receive the same number of 
migrants, m. If x is the fraction of shifted demes, all demes 
receive xm AA individuals (as a fraction of total deme size)

k

1 = 0

m

d

k

d
m
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and (1 — x)m aa individuals. After one time step, the fraction 
of shifted demes is the sum of those shifted demes that did 
not unshift and the unshifted demes that did shift:

x{1 ^  Q(xm, (1 — x)m)}

(1 x)P (xm, (1 x)m). (8)

Equilibria occur where x x , and are obtained by setting 
xeq =  x' =  x and solving for xeq. Doing so yields:

P (xm, (1 x)m)
P (xm, (1 x)m) Q(xm, (1 x)m)

(9)

Similar calculations can be carried out for the MDK model, 
but the system will have two state variables, one for isolated 
demes and another for clumped demes. Import to isolated 
demes is decreased by a factor of (1 — d/k), and import to 
clumped demes is increased by a factor of [1 + d/(D — k)].

Treating m as a bifurcation parameter, we can asses the 
number, location, and stability of equilibria for different lev­
els of migration. This procedure is a discrete-time analogue 
of similar calculations carried out by Barton and Rouhani 
(1993), who used W right’s formula and simplifications there­
of to approximate the distribution of demic states. We further 
simplify and assume that demic states are Bernoulli random 
variables, with probabilities of transition given by P  and Q 
and the state of the migrant pool. Our method also takes into 
account the history of a deme in question, because migration 
events several generations ago affect P  and Q , and thus may 
alter the probability of a shift. This approach is nearly iden­
tical to Hanski’s incidence function model of patch occu­
pancy in spatially realistic metapopulations (Hanski 1994), 
with P  and Q describing the colonization and extinction prob­
abilities of the A allele.

In a diffusion analysis the two quantities of interest are M , 
the expected change in gene frequency as a function of the 
current frequency, and V, the variance of that change (Ewens 
1979). Modifying equation (8) by subtracting the current al­
lele frequency x yields an expected change as a function of 
the present state. The variance in this quantity is given by 
the sum of two binomial random variables, the number of 
demes switching from fixed for A to fixed for a , and vice 
versa. The two random quantities are independent by as­
sumption. For the island model, the variance is given by:

V P  (1 -  P) Q (1 -  Q)
D  -  k k ’

(10)

where we have omitted the dependence on x and m for clarity. 
Although M  and V in principle may be used to calculate, for 
example, a global probability of fixation, the complicated 
form of P  and Q prohibit a simple expression for this and 
other quantities of interest. If simple expressions for P  and 
Q can be found, then the methods of diffusion analysis may 
allow for an analytic approximation of times to and proba­
bilities of fixation, as well as an expression for the critical 
migration rate.

Alternative Migration Models

Our previous assumption of uniform export from all demes 
may in some cases be unrealistic. Here we relax this previous

assumption and examine models that include isolation by 
distance for both import and export. We can also investigate 
the importance of W right’s original idea that SB is driven 
by greater export from demes with higher mean fitness.

To include differential export, we assume that export is 
decreased by distance in exactly the same fashion as import. 
In the MDK model, this means that isolated demes export 
Nm(1 — d/k) individuals on average and clumped demes ex­
port Nm(1 + d/(D — k)) individuals, hence average export 
remains constant at Nm  for any choice of d  or k . Because 
distance may have different effects on the export and import 
of individuals from the demes, we separate the degree of 
isolation of export from import by writing de and d i, respec­
tively. Given this description, the average flow of individuals 
from an isolated deme to another isolated deme is Nm(1 -  
di/k)(1 — de/k), and the flow from clumped demes to isolated 
demes is Nm(1 — di/k)[1 + de/(D — k)]. Flow into clumped 
demes follows similarly. The case de 0 reduces to the 
uniform export case where distance has no effect on export, 
and de d i means distance has similar effects on import and 
export. We are particularly interested in the case where in­
dividuals have some innate tendency to leave a deme, but 
the destination is influenced only by distance to that deme, 
which implies de di.

We also examined the impact of differential export from 
demes of higher mean fitness. We begin by introducing a 
new parameter, , which describes the degree to which the 
mean fitness of a deme affects its export, and thus can be 
thought of as the parameter that translates the individual se­
lection coefficient, s, to the group selection coefficient. Ex­
port from the deme is given by m[1 + y  (W  — 1)], where W 
is the mean fitness of the deme. 7 = 0 reduces to the basic 
model of uniform export described above, 1 implies that 
export is altered by a factor of W, so a deme fixed for a 
exports on average Nm individuals, but a deme fixed for A 
exports Nm(1 + s) on average.

R e su lts  

Identification o f  Equilibria

The number and location of equilibria of the deterministic 
approximation (9) are presented in Figure 2. W ith m less than 
about 0.0125, the metapopulation progresses to the single 
stable equilibrium at the top of the figure, which corresponds 
to global fixation for A, regardless of population structure. 
However, as m increases above 0.0125 in the island model 
(Fig. 2a), the system undergoes a saddle-node bifurcation and 
a new pair of equilibria appears. The new stable equilibrium 
corresponds to a state with nearly zero shifted demes for all 
levels of m . The distance between the new stable and unstable 
manifolds corresponds to the level of difficulty of stochastic 
transitions between the two stable equilibria and increases 
with m. These results are qualitatively similar to those pre­
sented by Barton and Rouhani (1991, 1993), who also found 
deterministic progression of the SBT for low m and two stable 
equilibria for higher m .

For the MDK model there are two sets of equilibria, one 
for the isolated demes and another for the clumped demes 
(Figures 2b, 2c). As isolation of the k demes increases the 
bifurcation point associated with these demes moves right,

x

xeq
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Fig. 2. Bifurcation diagram of equilibria of (a) an island, (b) MDK(1, 3), and (c) MDK(1.5, 3) (see text for explanation). Black lines 
correspond to equilibria for the high-import demes, gray lines are equilibria for the low-import demes. A stable equilibrium always exists 
at x = 1, which corresponds to near global fixation for the beneficial allele A. As m increases, the system undergoes a saddle-node 
bifurcation and new equilibria appear; a stable manifold that corresponds to near global fixation for the a allele and an unstable manifold 
that separates the two stable states.

indicating that the isolated demes move to the fixed for A 
state deterministically for a greater range of migration rates. 
The manifold for the clumped demes is relatively unaffected 
by the presence of isolated demes. For intermediate m, two 
outcomes are possible: the population may remain polymor­
phic with the isolated demes fixed for A while the clumped 
demes remain at a, or the presence of the isolated fixed demes 
may drag the clumped demes across the barrier and to the 
upper manifold.

Simulation Results fo r  Differing Spatial Structures

To examine the effect of the spatial arrangement of demes, 
we compared the FPT observed for the island model at a 
variety of migration rates to the FPT observed for random, 
clumped, and the MDK pseudospatial model used in the 
mathematical analysis. The MDK model examined had three 
isolated demes, and each deme was isolated by a factor of 
2/3 (k = 3, d  = 2), so that they received about one-third of 
the immigration of the clumped demes. The mean FPT of 50 
simulation replicates for all spatial arrangements is plotted 
in Figure 3. A new pattern was generated for every replicate 
of every simulation where appropriate, and each replicate was 
run for a maximum of 107 generations. We show here the 
results for s = 0.05, but qualitatively similar results occur 
for s =  0.01 and s =  0.1 (results not shown). At higher 
migration rates for some spatial patterns (island and two­
dimensional stepping-stone), the FPT was so great that few 
or no replicates reached global fixation before the maximum 
number of generations; this is indicated by a dotted line lead­
ing to the top of the figure.

Figure 3 demonstrates that, for relatively low migration 
rate (below 0.0125), the spatial arrangement of demes has 
little effect. Relatively infrequent migration (m = 0.001) de­
creases FPT substantially when compared to the m 0 case, 
and FPT increases uniformly as m increases beyond 0.005. 
All replicates of all patterns proceed through the three phases, 
reaching global fixation for the A allele in several thousand 
generations. This is consistent with the result from the de­
terministic analysis where, for low m , the process proceeds

to the single stable state with all demes fixed for A . The value 
of m that yields that smallest FPT, and hence at which the 
entire shifting balance process operates most efficiently, is 
found at an intermediate value of 0.005 (Nm = 0.5).

At higher migration rates, spatial structure has a profound 
effect. A random arrangement of demes, where this effect is 
slightest, has a mean FPT of 356,000 generations at a m i­
gration rate of m = 0.015, while the island model has a mean 
of greater than 107 generations. The two-dimensional step­
ping-stone model yields similar results to the random ar­
rangement. Structures that incorporate more variance in deme 
connectivity (MDK and clumped) increase this effect, ex­
tending the range of migration rates at which the shifting 
balance proceeds by a factor of two or three.

The MDK(2,3) pattern appeared to be intermediate when 
compared with the two clumpy patterns; for most migration 
rates it yielded a mean FPT greater than clumped 25 and less 
than clumped 20. Interestingly, if the coefficient of variation 
in column sums of the migration matrix is taken to be a 
measure of the clumpiness of the migration probabilities, then 
the MDK(2,3) model appears slightly less clumpy than do 
the other clumpy patterns (CV for clumped 20 0.325, 
MDK[2,3] ~  0.30, random ~  0.21), and the intermediate 
result may be an artifact of sampling error. Nonetheless, this 
finding suggests that this relatively simple, pseudospatial pat­
tern captures the important effects of complex spatial struc­
ture, and in later analyses we take the MDK pattern to be a 
surrogate for more realistic structure.

Comparison o f  Simulation and Mathematical Results

The calculated FPT and simulated FPT (with sample stan­
dard deviation) for the island and MDK models, for a variety 
of number of demes (D = 10, 20, 40, holding the total number 
of individuals, ND, constant at 2000), are compared in Fig­
ures 4a-c. The mathematical approximation works well for 
a range of migration rates, although it yields too high an 
estimate for the m 0 case and becomes more accurate as 
the number of demes increases and the number of individuals 
per deme decreases. This last is an expected consequence of
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Migration Rate (m )
Fig. 3. The mean number of rounds taken for the simulation to progress from a state with all demes fixed for a to a state where all 
demes have p >  0.90 (the first passage time), plotted as a function of the mean migration rate (m). The dotted lines indicate a very large 
number of generations (greater than 107, the maximum number of rounds in the simulation) for the island, random, and two-dimensional 
stepping-stone models.

Fig. 4. Comparison of simulated and calculated first passage time for island and MDK models, for different numbers of demes: (a) D 
= 10, N = 200, MDK(2,1); (b) D = 20, N = 100, MDK(2,3); (c) D = 40, N = 50, MDK(4,6). The dotted line indicates a large first 
passage time for the simulation runs, with a mean greater than the maximum number of generations allowed in the simulation (107). As 
the number of individuals per deme decreases, the accuracy of the approximations improves.



4 5 6 B. O ’FALLO N A N D  F. R. ADLER

Fig. 5. Calculated first passage times (FPT) for models of differential export, for D = 20, s = 0.05, N = 100. (a) Decreasing export 
as a function of deme isolation, for different levels of the effect of isolation (de). (b) Interdemic selection model, various population 
structures and levels of between-deme selection ( ). Simulations match both mathematical models well (results not shown).

the fact that larger demes are less likely to be fixed for one 
allele or another for a given Ns.

Alternative Export Models

Figures 5a,b demonstrate the effects of decreased export 
of individuals due to isolation for a model with D  20, s 
= 0.05, and N  = 100, as predicted by the Markov chain 
model. Results for the island model and uniform export 
MDK(2,3) model are shown for comparison. Increasing d t 
from zero (the uniform export case) to de significantly in­
creases the first passage time, though in all cases it remains 
an order of magnitude or more below the island case. In the 
interdemic selection model, it is apparent that increasing spa­
tial complexity has a much greater effect on first passage 
times than does increasing , even when the new allele has 
a much greater effect on interdeme fitness than individual 
fitness.

The Effects o f  Increasing Isolation o f  Demes

In the simulations we examine only a few versions of the 
MDK model, MDK(4,6), MDK(2,3), and MDK(2,1) (for D  
= 40, 20, and 10, respectively). To further assess the effect 
of both the number of isolated demes, as well as the degree 
of isolation, we plot the calculated FPT relative to the island 
model, for a given number of isolated demes (k), as a function 
of the degree of isolation of those demes (d/k), for m = 0.005, 
m = 0.015, and m = 0.025 (Fig. 6), for Ns = 5, D =  20, 
and N  =  100. At m =  0.005 increasing d  and k increases the 
FPT, presumably because at lower migration rates in phases 
I and II are likely to occur in a clumped deme, and the new 
allele spreads more slowly to the isolated demes. In the most 
extreme case, FPT was increased from 25,000 generations to 
41,000 generations. At higher migration rates, increasing d  
and k decreases the FPT. Even a small number of isolated 
demes (two of 20), with a modest degree of isolation (the

two demes receive half of the immigrants of other demes), 
reduced the FPT by over 80% relative to the island model 
in the m = 0.015 case and by over three orders of magnitude 
in the m = 0.025 case. The presence of a single isolated 
deme, if isolated by a great enough degree, can reduce the 
expected FPT by over 90%. However, because absolute FPT 
increases with migration rate in all models, at some point the 
difference between island and more complex models is 
moot— the process always takes so long that our assumptions 
of constant selection pressure, migration regime, and popu­
lation size are no longer tenable.

Discussion

Our results indicate that more complex forms of spatial 
structure, particularly those that increase the variance in in- 
terdeme connectivity, facilitate SB relative to island models. 
The introduction of even a modest number of isolated demes, 
one or two demes in a world of 20, may reduce the time 
taken for all demes to reach the more fit peak by an order of 
magnitude or more. The mechanism is straightforward. Iso­
lated demes are more likely to wander across an adaptive 
valley because they receive fewer wild-type immigrants that 
tend to push demes back to the original peak. Once shifted 
to the more-fit peak, isolated demes are more difficult to 
unshift (again, because they receive fewer immigrants) and, 
hence, are more likely to induce a global peak shift.

The simulations and mathematics presented here relax 
some assumptions of earlier models. First, we examine more 
than two demes. Two-deme models, though presented as a 
representation of a single step in phase III, are inadequate 
for several reasons. Such models implicitly assume either a 
one-dimensional stepping-stone arrangement of demes or a 
global frequency of 50% for the more fit combination of 
alleles, both of which strongly bias results in favor of the 
SBT. Often, unidirectional migration is assumed, which fur­
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ther dissociates these models from reality (for further dis­
cussion see Gavrilets 1996). Second, our model assumes both 
stochastic migration between demes and stochastic change 
of gene frequencies within demes, factors W right thought to 
be integral to the process. Third, we examine all three phases 
of the process together. In addition to being a more complete 
representation of the SBT, in our analysis the location of the 
deme that undergoes phases I and II has a significant effect 
on the probability of phase III proceeding. Also, the total 
number of generations taken to reach global fixation for the 
more fit peak is highly dependent on the amount of time 
spent waiting for phases I and II, and our results thus allow 
for more precise estimation of the actual time scale. Finally, 
we compare spatial arrangements of demes that incorporate 
variance in interpatch connectivity.

It is interesting to compare models of this sort with the 
two-deme stochastic model presented by Peck et al. (2000), 
which explicitly compared the likelihoods of phase III pro­
ceeding under alternative assumptions of deterministic and 
stochastic migration. In their model, migration was one-way 
from the deme fixed for AA. Phase III failed at low Nm be­
cause too few immigrants arrived to shift the less-fit deme 
in the time constraints of the model. Our results provide a 
different view of the process, where increasing migration 
decreases the likelihood of SB, because single demes that

drift to fixation are likely to be unshifted rapidly by immi­
gration of aa  individuals.

Our results build upon those of Barton and Rouhani (1991,
1993). Barton and Rouhani (1991) examine a two-dimen­
sional stepping-stone model with the restriction s <C m <C 
sn2, with n the number of demes along one dimension of the 
lattice. With the assumption of large m, they found deter­
ministic stable equilibria at all and no demes shifted at every 
m , separated by an unstable manifold; they also found an 
optimal neighborhood size for the probability of fixation of 
a new underdominant allele. Barton and Rouhani (1993) ex­
amined an infinite island model and found equilibria similar 
to our Figure 2a, with deterministic progression to fixation 
at low m and two stable equilibria for higher m . Barton and 
Rouhani also obtained analytic approximations for the dis­
tribution of demic states, probabilities of spread of the new 
allele, and other interesting features, but they did not cal­
culate passage times in the single-locus case or look at struc­
tures more complex than the island model.

Another insight may be gained by comparing spatial pat­
terns with local interactions but little or no variance in deme 
connectivity (the two-dimensional stepping-stone and ran­
dom models) to models with more variance. In our model, 
local interactions decrease the FPT relative to the island mod­
el, but increasing variance among deme connectivities further
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decreases the FPT, in most cases substantially. One potential 
mechanism for this difference stems from the fact that most 
of the time spent waiting for fixation of the A allele is con­
sumed by waiting for the first deme to shift, especially at 
high migration rates. Once one or two demes shift, phase III 
proceeds rapidly, often taking less than 10% of total FPT 
(results not shown). Demes that receive fewer wild-type im­
migrants are likely to shift more quickly than other demes, 
and because models with substantial variance necessarily in­
clude a few of these demes, these models spend less time 
waiting for phases I and II. Because our MDK model, which 
includes connectivity variance but no local interactions, per­
formed as well or better than the clumped simulations, we 
conclude that variance is equally if not more important than 
local interactions. In this manner, our model is consistent 
with predictions made by Eldredge et al. (2005) regarding 
the importance of geographic structure in providing a mech­
anism for evolutionary stasis (though our model does not 
include spatially heterogeneous selection).

Our work is similar to that o f Boorman and Levitt (1980), 
who examined the evolution of a social trait under frequency- 
dependent selection in metapopulations with complex struc­
ture (frequency-dependent selection is similar to our model 
of underdominance). Boorman and Levitt also concluded that 
spatial structure facilitates the spread of such a trait, given 
a migration rate that is neither too high (similar to our find­
ings) or too low (a consequence of their deterministic anal­
ysis), and they also noted that the process is facilitated when 
the initially fixed deme is at an edge of the distribution of 
demes. However, they considered a different model of m i­
gration (equal import and export from every deme, though 
the number of demes connected to any given deme may vary). 
Though they briefly considered stochasticity as a possible 
cause for fixation in the initial deme, they envisioned sub­
sequent spread as a purely deterministic process and modeled 
it as such. Our modeled allows us to avoid explicitly spec­
ifying an initially fixed deme and, thus, to explore the fea­
sibility of the entire process.

Although our basic model includes uniform export from 
all demes regardless of isolation, we find that relaxing this 
assumption does not significantly alter our results, especially 
if individuals have some intrinsic tendency to migrate (de <  
d i). Even if distance has equivalent effects on both import 
and export (de = di), first passage times are reduced by about 
two orders of magnitude from the island case for m >  0.015. 
We also find that interdemic selection of the kind envisioned 
by Wright, where demes with a higher mean fitness export 
more individuals, does not greatly affect first passage times. 
Complex spatial structure appears to have a substantially 
greater effect than does interdemic selection, even if the in- 
terdemic selection coefficient is substantially larger than the 
individual selection coefficient.

The degree to which these results bear upon a natural sys­
tem depends on the relevant time scale. For relatively high 
migration rates (Nm = 1.5-3.0), FPTs are hundreds of thou­
sands or millions of generations. For long-lived species, these 
may translate into times so long that some assumptions fun­
damental to the SBT, such as relative constancy of the adap­
tive landscape or dispersal regime, may be unjustified.

Our model examines only a one-locus, two-allele genetic

system, and thus our results apply only to a simplified m et­
aphor of the SBT. This choice was made to ease computations 
in the simulation and for comparison to other models that 
make the same assumption (Barton and Rouhani 1993; Gav- 
rilets 1996; Peck et al. 1998, 2000), as well as models that 
examine underdominant chromosomal mutations (Lande 
1985; Barton and Rouhani 1991). With multiple epistatic loci, 
fixations of single loci via drift in separate demes will likely 
revert to their original state quickly, unless they are combined 
immediately to produce a local peak shift. Put another way, 
the probability that the many correct alleles that constitute a 
more-fit adaptive peak will independently drift to fixation in 
the same deme seems vanishingly small. Our findings suggest 
that this may be less of an obstacle in metapopulations with 
complex spatial structure, because drift across adaptive val­
leys is favored in a small subset of the demes (the relatively 
isolated demes), which increases the likelihood that a single 
deme will drift to fixation for all necessary alleles.

Our results indicate that the theoretical plausibility of the 
SBT may have been underestimated by previous analyses that 
assumed a simple structure of migration and deterministic 
interactions among demes. If further work continues to sup­
port these findings, then research investigating more closely 
the structure of actual adaptive landscapes and transitions 
among them via the SBT may be justified. As more popu­
lation-level genetic data become available, it may prove more 
feasible to look for the genetic signature of SB than to identify 
morphological characteristics. Our results suggest that the 
process is likely to begin in a relatively isolated subgroup 
that initiates a rapid selective sweep across the population. 
If the rate at which the allele spreads is high relative to the 
recombination rate, then many linked loci may be involved, 
a fact that could aid attempts to identify such sweeps (al­
though it may obscure the loci responsible for initiating the 
shift). If variance in dispersal structure facilitates such shifts, 
we may expect populations of organisms with limited dis­
persal ability or particularly clumped habitat distributions to 
experience such sweeps more often than populations with a 
more homogeneous dispersal pattern. Although demonstrat­
ing that an adaptive valley was crossed remains a difficulty, 
comparing groups with differing dispersal patterns may pro­
vide some corroborative evidence for the SBT. Selective 
sweeps resulting from SB are likely to increase the number 
of substitutions in the population relative to background lev­
els, thus repeated but infrequent episodes of this process may 
increase the variance in substitution rates over evolutionary 
time and could contribute to the overdispersion of the m o­
lecular clock (see Gillespie 1994).

It is not our goal to suggest that the shifting balance is 
responsible for a significant portion of adaptations found in 
nature. We agree with Coyne et al. (1997, 2000) when they 
asserted that the number of adaptations accounted for by 
Fisherian selection is many, whereas the number of adapta­
tions accounted for by the SBT is currently none. However, 
a rigorous demonstration of operation of SB requires more 
effort than does a demonstration of Fisherian selection. Per­
haps more importantly, we submit that the importance of a 
natural phenomenon is not determined by its frequency of 
occurrence alone. Importance may also be assigned to phe­
nomena that differ from the norm and operate in a novel
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fashion, as well as those that have lasting or significant con­
sequences for the population in question. Because the SBT 
involves correlated changes in a large number of alleles, its 
operation may play an important role in the course of evo­
lution taken by a population, even if the process itself occurs 
very infrequently or accounts for a small number of observed 
adaptations. In this manner, the SBT may be similar to M ayr’s 
genetic revolutions (Mayr 1954), wherein small, isolated 
groups of individuals may effect large-scale genetic changes 
that would be unlikely in larger populations.
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