
Verification of Delayed-Reset Domino Circuits Using ATACS*

Wendy Belluomini1 Chris J. Myers2 H. Peter Hofstee3

Com puter Science Department, University of Utah , Salt Lake City, UT
2 Electrical Engineering Department, University of Utah, Salt Lake City, UT

IBM Austin Research Laboratory, Austin, TX

Abstract

This paper discusses the application o f the timing anal­
ysis tool ATACS to the high performance, self-resetting
and delayed-reset domino circuits being designed at IBM ’s
Austin Research Laboratory. The tool, which was originally
developed to deal with asynchronous circuits, is well suited
to the self-resetting style since internally, a block o f self­
resetting or delayed-reset domino logic is asynchronous.
The circuits are represented using timed event/level struc­
tures. These structures correspond very directly to gate
level circuits, making the translation from a transistor
schematic to a TEL structure straightforward. The state-
space explosion problem is mitigated using an algorithm
based on partially ordered sets (POSETs). Results on a
number o f circuits from the recently published guTS (giga­
hertz unit Test Site) processor from IBM indicate that mod­
ules o f significant size can be verified with ATACS using
a level o f abstraction that preserves the interesting timing
properties o f the circuit. Accurate circuit level verification
allows the designer to include less margin in the design,
which can lead to increased performance.

1 Introduction
In order to be successful and widely used, any circuit

design style must have extensive CAD support. Lack of
CAD support is one reason that asynchronous design has
not been widely accepted, despite its advantages in some
areas. However, in order to get high performance, syn­
chronous designs are always pushing the boundaries of ex­
isting CAD tools as well. The circuit style being developed
and used at IBM's Austin Research Laboratory is a good ex­
ample of this. Although the circuits are synchronous, their
local behavior is asynchronous, and the timing constraints
that must be met for them to work correctly are quite com­

*This research is supported by NSF CAREER award MIP-9625014,
SRC contract 97-DJ-487, and a DARPA ASSERT Fellowship. The work
in this paper was performed while the first author was an intern at the IBM
Austin Research Laboratory.

plex. Existing synchronous static timing analysis methods
can be adapted to analyze this type of circuit [1, 2, 3], but
they have some limitations. The approach presented in [1]
extends the static timing methodology by changing the stan­
dard two event per signal model to a four event per signal
model. This allows all of the relevant timing constraints on
a domino gate to be verified. However, since the method
considers only topological delay and not boolean behavior,
it can be overly pessimistic. The method presented in [2]
is successful in verifying a large, high performance chip. It
adds some boolean behavior to the topological delay calcu­
lations in order to improve accuracy, but may still be conser­
vative. The technique presented in [3] is designed to verify
self-resetting or delayed-reset circuits at the macro level. A
designer must determine an interface specification for each
macro through simulation. The timing analysis tool then
determines if the combination of all the macros correctly
implements all of the interfaces. This works well for chip
level timing verification, but the interfaces specified by the
designer are never formally verified. A tool that verifies that
the gates inside the macro work correctly within the speci­
fied interface is required to complete the verification.

Since the behavior inside the self-resetting and delayed-
reset macros is very similar to that of an asynchronous cir­
cuit, a tool designed for asynchronous circuits is useful in
their timing verification. A timing analysis tool for asyn­
chronous circuits must be more general than the static tim­
ing tools used for synchronous circuits. No assumptions
about the time behavior of the system are made, which
means that an asynchronous timing verification tool can
handle any timing optimizations made by synchronous de­
signers. This flexibility allows designers to create new cir­
cuit styles without modifying the timing analysis tool.

There are two basic approaches to timing analysis for
asynchronous systems. One approach, presented in [4], is
based on time separation o f events. This algorithm is effi­
cient for determining an individual time separation. How­
ever, verification of a large circuit model requires checking
thousands of time separations. Since these algorithms view

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276287101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

each new time separation as a different problem, there is a
point at which exploring the timed state space of the speci­
fication becomes faster than computing all of the necessary
time separations. The other approach, which is taken in this
paper, is based on timed state space exploration. Timed
state space exploration algorithms determine the set of all
states that are reachable in the specification given the tim­
ing information provided. The state space exploration al­
gorithm used for verification in this paper is based on the
POSET technique [5], which significantly reduces state
space size.

However, any tool designed for asynchronous circuits is
limited in the size of specifications it can analyze. Since
asynchronous tools explore all possible sequential behav­
iors of the circuit, their time and space complexity are ex­
ponential, and they are best used for gate level analysis of
small circuits or abstracted versions of larger macros. This
paper describes the application of the asynchronous timing
analysis tool ATACS, to the verification of several designs
from the guTS (gigahertz unit Test Site) processor designed
at IBM's Austin Research Laboratory. It first describes the
model that ATACS uses to represent circuits It then dis­
cusses the delayed-reset domino circuit style and its perfor­
mance advantages. Finally, it presents several case studies
from the guTS microprocessor. These case studies show
that ATACS is capable of analyzing delayed-reset and self­
resetting circuits accurately and that the abstractions neces­
sary to make the problems tractable do not cause the tool
to underestimate performance. If it is possible to accurately
verify the macros, less margin is necessary to ensure cor­
rectness, and higher performance circuits can be achieved.

2 Specifying delayed-reset domino circuits

The specifications that are analyzed by ATACS, Timed
Event/Level (TEL) structures [6], described formally be­
low, are very well suited to the delayed-reset domino style.
TEL structures extend timed ER structures [7], by allow­
ing boolean expressions to be added to the specification.
TEL structures represent a set of specifications equivalent
to those represented by both time and timed Petri nets, and
they have two main advantages over purely event based
specifications. The first is that they are easy to generate
from a higher level language such as VHDL [8]. Purely
event based specification formats do not correspond well to
the signal level based semantics of higher level languages.
The second advantage is in performance. Specifications ex­
pressed as TEL structures are more compact and have fewer
markings than those expressed in a purely event based for­
malism. This results in smaller state spaces and decreased
run time and memory usage.

A TEL structure is a 6-tuple
where:

1. N is the set o f signals;
2. so — {0,1 } N is the initial state;
3. A C N x {+ , —} U $ is the set o f actions;
4. E C A x (JV — {0 ,1 ,2 ...}) is the set o f events;
5.

is the set o f rules;
6. # C E x E is the conflict relation.

The signal set, , contains the wires in the circuit
specification. The state contains the initial value of each
signal in . The action set, , contains for each signal
in , a rising transition, , and a falling transition, ,
along with the sequencing event $, which is used to indicate
an action that does not cause a signal transition. The event
set, , contains actions paired with occurrence indices
(i.e.,). Pairing actions with occurrence indices allows
an arbitrary number of events to be created from each
action, including the sequencing action, . Sequencing
events are often used to express nondeterminism where a
signal may or may not transition. Although, formally the
definition requires that all sequencing events be of the form

where is an integer, sequencing events of the form
where is a string are used in this paper in order to make
the purpose of the sequencing event more clear. Rules
represent causality between events. Each rule, r, is of the
form where:

1. e = enabling event,
2. = enabled event,
3. = bounded timing constraint, and
4. b = a boolean function over the signals in N .

A rule is enabled if its enabling event has occurred and its
boolean function is true in the current state. There are two
possible semantics concerning the enabling of a rule. In
one semantics, referred to as non-disabling semantics, once
a rule becomes enabled, it cannot lose its enabling due to a
change in the state. In the other semantics, referred to as dis­
abling semantics, a rule can become enabled and then lose
its enabling. This can occur when another event fires, result­
ing in a state where the boolean function is no longer true.
A single specification can include rules with both types of
semantics. Non-disabling semantics are typically used to
specify environment behavior and disabling semantics are
typically used to specify logic gates. For the purposes of
verification, the disabling of a boolean expression on a dis­
abling rule is assumed to correspond to a failure. Disablings
of boolean guards are considered failures since they corre­
spond to a glitch on the input to a gate. A rule is satisfied if

2.1 T i m e d e v e n t / l e v e l s t r u c t u r e s

[30,30]
[~Gclk]

[30,30]
[~clk1]

1 [Gclk]
I [10,30]

clkl-

clk1+^.

clk2+w
| [clkl]
I [10,30]

clk2-

[10,20]
[~clk1]d

[20,50]
[~clk2]d

out1-

out2-

[a I b] d

[50, 70]

[out1 & c]d
[10,30]

Figure 1. A delayed-reset dom ino gate.

it has been at least / time units since it was enabled and ex­
pired if it has been at least u time units since it was enabled.
Excluding conflicts, an event cannot occur until every rule
enabling it is satisfied, and it must occur before every rule
enabling it has expired.

The conflict relation, , is used to model disjunctive be­
havior and choice. When two events and are in conflict
(denoted), this specifies that either can occur or

can occur, but not both. Taking the conflict relation into
account, if two rules have the same enabled event and con­
flicting enabling events, then only one of the two mutually
exclusive enabling events needs to occur to cause the en­
abled event. This models a form of disjunctive causality.
Choice is modeled when two rules have the same enabling
event and conflicting enabled events. In this case, only one
of the enabled events can occur. Every pairwise conflict
in the TEL structure must be specified, but this does not
cause a problem for the user since TEL structures are typi­
cally generated from a higher level input language, such as
VHDL [8]. If a specification is cyclic, then the TEL struc­
ture representing it is infinite. However, due to its repet­
itive nature, this infinite behavior can be described with a
finite model by adding an additional set of rules and con­
flicts which recursively define the infinite structure [7].

Figure 1 shows an example of a delayed-reset domino
gate. The gate computes the function (a V b) A c in two
stages. The first stage computes while is high,
and the next stage computes while is high.
Both gates precharge while their respective clocks are low.
Since neither n-stack has a “foot” transistor to ensure that
the path to ground is turned off during the precharge phase,
the timing of the circuit must guarantee that all the inputs to
the gate are low by the time the local clock for each stage
falls.

The TEL structure representation for the domino gate is
shown in Figure 2. It includes one rising and one falling
event for each signal. The specification indicates that there
is a global clock which rises 500 time units after it
falls and falls 500 time units after it rises. The inputs to
the gate, and , nondeterministically rise some time
after the clock rises. The nondeterminism is modeled us-

[70,100]

$c1

[500,500]

^40,100]

$b1

[500,500]

[40,50]

$a1

[(c)] Gclk-

Conflicts:
a+ # $a1
b+ # $b1
c+ # $c1
a- # $a2
b- # $b2
c- # $c2

$c2

[10,20]
I [(~a)]

$a2

Figure 2. TEL structure for the gate in Fig. 1

ing the conflict relation and sequencing events. Each rising
event on an input conflicts with a corresponding sequenc­
ing event. Since the rising event and the sequencing event
conflict, only one of them can occur. If the rising event
for a signal fires, the signal rises in that clock cycle, if the
sequencing event fires, it does not. A falling transition on
the global clock is followed by falling transitions on all of
the inputs, if they have risen. Again sequencing events and
conflicts are used to deal with the nondeterminism. If an
input signal rises on the rising edge of then a falling
event for that signal must occur when G clk falls. Other­
wise, a conflicting sequencing event fires, preventing the
falling event on the input signal from becoming enabled as
soon as that signal rises again. The G clk signal also con­
trols the firing time of the two local clocks, and .
The local clock rises between 10 and 30 time units af­
ter G clk rises and falls 30 time units after G clk falls. The
other local clock, and the two gate outputs, and

are specified in a similar fashion.
Although the TEL structure is readable for a small cir­

cuit, it would be difficult to specify a large macro at this
level. ATACS provides support for two higher level input
languages, VHDL and CSP. Designers can specify circuits
in these languages, and they are compiled into TEL struc­
tures using techniques described in [7, 8].

Once a TEL structure for the circuit is created, it can be
used by ATACS to find all of the circuit's possible timing
behaviors and check for timing failures. In the case of these
domino gates, ATACS is used to check for two types of fail­
ures. The first is that once a pulldown stack turns on, it
remains on until the dynamic node has switched. The other
is that all paths to ground in the n-stack are turned off be-

out1+clk1 clk2

out2+

Gclk+

b+c+ a+

fore the dynamic node begins to precharge. Both of these
conditions must be met in order for the circuit to be elec­
trically sound. If the first condition is not met, an incorrect
value for the dynamic node may be latched, and if the sec­
ond condition is not met the gate will draw a large short
circuit current. Either of these conditions would be quite
simple to check for statically, since the first can always be
met by increasing the time that the inputs are on, and the
second can always be met by decreasing the time that the
inputs are on. However the combination of the constraints is
more difficult to check. There is a range of pulse lengths for
each signal that allow the circuit to function correctly, and
the range for each signal is correlated to the pulse lengths
of many other signals.

Analysis with ATACS allows a designer to check if a set
of pulse length ranges works without considering the im­
plications of each range by hand or running a SPICE level
simulation. The first constraint, that inputs remain on long
enough for a gate to switch, is always checked automati­
cally as ATACS explores the state space of the system. AT-
ACS generates an error if the boolean expression associated
with any disabling rule can become true and then false again
before the signal transitions. This error is generated regard­
less of the timing bound on the rule involved. For example,
consider the TEL structure for the signal in Figure 2.
When is low, if the expression becomes true, AT-
ACS generates an error if it becomes false at any time be­
fore rises. The upper bound on the pulse lengths can
be checked by adding a simple constraint to the specifica­
tion which states that for each gate, the inputs must be low
at the time the clock falls. This constraint is the same for
each gate, so it can be generated automatically. Addition­
ally, any other timing constraint that a designer may wish to
check, such as setup and hold times, can also be specified
and verified.

After the transistor level design is completed, the best
and worst case propagation time through each gate is de­
rived from SPICE. These delays are computed as the time
difference between the midpoints of the rising edge of the
input change and the rising edge of the transitioning output.
After each gate has been characterized, ATACS can be used
to check that a circuit is electrically sound without running
multiple SPICE runs on the entire circuit to check all pos­
sible combinations of gate delay behavior. Since ATACS
does not do electrical analysis, it is necessary to add mar­
gin to the SPICE derived delays to ensure that electrically
marginal circuits do not verify. SPICE simulations show
that a 5% margin on the SPICE derived best and worst case
gate propagation times is enough to ensure that circuits that
verify in ATACS do not have electrical failures due to tim­
ing. When circuits are too large to be verified at the gate
level, conservative abstractions which preserve the property
that a circuit that is verified is electrically sound are used.

3 Timed state space exploration

Circuits specified as TEL structures are verified using
a depth-first search to find all of the states allowed by the
specification. The algorithm uses a number of sets to keep
track of the status of all of the rules in the specification
during the search. The set or, marked set, contains all
events whose enabling event has fired. The state vector, ,
contains the state of all the signals. From this information,
the algorithm can compute the set of enabled rules, ,
which includes only those members of whose boolean
expressions are satisfied by the state vector. In order to de­
termine which rules in can fire, timing information,
is needed. A timed state is defined to be TI. A
timed state contains all the information necessary to com­
pute the set of rules that can fire, .

3.1 Geometric regions

Timing information is represented with geometric re­
gions, which were first introduced in [9, 10]. In the geomet­
ric region approach, part of TI is defined to be a constraint
matrix M that specifies the maximum difference in time be­
tween the enabling times of all the rules in . The
row and column of the matrix contain the separations be­
tween the enabling times of each rule in and a dummy
rule . The enabling time of is defined to be uniquely
0. Each entry in the matrix contains the maximum
time difference between the enabling time of rule and the
enabling time of rule i. Since the enabling time of r® is
always zero, the maximum time difference between the en­
abling time of rule and the enabling time of rule () is
just the maximum time since was enabled. The maximum
time difference between the enabling time of and the en­
abling time of rule () is the negation of the minimum
time since was enabled. Note that only needs to con­
tain information on the timing of the rules that are currently
in R en, not on the whole set of rules. This constraint matrix
represents a convex |i?en| dimensional region. Each dimen­
sion corresponds to a rule and the firing times of the enabled
events for the rules can be anywhere within the space. The
result of timed state space exploration using geometric re­
gions is a region graph, where the nodes in the graph are
geometric regions and the edges are rules. Although the
TEL structure is infinite, its repetitive nature allows its be­
havior to be expressed as a cyclic region graph where each
geometric region represents an equivalence class defined by
the set of possible time relationships between enabled rules.

When an event fires and causes new rules to be added
to , the matrix needs to be updated to reflect the new
timing information. Information about the newly enabled
rules must be added to the constraint matrix and information
about rules that are no longer in must be removed. The

main operation used to do this is recanonicalization. Re-
canonicalization takes a matrix where some of the 's
are greater than max enabling enabling and
produces a matrix where all the 's have their maximum
allowed value. The assignment of the 's so that they all
have their maximum value is always unique, so the algo­
rithm can determine when a given region is equivalent to or
contained in a region that has been seen before. Recanon-
icalization is essentially the all pairs shortest path problem
and can be done in time with Floyd's algorithm.
When the algorithm is used for maintaining a region ma­
trix, it can be done incrementally in 0 (n 2) time, since most
entries in the matrix already have their canonical value [11].

In our version of the geometric region algorithm [12],
timing information is updated whenever a rule fires, and
rules are allowed to fire independently of events. This ap­
proach is a generalization of the geometric regions tech­
nique presented in [11], where timing information only
changes when an event fires. In our algorithm, a rule can
always fire when it is satisfied. The firing of a rule, how­
ever, does not always correspond to the firing of an actual
event. An event only fires when all of the rules enabling
it have fired. As rules fire, they are projected out of the
constraint matrix, and are removed from , and .
They are added to a new set of “fired” rules, i?/, which is
part of the timing information. Since they have fired, tim­
ing information about them is no longer needed, but the fact
that they have fired must be recorded. When a set of rules
sufficient to enable an event e are in R f , e can fire.

3.2 POSET timing: updating the state

A depth first search is used to find the timed state space
of a TEL structure. From a timed state, ,
the search algorithm calculates the set. It then chooses a
rule from to fire, places the rest of the rules in on the
stack, and calls a function that returns the timed state that
results from firing the rule. If the new timed state has been
seen before, the algorithm pops an unexplored timed state
off the stack and continues the search. If there are no more
unexplored states on the stack, the algorithm has completed.

In order to reduce the state explosion problem, an al­
gorithm based on partially ordered sets (POSETs) [13, 5]
is used. The POSET algorithm uses partially ordered sets
of events to create geometric regions rather than linear se­
quences. This prevents additional regions from being added
for different sequences of event firings that lead to the same
untimed state. POSET timing results in a compression of
the state space into fewer, larger geometric regions that,
taken together, contain the same region in space as the set
of regions generated by the standard geometric technique.
Regions that are generated by the standard geometric tech­
nique are only combined by the POSET technique if their

combination is convex. Therefore, all properties of the sys­
tem that can be verified with the standard geometric tech­
nique can be verified with the POSET algorithm.

The core of the POSET algorithm involves updating the
timed state when a new rule fires. The function to do this
must update all of the sets which indicate the status of rules
as well as the constraint matrix and a POSET matrix, which
contains time relationships between event firing times. The
function first adds the firing rule to the fired set, and re­
moves it from the marked set . It then checks if firing
this rule causes any event to fire. An event is fired if all of
the rules that enable it are either in R f or conflict with an­
other rule that is in . If an event can fire, the algorithm
updates the untimed state. If the change in the state vector
causes any rule to become disabled, either an error or warn­
ing is generated to indicate that this may be a verification
failure. Next, the algorithm removes any rules that enable
an event in conflict with the firing event from the constraint
matrix . It also removes any conflicting rules from
and , and it removes from any rules that enable the
firing event. Next, the algorithm adds any rules whose en­
abling event is the firing event to the marked set , and
adds any newly enabled rules to the constraint matrix. The
age differences between these rules and the previously ex­
isting rules are determined by the contents of the POSET
matrix, which needs to be updated to include the new event
firing. The procedure for updating the POSET matrix and
using the new POSET matrix to compute a new constraint
matrix is described in the next subsection. After the con­
straint matrix is updated, the fired rule is eliminated from
the matrix, and time is advanced. The recanonicalization
step then restricts the maximum ages to those that are al­
lowed given the age differences allowed by the POSET ma­
trix. Finally the algorithm returns a new timed state and an
updated POSET matrix.

3.3 POSET timing: updating the POSET

The method for updating the POSET matrix is based on
the concept of causality. An event that is enabled by mul­
tiple rules does not fire until all of these rules have fired.
The last rule to fire actually causes the event to fire, and
is referred to as the causal rule. More formally, a rule

is causal to event given a rule firing se­
quence , if the firing sequence does not en­
able and the firing sequence does enable . When
doing analysis with ER structures, if is the
causal rule to , then the firing time of the event controls
the firing time of event .

However, with TEL structures this is not always the case.
The event that controls the enabling time of a rule may be its
enabling event, or it may be some other event firing which
causes its boolean expression to become satisfied. To ana­

lyze TEL structures, the concept of a causal event to a rule
is also necessary. The causal event of a rule, , is the event
whose firing caused to become enabled. More formally,
an event is causal to a rule given an event firing se­
quence eo-..en if the rule r is not enabled after the sequence

has fired and is enabled after has fired.
For TEL structures, the causal event, , to an event is
the causal event of the causal rule of , .
Since controls the time that becomes enabled, and the
firing time of controls the firing time of , it is the firing
time of which determines when fires. Once fires, be­
tween / and u time units pass before e fires. Since ec is the
causal event, no other events are necessary in order for to
fire, and the upper bound on , , cannot be exceeded. For
example, consider the TEL structure for the signal
in Figure 2 when ou t2— has just fired. Suppose that o u ti
rises and then rises. In this case is causal to the event
out2+. Assuming that the rule does not become disabled,

must rise between 10 and 30 time units after rises.
For any given rule firing sequence, there is a well de­

fined causal event for each event firing, . The timing of
this causal event completely determines the firing time of

. Events that are concurrent with do not effect its firing
time. The purpose of the POSET matrix is to keep track of
the time separations between event firing times that are al­
lowed by the causality in the firing sequence without forcing
the timing behaviors represented by the geometric regions
to conform to the total order of the firing sequence. This
prevents a new region from being generated for every pos­
sible firing sequence leading to an untimed state and drasti­
cally reduces the size of the state space.

When a new event, , is added to the POSET matrix, the
time relationships between and the events already in the
POSET matrix must be calculated. These relationships de­
pend on the causality in the firing sequence being explored.
If an event e* in the POSET matrix is causal to / , the possi­
ble time relationships between and are completely de­
termined. The maximum time that can pass between e* and
f is u, and the minimum time is I. If an event e* is not causal
to , but is the enabling event of a rule that enables ,
then the minimum separation between e* and / is the lower
bound on , since the lower bounds on all rules enabling

must be met. Due to the level expressions, the event
may be necessary in order to fire / even if it is not the en­
abling event of a rule enabling . If this is the case, then
e* is and-context to / and must fire some amount of time
before . For example, if event is enabled by a rule with
the boolean expression , then the rising transitions on

and in the POSET matrix must occur a certain amount
of time before . A different restriction is necessary for
boolean expressions involving or expressions. If an event

is causal to an event through a rule with a boolean
expression , then then must have happened before

any rising events on , otherwise would have been causal.
Finally, if none of these conditions apply, the minimum and
maximum are set to infinity since nothing is known about
them. The matrix is then recanonicalized, which constrains
all of the separations down to the maximums allowed by the
known constraints. Finally, any events that are no longer
relevant to future behavior of the system are removed from
the matrix and it is recanonicalized. The result is a POSET
matrix that constrains the minimum and maximum separa­
tions between events that are allowed by the causality in
the firing sequence. This new POSET matrix is used to up­
date the constraint matrix, which contains the minimum and
maximum differences between the enabling times of rules.
A rule becomes enabled when its causal event fires. There­
fore, the firing time difference between their causal events
is used to determine the age difference between two rules.

For TEL structures with arbitrary boolean expressions,
determining whether events are and-context or or.context
could be quite complex. Therefore, if POSET timing is
used, the TEL structures are limited to those where each
boolean expression is either a single and term or a single
or term. In practice, on the delayed-reset domino circuits
this did not prove to be a significant limitation. If a more
complex boolean expression is required, the results from the
POSET algorithm are conservative. If an exact result with
arbitrary expressions is needed, then either the simpler, ge­
ometric algorithm for TEL structures [6] can be used, or the
specification can be transformed in a straightforward way
into one that contains only simple and and or expressions.

This algorithm extends the benefits of POSET timing to
specifications with level expressions. The additions that
are necessary to support levels do not add significantly to
computation time, since they simply consist of determin­
ing causality and context relationships. When TEL struc­
tures are limited to simple and or or terms, these relation­
ships can be determined by checks that occur when a rule
becomes enabled, and require very little computation time.
The reduction in state space that is generated by the POSET
algorithm allows circuits of significant size to be verified.

4 Circuit analysis

ATACS was used to analyze several circuits from the
guTS (gigahertz unit Test Site) integer microprocessor de­
signed at IBM’s Austin Research Laboratory [14]. The pur­
pose of this design is to demonstrate the performance gains
that can be achieved using aggressive circuit design. The ar­
chitecture is a fairly simple, forwarded, four-stage pipeline
which implements 96 instructions from the integer part of
the PowerPC instruction set. It is implemented in a
CMOS process available in 1997. The high-performance of
the circuit is a result of the circuit design, which is nearly
100 dynamic logic, and the microarchitecture, which allows

4.1 Delayed-reset domino logic
The circuits in the guTS processor are designed using

a dynamic circuit style known as delayed-reset domino
[16, 17]. A microprocessor designed in this style contains
a set of macros which operate synchronously. A delayed-
reset domino macro consists of a number of levels of dy­
namic gates, each of which receives inputs from preceding
layers. Standard domino gates use a common clock that acts
as a timing reference. In a delayed-reset design, each level
of dynamic gates receives its own, precisely timed clock,
which is generated by a buffer chain within the macro. The
local clocks travel through the logic along with the data, a
reset wave preceding each computation wave. This tech­
nique allows approximately one-half cycle for each gate to
reset and one-half cycle for each gate to evaluate. The cy­
cle time for a delayed-reset domino macro is set by adding
the necessary precharge and evaluate times for a single gate.
If multiple gates operate on the same precharge signal, cy­
cle time is set by adding the evaluate delay through all the
stages to the precharge delay. Due to the overlapping of the
precharge and evaluate phases, the delayed-reset domino
approach significantly increases the amount of dynamic-
logic that can be placed in a macro at a given clock fre­
quency.

The delayed-reset domino gates used in the guTS pro­
cessor lack the “foot” device that is included in a standard
domino gate. The purpose of this device is to turn off the
gates’ pulldown stack during the precharge phase. Remov­
ing this device allows the gate to switch 5% to 15% faster
. Alternatively, the gate can compute a more complex logic
function using the same transistor stack height if the “foot”
transistor is removed [16]. In order to remove this transistor,
it is necessary to ensure that the evaluate logic is not on dur­
ing the precharge phase. This is the case if all inputs to the
gate are guaranteed to be low during the precharge phase.
To meet this requirement, the inputs to the macro must be
pulsed. Combined with the requirement that the inputs to
each gate remain stable high long enough to switch the dy­
namic node, this results in a two sided timing verification
problem which is unusual for a synchronous design.

In the guTS processor, the macro level timing ver­
ification is done using extensive SPICE level circuit
simulation[18]. After the delay behavior of the macros is
characterized by designers in SPICE, it is incorporated into
a chip level timing model for chip level static timing veri­
fication. This was a successful approach for this processor
since it worked in first silicon. However, in order to en­
sure the correctness of the processor over all variations in
delay, large amounts of delay margin are included in the
design of the macros. If it is possible to formally verify
the macros, less margin is necessary to have confidence in

as much concurrency as possible [15].

Figure 3. The MLE circuit.

the processor’s correctness, which can result in higher per­
formance. The timing constraints that need to be checked
in the delayed reset domino macros are very similar to the
correctness constraints necessary for asynchronous circuits,
and the delayed reset domino circuits are quite similar to
asynchronous circuits. Therefore, an asynchronous timing
verification tool is a natural choice to be used for formal
verification of the macros.

4.2 Verification of gate level models

The asynchronous timing verification tool ATACS was
used to verify several of the macros from the guTS proces­
sor. The first circuit is a combined multiplexor and latch
(MLE). This circuit is small enough verify at the gate level,
and is shown in Figure 3. The goal with this circuit is to ver­
ify that the timing specification which is supplied with the
circuit indeed guarantees that the circuit works correctly.
The timing specification describes the timing requirements
that must be met by any circuit communicating with the
MLE. It is derived from SPICE level simulation and the
circuit designers knowledge of how the circuit works. The
timing specifications are also used as the basis for chip level
static timing analysis. In order to ensure that the chip-level
static timing analysis is modeling all timing behavior, each
macro needs to be formally verified in the environment de­
scribed by the timing specification. ATACS verifies the
MLE circuit in a few seconds on a 400MHz Pentium II.

The MLE circuit contains both static and dynamic gates.
The inputs to static gates are allowed to be unstable since
this does not immediately cause a failure. However, if a
glitch on the output of a static gate propagates to the input
of a dynamic gate, it can cause a failure. In the MLE circuit,
the gate driving the signal “output complement” is static.
In every cycle where “output complement” does not fall,
there is a glitch on its inputs. At the end of the precharge
phase, the signal “Output-” is always high and it feeds one
of the inputs to the static gate. When the clock rises, “out­
put complement” always begins to fall. However, the signal
“Output_” falls later in the clock cycle if the selected data

Clkl

Figure 4. PLA control.

value is high. When “Output.” falls, one of the inputs to
the static gate is driven low and “output complement” rises
again, producing a glitch. ATACS detects this glitch and de­
termines that it cannot propagate to the output of the circuit.

The next circuit is a dynamic PLA that is used in the pro­
cessor’s control circuitry. Dynamic PLAs are easy to gen­
erate automatically and have predictable area and delay. In
order to make the PLAs fast, they are controlled using self­
resetting circuitry. An example of the control circuitry is
shown in Figure 4. The circuit uses a very aggressive tech­
nique to determine when its inputs are valid. The inputs are
presented to the circuit dual-rail. When the inputs are valid
the sensor transistors are turned on. These transistors are all
connected to a single node, , which has been precharged
high. The sensor transistors are sized so that one of them
must be turned on for each input in order for to dis­
charge quickly. However, if one input arrives much earlier
than the rest, eventually its single sensor transistor can dis­
charge , erroneously causing the PLA to begin evaluating
early. This completion detection circuit is highly timing de­
pendent and only works if the inputs are guaranteed to arrive
within a narrow time interval. After the falling edge of
propagates through four inverters, the node falls. When
this node falls, transistor is turned on which raises node
n l, resetting the completion detection circuit. The line “and
plane control” is used to gate transistors which determine if
the and-plane of the PLA is in precharge or evaluate mode.
The line “propagate control” is used in a similar manner to
control whether the output of the and-plane can propagate to
the or-plane of the PLA, which is not shown. This control
circuitry is essentially asynchronous. Asynchronous, self­
resetting circuits are difficult for static tools to handle since
they often assume that a transition on an input will cause
only a single transition on an output. ATACS is able to ver­
ify the circuit using the designed delays in a few seconds.

4.3 Verification of abstracted models

The next circuit is a compare unit for two 64 bit quanti­
ties. It consists of 3 stages of delayed-reset domino logic.

Designed Celldelay = Evaluate:129 - 139, Precharge:149-153

Figure 5. Model for the com pare unit.

The logic in each stage is exactly the same. A stage con­
sists of a set of blocks that produce an output which indi­
cates whether its two four bit inputs are equal. To do a 64
bit compare, a tree structure is used where the first stage
has 16 logic blocks, the second stage has 4 logic blocks,
and the final stage has 1 logic block. Unlike the previous
two examples, this circuit is too large for ATACS to verify
it using a representation derived directly from its transistor
level schematic. However, with a small amount of abstrac­
tion, it can be verified quickly. It is not necessary to model
each of the 64 bits entering the compare unit. Each block in
the first level of logic is modeled as a gate that waits for a
single input and produces its output some variable amount
of time later. Variability in input signal arrival times is ac­
counted for by putting an independent delay range on the
arrival time of the abstracted input signal for each of the
blocks in the first level of logic. When this signal rises in
the abstracted model, it is equivalent to all eight input bits
to a block becoming stable in the actual circuit. Addition­
ally, since the timing behavior of each block is the same, the
number of input blocks can be reduced from 16 to 8 without
effecting the timing behavior of the circuit. Figure 5 shows
the structure of the model. Each block is represented as a
TEL structure which raises its output signal 129 to 139 time
units after the block receives all of its inputs, and lowers its
output 149 to 153 time units after its local clock falls. A
global clock which controls the transition times of the local
clocks is also modeled but not shown. It takes less than five
seconds to explore the state space of this model using the
POSET state space algorithm on a 400MHz Pentium II. For
comparison the model is also analyzed using the standard,
geometric region based method [9, 19, 10]. This method re­
quires 196 seconds to analyze the model. The iteration time
provided by the POSET algorithm makes it reasonable to
iteratively adjust the Celldelay values, global clock speed,
and local clock timings to determine the working ranges of
the circuit under a variety of assumptions. The circuit veri­
fies for global clock cycles up to 100ps less than the clock
cycle necessary for correct operation in the Gigahertz pro­
cessor.

Since state space exploration is an exponential problem,

large specifications can only be verified at a high level of
abstraction. This is illustrated by the verification of the
64-bit adder portion of the Multifunction Fixed Point Unit
(MFXU). This unit computes the results of the add, subtract,
and compare instructions for the processor. The core of
the unit is the 64-bit parallel prefix adder design presented
in [15], which is based on the algorithm described in [20].
The MFXU adder contains five stages of delayed reset
domino logic. The first stage contains a true/complement
mux, stages two through four compute the propagate and
generate signals for the adder, and the fifth stage imple­
ments a large mux which merges many different signals.
Each block contains a few domino gates, which can vary
in delay. Attempts to verify this circuit at the gate level
quickly use more than half of a gigabyte of memory and do
not complete. However, a conservative abstraction of the
MFXU verifies in ATACS using the POSET algorithm in
about 2 minutes. The verification does not complete using
the geometric algorithm.

The structure of the MFXU abstraction is shown in Fig­
ure 6. There are two steps involved in creating the conser­
vative abstraction of the MFXU. The first is to reduce the
complexity of each block by lumping the delay ranges for
all of the different gates into one delay range which repre­
sents the minimum and maximum time difference between
the block receiving all of its inputs and generating all of its
outputs. For example, suppose a block contains two domino
gates di, which takes 100ps to evaluate and d2 which takes
150ps to evaluate. It is conservative to make a model for
the block where the minimum evaluate time for the block
is 100ps and the maximum evaluate time for the block is
150ps. This abstraction does not capture the gate level be­
havior that one output of the block is available after 100ps
and the other is available after 150ps, but if a circuit verifies
using the abstraction, its actual behavior verifies also. An
abstraction like this is made for the precharge phase and the
evaluate phase of each block. Then the number of blocks
is decreased. The goal is to reduce the number of blocks,

without hiding any interesting block interactions. This is
done by analyzing a 32-bit wide slice of the design. Since
each block operates on four bits of input, this corresponds
to a model that is eight blocks wide at its input. This model
is large enough to include all of the types of interblock rela­
tionships of the larger design, and is small enough to verify
quickly.

This is done by starting at the last stage and working
toward the first. Every block in the last stage is included.
Then, for every block in the last stage, at least two instances
of each type of block that provides inputs to the last stage
are included in the fourth stage. In this case, four instances
of the row3gen block which feeds sumout block in the fifth
stage are included. Only one instance of the halfsum block
is included since there is only one halfsum block in the com­
plete circuit. This process is then repeated for the fourth
through first stages. The resulting model represents a con­
servative model of the possible timing relationships in the
circuit, and is small enough to verify quickly.

The circuit, abstracted in this way, verifies at its intended
clock speed. Therefore, any gate-level timing relationships
that are missed by the abstraction are not necessary in order
for the circuit to run at the specified speed. If this is not
the case, then the blocks on the failure path can be spec­
ified in more detail. Although this increases verification
time, it should not make the problem intractable since the
additional detail is limited to a few blocks. Even the ab­
stracted version of this circuit is quite large, it has complex
timing relationships and which provide many possibilities
for error. Formal verification gives confidence that all of the
timing behaviors have been considered. Currently, ATACS
does not have an automated method for generating circuit
abstractions, and the abstraction described for this example
is done manually. It may be possible to adapt techniques
from [21] to develop an automated method for abstracting
blocks of domino gates.

The final circuit is an arithmetic circuit used in the inte­
ger execution unit. It is of moderate complexity and there­
fore can be used to test the accuracy of an abstracted model
vs. a gate level model. The gate level model is still some­
what abstract in that it does not include the full 64-bit dat­

apath, but each instance of a block is described at the gate
level. The results on this macro indicate that the limiting
factor in clock speed is the time that the inputs arrive to the
macro, not gate to gate interactions inside the macro. Be­
cause of this, the maximum clock speeds allowed by the
abstracted model and the gate level model are the same. In
order for a gate level model to allow a circuit to verify at a
higher clock speed than an abstracted model there need to
be instances of fast gates in one stage feeding slow gates in
another block in the next stage. Such instances do not occur
in this example.

5 Conclusions and future work

ATACS can be very effective in verifying delayed-reset
domino circuits. TEL structures are well-suited to specify­
ing domino gates at both the gate level and at a higher level
of abstraction. Since ATACS is designed for asynchronous
circuits, it is very flexible and it can be used to verify many
different circuit styles by varying the constraints that are
checked. Since ATACS can verify circuit level timing spec­
ifications, less margin is necessary in each circuit to ensure
that the circuit works correctly, which can result in higher
performance. ATACS does a complete state space explo­
ration. Therefore, its complexity is exponential and it is not
practical to verify large circuits at the gate level. However,
for most circuits, a higher level of abstraction is sufficient
to verify that that the circuit can run at the desired speed.
If this is not the case, it is possible to locally specify more
detail on paths that fail without causing a state explosion.
Most importantly, this work shows how tools developed for
asynchronous circuits can be of great use to synchronous
designers when they choose aggressive circuit styles.

Although the results in this paper are somewhat prelim­
inary, resulting from five weeks of work at IBM, they are
very promising. In order to make this method practical for
circuit designers, more work is needed to develop a more
automated method of abstracting circuits, and to develop
a method of verifying circuits hierarchically. Additionally,
all of the circuits described in this paper are completed and
no failures are found by ATACS when designed delays are
used. It would be interesting to study how ATACS can help
designers determine which delay ranges result in correct cir­
cuits closer to the beginning of the design cycle, as well as
how it can be used on early versions of circuits to find actual
failures. Finally, we would like to explore how the synthe­
sis capabilities of ATACS can be used to help automate the
design of delayed-reset domino and self-resetting circuits.

6 Acknowledgments

We would like to thank all of the guTS design team at
IBM, especially Dr. Kevin Nowka, for explaining the oper­

ation of the circuits used in guTS.

References

[1] D. Van Campenhout, T. Mudge, and K. Sakallah. Timing verifica­
tion of sequential domino circuits. In International Conference on
Computer-Aided Design, November 1996.

[2] E. J. Shriver, D. H. Hall, N. Nassif, N.E. Raham, N.L. Rethman,
G. Watt, and J.A. Farrell. Timing verification of the 21254: A
600mhz full-custom microprocessor. In International Conference on
Computer Design, pages 96-103, October 1998.

[3] V. Narayanan, B. Chappel, and B. Fleischer. Static timing analysis
for self-resetting circuits. In International Conference on Computer-
Aided Design, November 1996.

[4] Henrik Hulgaard. Timing Analysis and Verification o f Timed Asyn­
chronous Circuits. PhD thesis, Department of Computer Science,
University of Washington, 1995.

[5] W. Belluomini and C.J. Myers. Verification of timed systems using
POSETs. In International Conference on Computer Aided Verifica­
tion. Springer-Verlag, 1998.

[6] W. Belluomini and C. J. Myers. Timed event/level structures. In
collection of papers from TAU’97.

[7] C. J. Myers. Computer-Aided Synthesis and Verification o f Gate-
Level Timed Circuits. PhD thesis, Stanford University, 1995.

[8] Hao Zheng. Specification and compilation of timed systems. Mas­
ter’s thesis, University of Utah, 1998.

[9] D. L. Dill. Timing assumptions and verification of finite-state con­
current systems. In Proceedings o f the Workshop on Automatic Veri­
fication Methods fo r Finite-State Systems, 1989.

[10] B. Berthomieu and M. Diaz. Modeling and verification of time de­
pendent systems using time petri nets. IEEE Transactions on Soft­
ware Engineering, 17(3), March 1991.

[11] T. G. Rokicki. Representing and Modeling Circuits. PhD thesis,
Stanford University, 1993.

[12] Wendy Belluomini and Chris J. Myers. Efficient timing analysis al­
gorithms for timed state space exploration. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, April 1997.

[13] T. G. Rokicki and C. J. Myers. Automatic verificaton of timed cir­
cuits. In International Conference on Computer-Aided Verification,
pages 468-480. Springer-Verlag, 1994.

[14] H. P. Hofstee, S. H. Dhong, D. Meltzer, K. J. Nowka, J. A. Silberman,
J. L. Burns, S. D. Posluszny, and O. Takahashi. Designing for a
Gigahertz. IEEE MICRO, May-June 1998.

[15] J. Silberman et al. A 1.0 GHz single issue 64-bit PowerPC integer
processor. IEEE Journal o f Solid-State Circuits, page accepted for
publication, November 1998.

[16] K. Nowka, T. Galambos, and S. Dhong. Circuit design techniques
for a Gigahertz integer microprocessor. In International Conference
on Computer Design, October 1998.

[17] Terry I. Chappell, Barbara A. Chappell, Stanley E. Schuster, J.W.
Allan, S.P. Klepner, R.V. Joshi, and R.L. Franch. A 2-ns cycle, 3.8-
ns access 512-kb CMOS ECL SRAM with a fully pipelined archi­
tecture. IEEE Journal o f Solid-State Circuits, 26(11):1577-1585,
November 1991.

[18] S. Posluszny et al. Design methodology for a 1.0 GHz microproces­
sor. In International Conference on Computer Design, 1998.

[19] H. R. Lewis. Finite-state analysis of asynchronous circuits with
bounded temporal uncertainty. Technical report, Harvard University,
July 1989.

[20] P.M. Kogge and H.S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence relations. IEEE Transactions
on Computers, pages 786-793, August 1973.

[21] Y. Kukimoto and R. K. Brayton. Delay characterization of combina­
tional modules. In International Workshop on Logic Synthesis, 1998.

