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Adaptive Parallel-Cascade Truncated Volterra Filters
Thomas M. Panicker, V. John M athews, Senior Member ,  IEEE,  and Giovanni L. Sicuranza, Senior Member ,  IEEE

Abstract—This paper studies adaptive truncated Volterra filters 
employing parallel-cascade structures. Parallel-cascade realiza­
tions implement higher order Volterra systems as a parallel con­
nection of multiplicative combinations of lower order truncated 
Volterra systems. A normalized LMS adaptive filter is developed, 
and its performance capabilities are evaluated using a series of 
simulation experiments. The experimental results indicate that 
the normalized LMS adaptive parallel-cascade Volterra filter has 
superior convergence properties over several competing struc­
tures. This paper also includes an experiment that demonstrates 
the capability of the parallel-cascade adaptive system to reduce 
its implementation complexity by using fewer than the maximum 
number of branches required for the most general realization of 
the system.

I. INTRODUCTION

THE OBJECTIVE of this paper is to present stochastic gra­
dient adaptive Volterra filters employing parallel-cascade 

realizations of the system model. Parallel-cascade realizations 
implement higher order Volterra systems as a parallel connec­
tion of multiplicative combinations of lower order truncated 
Volterra systems. Such algorithms are attractive because of 
the modularity of the parallel-cascade realizations as well as 
the capability of such realizations to approximate nonlinear 
systems efficiently using a reduced number of branches.

Least-mean-square (LMS) adaptive Volterra filters employ­
ing direct-form realizations have become popular in recent 
years [1]-[3]. Adaptive parallel-cascade filters for quadratic 
system models were presented in [4] and [5]. The structure 
of [4 ] is not constrained to result in a unique solution to the 
estimation problem. Consequently, this filter exhibits relatively 
slow convergence behavior. The work in [5] constrains the 
filter structure to provide convergence to a unique solution. 
However, this adaptive filter requires appropriate training to 
select its initial settings. Our method is different from the 
previous works in many ways. As far as we are aware of, 
this is the first time that an adaptive parallel-cascade Volterra 
filter has been developed for nonlinearity orders larger than 
two. The adaptive filter presented in this paper is capable of 
converging to a unique solution and does not require the use of 
a training signal to initialize the algorithm. Finally, we derive 
a normalized LMS (NLMS) adaptive parallel-cascade Volterra 
filter. This algorithm is somewhat different from traditional
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Fig. 1. Parallel-cascade realization of a homogeneous pth-order Volterra 
kernel. Each block represents a homogeneous Volterra system of the order 
shown within.

normalized LMS adaptive filters [6 ] - [8 ] and offers significant 
performance advantages over previously available algorithms.

The rest of the paper is organized as follows. The parallel- 
cascade realizations of a homogeneous truncated Volterra 
system is discussed in Section II. An LMS adaptive filter for 
truncated Volterra systems in parallel-cascade form is derived 
in Section III. The NLMS adaptive filter for parallel-cascade 
realizations is derived in Section IV. Section V contains the 
results of several simulation experiments. Finally, concluding 
remarks are made in Section VI.

II. Parallel-Cascade Realization 
of Truncated Volterra Systems

The output of a homogeneous and causal pth-order Volterra 
system with TV-sample memory is related to its input as [9], 
[10]

JL1 L m E  / l , m 2,

X x ( n  — r r i i ) x (n  — ■ ■ x ( n  — m p) ( 1)

where hp (ni i ,  m 2, . . . ,  m p ) denotes the coefficients of the 
pth-order kernel. In the above equation, we have explicitly 
made use of the invariance of the coefficients with respect 
to permutations of their indices m i, m 2, . . . ,  m p . A pth-order 
homogeneous Volterra system can be realized using /(h-order 
and (p—/jlh-order Volterra systems as in Fig. 1. The results are
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applicable to any p  and I <  P, and each component can be fur­
ther decomposed using lower order components. Furthermore, 
the results can be easily extended to inhomogeneous Volterra 
systems by considering their homogeneous components of 
each order individually. The input-output relationship in (1) 
can be written compactly using matrix notation as

yiyi )  =  X jy^(yi)HAr;/;j,_ /X Ar;j)_/(yi) (2)

where is a matrix of dimension ( A+pi1_1) x
( x+f'̂  1 j elements in which the coefficients in (1) are 
arranged in some orderly manner. The column vector X Vj,(nj 
has ( A+p- 1 ) elements and contains all possible pth-order 
product signals of the form x ( n - r r i i ) x ( n - m 2 ) ■ ■ ■ x( n—mp), 
where 0 < mi < m 2 < • • • < mp < N  — 1. Let x(n — m i) 
x(n — m2) ■ ■ ■ x(n — nu) be the ith element of X Ar;/(n), and 
let x(n — ki )x(n — k2) ■ ■ ■ x(n — kp_i) be the jth element 
of X AriP_,(n), where 0 < k\ < k2 < ■ ■ ■ < kp- i  < N  — 1. 
Then, the ( i , j )th element of the coefficient matrix H Ar;/;J,_/ 
scales x{n — mi)x{n — m2) • • -x(n — mi)x{n — ki )x(n — 
k2)- - -x (n  -  kp—i) in (1). Since H Ar;Pl;P2 contains more 
elements than there are independent coefficients, several 
entries of the coefficient matrix are zero. Let the rank of 
HartitP- i  be r. Then, it is well known that we can express 

/ as [11]

H N,i,P- i  =  Y ^ a i V i W j  (3)

using singular value decomposition. In the above equation, 
<ii s are the nonzero singular values of H Ar,i,p~u  and U ,’s 
and V / s  are the left and right singular vectors, respectively, 
of the matrix. Substituting (3) in (2), we get

y ( n )  = j 2 a t [ X TNil( n ) V t ] [ V f X Ar,p_,(n)]

=  (n ) yp - i , i  (n ) (4)

where we have defined y i ti (n ) as the output of a homogeneous 
/th-order Volterra system given by

yi , i (n)  =  X ^ ,( n ) U i .  (5)

The signal yP- i . , ( n )  is also defined in a similar manner. From 
the above analysis, it is clear that the left and right singular 
vectors define the coefficients of the lower order components 
used in the decomposition shown in Fig. 1. This structure is 
applicable for any I <  p.  Each lower order block can be 
further decomposed into realizations employing even lower 
order components.

A. Some Special  Decomposi t i ons

Under some mild conditions, we can express the coefficient 
matrix using the LU decomposition in which H  y / j, / is 
expressed as

(6)

where the leading (i  -  1) elements of L, and U , are zero, 
and the /th element of L, is one. Such a decomposition is 
possible if all the leading principal submatrices of 
are nonsingular [11]. A realization of the Volterra filter us­
ing the above decomposition results in a small amount of 
computational savings.

When I =  p  — I =  p / 2 ,  it is possible to arrange the 
coefficients of the filter such that H Ar p/ 2,p/2  is a symmetric 
matrix. It is then possible to obtain an L DLT  decomposition
[11] of the form

^-N,p/2,p/2 =  ^  . (7)

Substituting this expression into (2) and manipulating the 
results as before, we can see that the pth-order Volterra filter 
can be exactly realized as a parallel-cascade structure in which 
each branch contains a (p/2)th-order Volterra filter whose 
output is squared and weighted by a constant multiplier tii, 
i.e.,

y { n ) =  Y ^ a i { yP/2, i {n ) ) 2 (8)

where

yP/ 2 , i (n)  =  ^-N,p/2(n )L i- (9)

In most situations, the coefficient vector L, can be constrained 
to have zero value for its (i — 1 ) leading elements and one for 
its ith element [11].

III. The LMS Adaptive 
Parallel-Cascade Volterra F ilter

Consider the problem of estimating a desired response signal 
d (n )  as the output of a homogeneous pth-order adaptive 
Volterra system employing the parallel-cascade structure with 
r  branches. The output of the adaptive filter may be written as

d{ n ) =  T ,  <7i{n)yi , i {n)yp - i , i { n )

=  £  &i(n)  [ x £ / n ) U i ( n ) ]  [V f  (n )X A, p_ ,(n)] (10)

where we have explicitly shown the time dependence of the 
parameters ^ ( n ) ,  U i (n ) ,  and V i ( n )  in the above expression. 
Let

e (n )  =  d (n )  — d (n )  ( 11)

denote the estimation error at time n.  The coefficient update 
strategy for the LMS adaptive parallel-cascade Volterra filter 
can be derived as

"•(" + 1) = "•<")- f a ^ j e2(")
=  <7i(n) +  n i e ( n ) y i ti ( n ) y p- i ti (n )  ( 12)

V , ( n  +  l ) = U , ( n ) - f d ^ e i ( „ )

=  U  i (n )  +  i i 2 e ( n )a i (n ) yp - i >i(n)^S.N>i (n)  (13)
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and
n

v-(» + D = v . ( » ) - f  a v lw c2<”)

In the above equations, the step sizes h i ,  /j,2 , and /H3 are small 
positive constants that control the speed of convergence and 
the steady-state characteristics of the adaptive filter.

When the adaptive filter employs the LU decomposition of 
the coefficient matrix as given by (6 ), the coefficient update 
equations may be modified as

L i ( n  +  1) =  L j(n ) +  Hi e{ n )y p - i ^ { n ) ^ N ^{n)  (15)

and

U  i ( n  +  1) =  U j(n ) +  /j,2e (n ) y i ti( n ) X NtP_ i ( n )  (16)

where //1 and //_> are positive step size values for the update 
equations. Recall from Section II-A that the first (i  -  1) 
elements of the coefficient vectors L i ( n )  and U ,(n )  are, by 
definition, zero and that the ith element of L ,(n ) is one, as 
shown by their structure

L j(n ) =  [0 ••• 0 1 k , i+ i ( n )  ■■■ h,M (n)]T

i =  l , 2 , . . . , r  (17)

and

U i(n ) =  [0 ••• 0  u it i (n)  u i j i+1(n)  ••• u i tN(n)]T

i =  l , 2 , . . . , r  (18)

respectively. In the above definitions, the parameters M  =  

( A+/ _ 1 ) 311(1 N  =  represent the number of
coefficients in the /(h-order system and ( p -  /)th-order system, 
respectively. It is important to recognize that the zero and 
unity coefficients of (17) and (18) are not updated during each 
iteration. However, the matrix representation in (15) and (16) 
does not explicitly show this fact.

Similarly, we can derive the coefficient update strategy for 
realizations employing the LDLT decomposition of (7) as

<Ji(n +  1) =  <7i(n) +  IHe(n )y l / 2 , i (n ) (19)

and

L j(n  +  1 ) =  L j(n ) +  H2 e( n )a i ( n ) yp/ 2ti ( n ) X NtP/ 2(n)  (2 0 )

where L j(n ) has the same form given by (17). Once again, 
Hi and (j,2 are the convergence parameters of the adaptive 
filter, and we do not update the first i  entries of L ,(n ). 
The above derivations are similar to that of [4] in which an 
adaptive parallel-cascade quadratic filter was derived. For the 
quadratic estimation problem, a bound on the step size for 
convergence was derived in [4]. Because of the nonlinearities 
in the system model, derivation of the stability bounds for 
the step sizes is a very difficult problem. In the next section, 
we derive a normalized LMS adaptation algorithm for the 
parallel-cascade realization. Experimental results have shown 
that this system has significant performance advantage over 
the algorithm derived in this section. Consequently, we do 
not attempt a rigorous stability analysis of the LMS adaptive

parallel-cascade Volterra filters in this paper. A heuristic bound 
on the step size of the normalized LMS adaptive parallel- 
cascade filter is derived in the next section.

IV. The Normalized LMS Adaptive 
Parallel-Cascade Volterra F ilter

One of the difficulties with the conventional LMS adaptive 
filter is that its performance depends on the input signal power. 
The normalized LMS adaptive filter is employed to provide 
robustness to variations in the input signal strength. Further­
more, the step-size selection is, in general, a simpler task 
with the normalized LMS adaptive filter than the conventional 
LMS adaptive filters. We derive a normalized LMS adaptive 
parallel-cascade truncated Volterra filter in this section. The 
derivation follows the work in [6]. In order to obtain an 
easily realizable adaptive filter, we resort to several simplifying 
approximations during the derivation.

The principle behind the derivation of the normalized LMS 
adaptive parallel-cascade filter may be described as follows. 
At each iteration, we solve for

d (n ) =  +  Sa i {n ) )  [X ^ ;,(n )(U i(n ) +  <5U;(n))]

x [(v ;(n ) +  6 V i ( n ) ) T X NtP_ i ( n ) \  (2 1 )

where Sai (n) ,  SXJi(n),  and S V i ( n )  are the increments in the 
coefficient values that provide the exact solution to the above 
equation. Since there are an infinite number of solutions for 
the above problem, we seek the solution that minimizes the 
magnitude of the increments defined as

subject to the equality in (21). Such a solution may, in general, 
result in erratic coefficient behavior because of the presence 
of the noise in the desired response signal. Consequently, the 
normalized LMS adaptive parallel-cascade filter updates the 
coefficients by moving a fraction of the distance suggested 
by the solution to the optimization problem. Thus, the update 
equations are given by

<Ji(n +  1) =  <Ji{n) +  fj,6<ji(n) (23)

and

V i(n  +  1) =  V j(n ) +  / j ,SVi(n)  (25)

where h  is a small positive constant. Because the step sizes 
in this algorithm correspond to a fraction of the difference 
between the current step size and the solution to the optimiza­
tion problem, it is not necessary to use three different step 
sizes for updating the three components of the adaptive filter. 
A heuristic bound for the step size is provided later in this 
section. The constrained optimization problem can be solved 
using the method of Lagrange multipliers. We define a scalar
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cost function

d (n ) -  Y ^  +  [X Ar/ n )(U ;(n )

+  ^U j(n))] [(V i(n) +  ^ V i(n ))TX A>_,(n)]

dS a i ( n )

and
d

■J{n)

as well as
d

J ( n )

for i =  1 , r ,  where

yi , i (n)  =  X ^ ,(n ) [U i(n )  +  <5U;(n)]

and

<Ji(n ) .U i (  n),  and V ,(h ) , respectively. Multiplying (27) with 
y i ti ( n ) y p - i ti(n)  and equating the result to zero, we get

2Sa i (n ) y i >i ( n ) y p - i >i (n )  =  A y l i ( n ) y p_ lti(n) .  (32)

In order to proceed, we add 2 a i (n ) y i /i ( n ) y p_ i /i (n)  to both 
sides of the above equation and add the result over all i. 
These operations result in

(26)

where A is a Lagrange multiplier. Taking the partial derivative 
of the above expression with respect to Sa i(n ) ,  S U ;(//.), and 
S V i ( n ) ,  respectively, we get

d
- J { n )  =  2Sa i (n )  -  \ y i , i ( n ) y p - i , i ( n )  (27)

d S V i ( n ) '
=  2 S U i ( n )  -  \(<Ti(n) +  S a i { n ) ) yp - lti{ n ) l { N j { n )  (28)

Y  2 [ ° i {n )  +  8 a i {n ) ] y i ti ( n ) y p - i ti(n)

=  ^  [ 2a i {n ) y i t i {n ) yp - i t i {n)  +  Ay l i { n ) y p_ lA{ n ) \ . (33)

Since the left-hand side uses the solution to the constrained 
optimization problem for all variables, it is identical to 2 d(n) ,  
which is twice the desired response signal. By using the 
approximation that 8a i (n ) ,  S U i ( n ) ,  and S V i ( n )  have small 
magnitudes, we can approximate m_, (n) and yP-i_, (nj on the 
right-hand side of (33) with y i ti (n )  and yp - i ti(n) ,  respectively. 
This approximation and the earlier observation about the left- 
hand side of (33) lead to

d S V i (n )
=  2 S V i ( n )  -  A((jj(n) +  6<Ti ( n ) ) y i ti ( n ) ' X NtP_ i ( n )  (29)

2d(n) = 2 Y ai(n )yi,i(n)yP-i,i(n ) + A Y  yl i ( n )yl - i  ,i(n ) 

=  2d(n) +  A Y vl i ^ yl - i , i ^ -  (34)

(30)

(31)

Subtracting 2d (n )  from both sides of the above equation, we
get

(35)

are the output signals at the ith branch when the coefficient 
vectors are the solution to the optimization problem.

Solving for the unknown variables after setting (27)-(29) 
to zero requires the simultaneous solution for (3r  +  1 ) sets of 
unknowns from (3r +  1) sets of coupled nonlinear equations. 
In the following, we pursue an approximate solution to the 
optimization problem. The approximations employed are valid 
during the final stages of adaptation when the coefficients 
are close to the optimal solution. They also assume that the 
level of measurement noise in the desired response signal 
and the level of nonstationarity in the operating environment 
are relatively low. Even though the approximations employed 
can be rigorously justified only for the situations described 
above, our experience is that the resulting adaptive filter 
exhibits good convergence properties under a variety of noise 
conditions. Results of experiments illustrating this observation 
are included in Section V-A.

A. An Approximate Solution to the Constrained  
Optimizat ion Problem

To find an approximate solution, we substitute (30) and 
(31) in (27)-(29) and then use the simplification that 6a i (n ) ,  
6XJi(n),  and 6 V i ( n )  are small so that we can approximate 
cTi(n) +  6<Ji(n), U i ( n )  +  6XJi(n),  and V j(n ) +  S V i ( n )  
on the right-hand sides of the resulting equations with

Similarly, equating (28) to zero after multiplying both sides
by [ai {n)  +  Sa i (n) ]yp_ l ,i ( n ) X ^ T̂ (n) ,  we get

+  S V i ( n ) - V i (n)]

=  A[(jj(n) +  S a i (n ) ]2yp_ lA( n ) \ \ X N, i(n)\ \2 . (36)

Using approximations similar to those employed for deriving 
(35), we arrive at

2 e(n) =  m N M \ \ 2 Y a ^ n ) y l - i M -  (37) 

Similarly, manipulation of (29) leads to

2 e(n) =  \ \ \yLNtP- i ( n ) \ \ 2 Y ° K n ) v l i { n )- (38)

We can obtain an expression for A from (35), (37), and (38) as

l )

where

P a (n)  +  P u (n)  +  P v (n)

P M )  =  Y y t i ^ yp - i A n ')

(39)

(40)
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and

P u {n)  =  ||X Ar / n ) | | 2 ^ a 2 (n )y 2_ M(n) (41)

as well as

P v {n)  =  ||X Ar;P_;(n) (n ) v i A n )•

and

<Ti(n +  1) =  <Tj(n) +  

U  i ( n  +  1) =  U  i (n )  +

P a (n)  +  P u (n)  + P v ( n )

,i(n ) y p - i , i ( n ) ’

3/li

P ^ n )  +  P u(n) +  P v (n)
X e(n)<7i(n)yp - i ti(n)~KNti(n)

and, in addition

V i(n  +  1 ) =  V i(n ) +
3/u.

P 7(n) + P u (n) +  P„(n) 
x e ( n ) a i ( n ) y l>i(n)X .N>p^ l ( n ) .

table I
Normalized LMS Adaptive 

Parallel-Cascade Truncated Volterra Filter

(42)

Under the approximations we have employed, P a (n) ,  P u (n) ,  
and P v (n)  are close to each other. A solution for A using all 
three quantities as in (39) provides a smoother approximation 
to the optimal solution. We have included the time index n  for 
the Lagrangian multiplier in (39) since the solution changes 
with time. We can solve for Sai (n ) ,  6XJi(n),  and S V i ( n )  by 
substituting for A in (27)-(29) after equating them to zero. The 
normalized LMS adaptive parallel-cascade filter is obtained by 
substituting the solutions so obtained in the update equations 
(23)-(25), respectively. The relevant equations are

3 h

(43)

(44)

(45)

The normalization factor contains higher order powers of the 
input signal and, therefore, often has very large statistical 
variations associated with it. In order to mitigate the ill 
effects such large dynamics have on the update equation, the 
normalization factor P a (n)  +  P u ( n ) +  P v ( n ) may be replaced 
by a smoothed version obtained using a single-pole lowpass 
filter as

£(n) =  a £ ( n  -  1) +  (1 -  a ) [ P a <(a) +  P u (n)  +  P v (n) \  (46)

where a  is a constant between 0  and 1 and is usually very 
close to 1. In addition to the smoothing, using £(n) also 
has the effect of making £(n) and £(n +  1 ) closer to each 
other than they are to their unsmoothed counterpart. Recall 
that the approximations employed in solving the constrained 
optimization problem assumes that the normalization factors 
are close to each other at successive times. The smoothed 
normalization factor £(n) may be initialized using a posi­
tive constant. However, we initialized £(n) as zero in all 
the experiments in Section V that involved the normalized 
parallel-cascade structure. The complete algorithm is tabulated 
in Table I. The computational complexity of each branch 
corresponds to 0 ( N l) multiplications per iteration, where we 
have assumed without loss of generality that I >  p  — I. 
The overall complexity of the system is therefore 0 ( r N l ) 
multiplications per iteration. It is possible in many applications

to choose the number of branches r  to be much smaller than the 
maximum possible 0 ( N p~ l ) branches. In such situations, the 
computational complexity of adaptive parallel-cascade Volterra 
filters is much smaller than that of adaptive direct form 
Volterra filters.

B. The NLMS Algori thm f o r  LDLT Decomposi t i on

We can derive a coefficient update strategy for an adaptive 
filter that uses the LDLT decomposition using a similar set of 
approximations and derivations as employed in the previous 
section. The coefficients are updated in this case as

<7i(n +  1) =  o-j(n) +

and

L i ( n  +  1)

2/u.
P a (n)  +  P i (n ) e (n )y l / 2 , i (n ) (47)

P a ( n ) + P i ( n )

where P a (n)  and p ( n )  are given by

p a {n )  =  ^ 2 y p/2, i (n )

(48)

(49)



PANICKER et al.: ADAPTIVE PARALLEL-CASCADE TRUNCATED VOLTERRA FILTERS 2669

and

respectively. For the same reasons as those explained in 
the previous subsection, the normalization factor P a (n) +  
P i {n )  may be replaced by a smoothed version similar to that 
described in (46).

C. A  Bound on the Step Size

As discussed earlier, deriving an exact bound on the step 
size for providing stable operation of the adaptive parallel- 
cascade filter is a very difficult problem. However, we can 
argue in a heuristic manner that a selection of the step size 
in the range 0  <  /j, <  2 should result in stable operation of 
the system. Since the solution to the constrained optimization 
problem is obtained by choosing /j, =  1 , we can argue that the 
estimation error is bounded for this choice of the step size as 
long as the input signal and the desired response signal are 
bounded in some sense. Intuitively, a choice of /j, in the range 
0  <  /j, <  2 will move the parameters closer to the solution of 
the constrained optimization problem from its current value. 
Obviously, the above is not a rigorous analysis. However, 
this result agrees with the rigorous result obtained in [6 ] and 
[8 ] for normalized LMS adaptive filters that employ linear 
system models. Because of the approximations employed in 
the derivation of the adaptive filter, the above bound may only 
be approximately met. In the next section, we have included 
the result of an experiment demonstrating stable operation of 
the adaptive filter for values of // as high as 1.5.

V. Experimental Results

The results of several experiments that demonstrate the good 
properties of the NLMS adaptive parallel-cascade Volterra 
filters are presented in this section. The adaptive filter was 
used for identifying an unknown system from measurements 
of its input and output signals in these experiments. The un­
known system used in all the experiments was a homogeneous 
truncated fourth-order Volterra system. The adaptive filter was 
implemented by realizing the fourth-order system model using 
second-order components. The structure was based on the 
LDL t  decomposition and, therefore, exploited the symmetry 
of the coefficient matrix.

A. Experiment  1

The objectives of the experiments described in this subsec­
tion are

1) to compare the NLMS adaptive parallel-cascade filters 
with some other competing algorithms available in the 
literature;

2) to demonstrate the robustness of the NLMS adaptive 
filter to observation noise present in the desired response 
signal,

3) to verify the usefulness of the heuristic bound given in 
Section IV-C.

We first compare the performance of the NLMS adaptive 
After, the unnormafized LMS adaptive After empfoying the 
LDL t  decomposition, and the unnormafized LMS adaptive 
filter employing the direct form realization of the system 
model in a stationary system identification problem. The 
normalized LMS adaptive Volterra filter implemented using 
the direct-form realization surprisingly resulted in much poorer 
performance than the other three structures and, therefore, is 
not included in the comparisons presented here. The coeffi­
cients of the direct-form LMS adaptive filter were initialized 
to zero. The scalar multipliers o , ( v )  and the /th element 
of the coefAcient vector L ,(n ) were initialized to 1 in the 
paraffef-cascade After. The rest of the efements of L ,(u ) were 
initialized to zero. This particular initialization ensures nonzero 
initial values for P a (n)  and i ’/f/'j- Furthermore, an all-zero 
coefficient set will not allow the parallel-cascade system 
to adapt. The initial values of the mean-square estimation 
error are slightly different because of the differences in the 
initialization process. The parameter a  in (46) was chosen as
0.9 in the experiments involving normalized parallel-cascade 
structure. Since we chose a relatively large value for (1 -  a )  
in the experiments, we initialized £(0) to be zero. For values 
of a  very close to one, it is advisable to chose £(0 ) to be a 
small positive constant in order to avoid numerical problems 
during normalization in the early stages of adaptation.

The unknown system was a homogeneous fourth-order 
truncated Volterra system with five-sample memory whose 
coefficients were given by (51), shown at the bottom of the 
page, where =  (m; — 1), and M (m i,m 2 ,m 3 ,m 4 ) is a 
random variable that is uniformly distributed between - 0 .1  
and +0.1. The number of branches in the parallel-cascade 
realization of the above Alter is ( ,,+"’ 1 j =  15. The input 
signal was generated as the output of a linear system with 
input-output relationship given by

where e(n) was a white Gaussian signal with unit variance and 
zero mean value. The desired response signal was generated by 
processing this signal with the fourth-order Volterra system of 
(51) and then corrupting the output with an uncorrelated white 
Gaussian noise sequence with zero mean value and variance 
a 2 . Fig. 2 displays a plot of the mean-square estimation 
error signals obtained using the direct form LMS, parallel- 
cascade LMS, and parallel-cascade NLMS adaptive Alters for 
a 2 =  0.01. The adaptive filters employed system models that 
were exactly matched to that of the unknown system. The step 
sizes for the three methods were selected to get approximately

100
L , m 2, m 3, _  J 27r[1.54+a4+ a |+ a |+ a4]3/4 

1°;

l, m 2 , m 3 , TO4 ); 0 <  m i <  m 2 <  m 3 <  m 4 <  4 
otherwise

(51)
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Fig. 2. Mean-square error of the adaptive filters for colored Gaussian input 
and measurement noise with variance 0.01.

TABLE II
Parameters and Excess Mean-square Errors of Experiment 1

Fig. 4. Excess mean-square error as a function of in Experiment 1.

Fig. 3. Mean-square error of the NLMS adaptive filter with colored Gaussian 
input signal and different noise levels.

the same steady-state excess mean-square estimation error. The 
selection was performed numerically by initializing the three 
algorithms using the true values of the unknown system and 
letting the adaptive filters run for 100  0 0 0  samples for several 
step sizes. The excess mean-square errors were measured by 
averaging the excess estimation errors over the last 2 0  0 0 0  
samples over 100 independent experiments. The step sizes 
and the measured values of the corresponding excess mean- 
square errors are displayed in Table II. It can be seen from

Fig. 5. Mean-square error of the adaptive filters in Experiment 2.

the figure that the NLMS algorithm developed in this paper 
converges significantly faster than the direct form LMS and 
the unnormafized LMS using the LDL T  decomposition. Aif the 
spikes in the figures are due to the direct form LMS adaptive 
filter, indicating that this filter is operating near the stability 
bound for the step size.

Fig. 3 displays the evolution of the mean-square estimation 
error of the NLMS algorithm for different output signal-to- 
noise ratios (SNR’s), and fi =  0.074. We can see from 
the figure that the convergence characteristics of the NLMS 
adaptive filter is not significantly changed by increasing the 
noise in the desired response signal. These results demonstrate 
the usefulness of the adaptive filter, in spite of the fact that its 
derivations assumed low noise levels.

Finally, we consider the performance of the adaptive filter 
for several values of the step size. Fig. 4 displays the excess 
mean-square error in the NLMS algorithm as a function of the 
convergence parameter /i. The excess mean-square error was 
evaiuated by varying /i in the range 0 <  /i <  2 for SNR =
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Butterworth filter 4
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Chebyshev filter
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Fig. 6. System model in Experiment 3.

54.7 dB ( a 2 =  0.01). The excess mean-square errors were 
evaluated after initializing the algorithm with the true values 
of the unknown system as described in the first experiment 
in this subsection. It was observed for this experiment that 
the algorithm diverged for /j, greater than 1.5. Even though 
the excess mean-square error becomes significantly large for 
/i  >  0 .2 , we observe that the algorithm provided finite values 
for the steady-state excess mean-square error in the range
0 <  h  <  1.5. The difference in the empirical performance 
and the heuristic analysis of Section IV-C can be attributed to 
the approximations employed in the derivations.

B. Experiment  2

The purpose of this experiment was to evaluate the perfor­
mance of the parallel-cascade NLMS adaptive Volterra filter in 
a nonstationary system identification problem. The optimum 
filter coefficients at time n  were evolved according to the 
recursive equation

(53)

where /iopt ,n (w i ,m 2 ,m 3 ,m 4) denotes the optimum coeffi­
cients at time equal to n,  and Cn(TOii m 2 , w 3, m 4) denotes a 
zero-mean and white Gaussian process that is symmetric in 
its arguments and has variance a 2. =  10- 8 . The system was 
initialized with the same coefficients as in (51). The input 
signal and the adaptive filter structure were identical to that in 
Experiment 1. Because of its poor performance in the previous 
experiments, the unnormalized parallel-cascade system was 
not included in this experiment. The noise level in the desired 
response signal corresponds to a;, =  0.01. The step sizes for 
the direct-form LMS and the NLMS adaptive algorithms were 
chosen as 8.3 x lO "7 and 0.074, respectively.

Since we were interested in the steady-state tracking perfor­
mance of the adaptive filters in this experiment, we initialized 
the adaptive filter coefficients to match the coefficients of the 
unknown system. Fig. 5 displays the evolution of the mean- 
square errors of the adaptive filters. We see from the results 
that the two algorithms have similar tracking capabilities. 
The curve for the parallel-cascade system is slightly above 
that of the direct-form filter. However, the two systems will 
eventually reach steady-state values that are very close to

each other. The more significant spikes in Fig. 5 are from the 
direct form LMS adaptive filter. We observe a slight increase 
in the mean-square error over the corresponding steady-state 
values for the stationary system identification experiment. This 
increase is due to the contribution from the lag error in the 
nonstationary environment.

C. Experiment  3

This experiment evaluates the effects of using a fewer 
number of branches in the parallel-cascade adaptive Volterra 
filters than the maximum necessary in order to reduce their 
complexity. Since the usefulness of this procedure is most 
in approximating nonlinear systems with long memory spans, 
we consider the identification of a homogeneous fourth-order 
Volterra system with infinite memory created as a cascade of 
a fourth-order Butterworth lowpass filter with a memoryless 
fourth-power operator followed by a fourth-order Chebychev 
lowpass filter, as shown in Fig. 6 . This system is similar to 
models of satellite communication systems in which the linear 
filters model the dispersive transmission paths to and from the 
satellite and the memoryless nonlinearity models amplifiers 
operating near the saturation region in the satellite [12]. The 
transfer functions of the lowpass Butterworth and Chebychev 
filters in Fig. 6  are given by (54) and (55), respectively, shown 
at the bottom of the page.

In the experiment, we attempt to identify the above system 
using a memory span of 15 samples. The memory span of the 
system model was determined by finding the minimum of

where e ( N )  is the modeling error for a system with N -  
sample memory, and the second term is a penalty term for 
the increased complexity that accompanies increasing memory 
lengths. The modeling error was estimated by exciting the 
system in Fig. 6  with a white Gaussian sequence with zero 
mean value and unit variance and then finding the time average 
of the squared error between the output of the model with the 
reduced memory and the actual system over 2 0 0 0 0  samples. 
The error e ( N )  was obtained by normalizing this average value 
with the time-averaged value of the square of the output of 
the actual system.

Fig. 7 displays a semilogarithmic plot of the normalized 
mean-square error between the outputs of the system and

(0.2851 +  0.5704;?-1 +  0 .2851z-2)(0.2851 +  0.5701;?-1 +  0.2851;?-2) 
(1.0 -  0.1024Z-1 +  0.4475z“ 2)(

(0 .2 0 2 5  +  0 .2 8 8 z - 1  +  0 .0 .2 0 2 5 z “ 2)

1.0 -  0.0736Z-1 +  0.0408Z-2) 

0.2025 +  0.0034z-1  +  0.2025z“ 2)
(1.0 -  1.01 z - 1 +  0 .5861z-2)(1.0 -  0.6591Z-1 +  0.1498;?-2)

(54)

(55)
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Fig. 7. Mean-square error between the approximated system and theactual 
system as a function of the number of branches of the parallel-cascade 
realization of the system in Experiment 3.
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Fig. 8 . Mean-square error of the adaptive filters with discarded branches for 
Experiment 3.

its approximation obtained using a parallel-cascade system 
with 15-sample memory and reduced number of branches. 
The approximations were based on a realization involving 
second-order Volterra filters obtained using the singular value 
decomposition of the estimated coefficient matrix with 15- 
sample memory. The input signal to both the original system 
and its approximation was a white Gaussian sequence with 
zero mean value and unit variance. The mean-square error 
at the output was calculated by time averaging the squared 
differences between the output signal of the approximate 
system and the actual system over 2 0  0 0 0  samples and then 
normalizing the result with the time average of the squared 
output of the actual system. The maximum number of branches 
required to implement the parallel-cascade system using a 15- 
sample memory is 120. It is evident from Fig. 7 that very 
good approximations can be obtained by retaining less than 
2 0  branches in this case.

On the basis of the results described above, we employed 
the NLMS adaptive filters with 120, 20, and ten branches to 
identify the unknown system. The step size fi was chosen as
0.1 in all the experiments. Fig. 8 shows the transient behavior 
of the mean-square estimation error for the three cases. It 
may appear from Fig. 8 that the systems with fewer branches 
converge faster. This discrepancy is due to the differences 
in the initial errors of the three estimates. Since one of the 
coefficients in each branch is fixed to one, the initializations 
of the three filters are different, causing a relatively large 
difference in the initial errors. We observe that the three 
systems show almost the same convergence behavior after 
the initial phase. However, the three systems converge to 
slightly different steady-state values where the system with the 
least number of branches converge to the highest steady-state 
value. The steady-state performance of the truncated systems 
were evaluated by running a single experiment over a long 
interval of time till the time average of the squared error 
over successive blocks of 1 00  0 0 0  iterations showed negligible 
variation. The excess mean-square error evaluated as a time

TABLE III
Excess Mean-square Errors in Experiment 3

average over 1 0 0 0 0 0  samples after the system has reached 
the steady-state is shown in Table III for the three cases. It is 
clear from the results that the adaptive filter with as few as 2 0  
branches may be adequate in this case. A similar experiment 
that demonstrates the possible simplifications for a system 
model similar to that given by (51) is provided in [13].

VI. Concluding Remarks

A novel, normalized LMS adaptive filter employing a 
parallel-cascade structure of truncated Volterra systems was 
presented in this paper. This algorithm was shown to per­
form better than the direct-form and unnormalized adaptive 
parallel-cascade Volterra filters through experimental perfor­
mance evaluation. Furthermore, it was shown that the com­
plexity of the adaptive filter can be reduced significantly 
when the coefficient matrix is of low rank. The good char­
acteristics of the NLMS parallel-cascade truncated Volterra 
filters demonstrated through the experiments makes us believe 
that the new system is an attractive alternate to currently- 
available stochastic gradient adaptive truncated Volterra filters 
in practical applications.
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