
Dynamic Hardware-Assisted Software-Controlled Page Placement to Manage
Capacity Allocation and Sharing within Large Caches *

M a n u A w asth i, K sh itij S u d a n , R a je e v B a la su b ra m o n ia n , J o h n C a r te r
S c h o o l o f C o m p u tin g , U n iv e rs ity o f U ta h

Abstract
In future multi-cores, large amounts o f delay and power

will be spent accessing data in large L2/L3 caches. It has
been recently shown that OS-based page coloring allows a
non-uniform cache architecture (NUCA) to provide low la­
tencies and not be hindered by complex data search mech­
anisms. In this work, we extend that concept with mecha­
nisms that dynamically move data within caches. The key
innovation is the use o f a shadow address space to allow
hardware control o f data placement in the L2 cache while
being largely transparent to the user application and ojf-
chip world. These mechanisms allow the hardware and OS
to dynamically manage cache capacity per thread as well
as optimize placement o f data shared by multiple threads.
We show an average IPC improvement o f l 0-20% fo r multi­
programmed workloads with capacity allocation policies
and an average IPC improvement o f 8% fo r multi-threaded
workloads with policies fo r shared page placement.

Keywords: page coloring, shadow-memory addresses,
cache capacity allocation, data/page migration, last level
caches, non-uniform cache architectures (NUCA).

1. Introduction

Future high-performance processors will implement
hundreds of processing cores. The data requirements of
these many cores will be fulfilled by many megabytes of
shared L2 or L3 caches. These large caches will likely
be heavily banked and distributed on chip: perhaps, each
core will be associated with one bank of the L2 cache, thus
forming a tiled architecture as in [37,42], An on-chip net­
work connects the many cores and cache banks (or tiles).
Such caches represent a non-uniform cache architecture
(NUCA) as the latency for each cache access is a func­
tion of the distance traveled on the on-chip network. The
design of large last-level caches continues to remain a chal­
lenging problem for the following reasons: (i) Long wires
and routers in the on-chip network have to be traversed to
access cached data. The on-chip network can contribute
up to 36% of total chip power [23,40] and incur delays
of nearly a hundred cycles [28], It is therefore critical for
performance and power that a core’s data be placed in a
physically nearby cache bank, (ii) On-chip cache space is
now shared by multiple threads and multiple applications,
leading to possibly high (destructive) interference. Poor

*This work was supported in parts by NSF grants CCF-0430063, CCF-
0811249, CCF-0702799, NSF CAREER award CCF-0545959, Tntel, and
the University of Utah.

allocation of cache space among threads can lead to sub-
optimal cache hit rates and poor throughput.

Both of the above two problems have been actively stud­
ied in recent years. To improve the proximity of data
and computation, dynamic-NUCA policies have been pro­
posed [1 -3 ,9 ,10 ,18 ,20 ,22], In these policies, the ways
of the cache are distributed among the various banks and
a data block is allowed to migrate from a way in one bank
to another way in a different bank that is hopefully closer
to the core accessing this data block. The problem with
these approaches is the need for a complex search mecha­
nism. Since the block could reside in one of many possi­
ble ways, the banks (or a complex tag structure) must be
systematically searched before a cache hit/miss can be de­
clared. As the number of cores is scaled up, the number of
ways will have to also likely be scaled up, further increas­
ing the power and complexity of the search mechanism.

The problem of cache space allocation among threads
has also been addressed by recent papers [19,29,35,38],
Many of these papers attempt to distribute ways of a cache
among threads by estimating the marginal utility of an
additional way for each thread. Again, this way-centric
approach is not scalable as a many-core architecture will
have to support a highly set-associative cache and its cor­
responding power overheads. These way-partitioning ap­
proaches also assume uniform cache architectures (UCA)
and are hence only applicable for medium-sized caches.

Recent work by Cho and Jin [11] puts forth an approach
that is inherently scalable, applicable to NUCA architec­
tures, and amenable to several optimizations. Their work
adopts a static-NUCA architecture where all ways of a
cache set are localized to a single bank. A given address
thus maps to a unique bank and a complex search mech­
anism is avoided. The placement of a data block within
the cache is determined by the physical memory address
assigned to that block. That work therefore proposes OS-
based page coloring as the key mechanism to dictate place­
ment of data blocks within the cache. Cho and Jin focus on
the problem of capacity allocation among cores and show
that intelligent page coloring can allow a core to place its
data in neighboring banks if its own bank is heavily pres­
sured. This software control of cache block placement has
also been explored in other recent papers [25,30], Note
that the page-coloring approach attempts to split sets (not
ways) among cores. It is therefore more scalable and ap­
plies seamlessly to static-NUCA designs.

But several issues still need to be addressed with the
page coloring approach described in recent papers [11,25,
36]: (i) Non-trivial changes to the OS are required, (ii) A

978-1 -4244-2932-5/08/$25.00 © 2008 IEEE 250

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276287036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

page is appropriately colored on first touch, but this may
not be reflective of behavior over many phases of a long-
running application, especially if threads/programs migrate
between cores or if the page is subsequently shared by
many cores, (iii) If we do decide to migrate pages in re­
sponse to changing application behavior, how can efficient
policies and mechanisms be designed, while eliminating
the high cost of DRAM page copies?

This paper attempts to address the above issues. We use
the concept of shadow address spaces to introduce another
level of indirection before looking up the L2 cache. This
allows the hardware to dynamically change page color and
page placement without actually copying the page in phys­
ical memory or impacting the OS physical memory man­
agement policies. We then describe robust mechanisms to
implement page migration with two primary applications:
(i) controlling the cache capacity assigned to each thread,
(ii) moving a shared page to a location that optimizes its
average access time from all cores.

This work therefore bridges advances in several related
areas in recent years. It attempts to provide the benefits of
D-NUCA policies while retaining a static-NUCA architec­
ture and avoiding complex searches. It implements cache
partitioning on a scalable NUCA architecture with limited
associativity. It employs on-chip hardware supported by
OS policies for on-chip data movement to minimize the
impact on physical memory management and eliminate ex­
pensive page copies in DRAM.

The rest of the paper is organized as follows. Section 2
sets this work in the context of related work. Section 3
describes the proposed mechanisms. These are evaluated
in Section 4 and we conclude in Section 5.

2. Related Work
In recent years, a large body of work has been dedicated

to intelligently managing shared caches in CMPs, both at
finer (cache line, e.g., [2 ,3 ,7 ,18 ,22]) and coarser (page
based, e.g., [11,13,25,30]) granularities. Given the vast
body of literature, we focus our discussion below to only
the most related pieces of work.

Cache partitioning has been widely studied of late [19,
29,35,38]. Almost all of these mechanisms focus on way-
partitioning, which we believe is inherently non-scalable.
These mechanisms are primarily restricted to UCA caches.
The use of way-partitioning in a NUCA cache would re­
quire ways to be distributed among banks (to allow low-
latency access for each core’s private data), thus requiring
a complex search mechanism. This work focuses on set
partitioning with page coloring and allows lower complex­
ity and fine-grained capacity allocation.

A number of papers attempt to guide data placement
within a collection of private caches [7,14,34]. This work
focuses on a shared cache and relies on completely differ­
ent mechanisms (page coloring, shadow addresses, etc.) to
handle capacity and sharing. It is worth noting that a pri­
vate cache organization is a special case of a shared cache

augmented with intelligent page coloring (that places all
private data in the local cache slice).

A number of papers propose data block movement in
a dynamic-NUCA cache [1-3 ,9 ,10 ,18 ,20 ,22], Most of
these mechanisms require complex search to locate data [1 ,
3 ,18 ,20,22] or per-core private tag arrays that must be kept
coherent [9,10], We eliminate these complexities by em­
ploying a static-NUCA architecture and allowing blocks to
move between sets, not ways. Further, we manage data at
the granularity of pages, not blocks. Our policies attempt to
migrate a page close to the center of gravity of its requests
from various cores: this is an approach borrowed from the
dynamic-NUCA policy for block movement in [3].

The most related body of work is that by Cho and
Jin [11], where they propose the use of page coloring as a
means to dictate block placement in a static-NUCA archi­
tecture. That work shows results for a multi-programmed
workload and evaluates the effect of allowing a single pro­
gram to borrow cache space from its neighboring cores
if its own cache bank is pressured. Cho and Jin employ
static thresholds to determine the fraction of the working
set size that spills into neighboring cores. They also color
a page once at first touch and do not attempt page migra­
tion (the copying of pages in DRAM physical memory),
which is clearly an expensive operation. They also do not
attempt intelligent placement of pages within the banks
shared by a single multi-threaded application. Concurrent
to our work, Chaudhuri [8] also evaluates page-grain move­
ment of pages in a NUCA cache. That work advocates that
page granularity is superior to block granularity because
of high locality in most applications. Among other things,
our work differs in the mechanism for page migration and
in our focus on capacity allocation among threads.

Lin et al. [25] extend the proposals by Cho and Jin and
apply it to a real system. The Linux kernel is modified
to implement page coloring and partition cache space be­
tween two competing threads. A re-mapped page suffers
from the cost of copying pages in DRAM physical mem­
ory. Lin et al. acknowledge that their policies incur high
overheads and the focus of that work is not to reduce these
overheads, but understand the impact of dynamic OS-based
cache partitioning on a real system. In a simulation-based
study such as ours, we are at liberty to introduce new hard­
ware to support better cache partitioning mechanisms that
do not suffer from the above overheads and that do not re­
quire significant OS alterations. We also consider move­
ment of shared pages for multi-threaded applications.

Ding et al. [13] employ page re-coloring to decrease
conflict misses in the last level cache by remapping pages
from frequently used colors to least used colors. Their
work deals exclusively with reducing conflicts for a single
thread in a single-core UCA cache environment. Rafique
et al. [30] leverage OS support to specify cache space quo­
tas for each thread in an effort to maximize throughput and
fairness. That work does not take advantage of page color­
ing and ultimately resorts to way-partitioning at the block

251

level while meeting the quota restrictions.
A key innovation in our work is the use of shadow ad­

dress spaces and another level of indirection within the L2
cache to manage page re-mapping at low overheads. This
is not a feature of any of the related work listed thus far.
Shadow address spaces have been previously employed in
the Impulse memory controller [5] to efficiently implement
superpages and scatter-gather operations. The use of an­
other level of indirection before accessing the L2 has been
previously employed by Min and Hu [27] to reduce conflict
misses for a single-thread UCA cache platform.

Page coloring for data placement within the cache was
extensively studied by Kessler and Hill [21], Several com­
mercial systems have implemented page migration for dis­
tributed memory systems, most notably SGI's implemen­
tation of page-migration mechanisms in their IRIX oper­
ating system [12], LaRowe et al. [24,31,32] devised OS
support mechanisms to allow page placement policies in
NUMA systems. Another body of work [6 ,39] explored
the problem from multiprocessor compute server perspec­
tive and dealt with similar mechanisms as LaRowe et al. to
schedule and migrate pages to improve data locality in cc-
NUMA machines. The basic ideas in this paper also bear
some similarities to S-COMA [33] and its derivatives (R-
NUMA [15] and Wildfire [16]). But note that there are no
replicated pages within our L2 cache (and hence no intra-
L2 cache coherence). Key differences between our work
and the cc-NUMA work is our use of shadow addresses to
rename pages elegantly, the need to be cognizant of bank
capacities, and the focus on space allocation among com­
peting threads. There are also several differences between
the platforms of the 90s and multi-cores of the future (sizes
of caches, latencies, power constraints, on-chip bandwidth,
transistors for hardware mechanisms, etc.).

In summary, while we clearly stand on the shoulders of
many, the key novel contributions of this work are:

• We introduce a hardware-centric mechanism that is
based on shadow addresses and a level of indirection
within the L2 cache to allow pages to migrate at low
overheads within a static-NUCA cache.

• The presence of a low-overhead page migration mech­
anism allows us to devise dynamic OS policies for
page movement. Pages are not merely colored at first
touch and our schemes can adapt to varying program
behavior or even process/thread migration.

• The proposed novel dynamic policies can allocate
cache space at a fine granularity and move shared
pages to the center of gravity of its accesses, while
being cognizant of cache bank pressure, distances in a
NUCA cache, and time-varying requirements of pro­
grams. The policies do not rely on a-priori knowledge
of the program, but rely on hardware counters.

• The proposed design has low complexity, high per­
formance, low power, and policy flexibility. It rep­
resents the state-of-the-art in large shared cache de­
sign, providing the desirable features of static-NUCA

— L1 index™

bits 1
Shadow bits (SB) lh v s iC T . g (l T , | “c~ g)- Page O ffset (PO)

' L2 index bits "
V irtua l Address

TLB
VPN PPN New

Page
Color

* *
SB PT OPC PO + 1 NPC ” 7 OPC PT NPC PO

Orig inal Physical Address New Physical Address

O ff-chip
(M ain M em ory)

SB PT OPC PO L1 and L2 Cache

Translation
Table

Figure 1. Address structure and address modifica­
tions required to access migrated pages.

(simple data look-up), dynamic-NUCA (proximity of
data and computation), set-partitioning (high scalabil­
ity and adaptability to NUCA), hardware-controlled
page movement/placement (low-cost migration and
fine-grained allocation of space among threads), and
OS policies (flexibility).

3. Proposed Mechanisms
We first describe the mechanisms required to support

efficient page migration. We avoid DRAM page copies
and simply change the physical address that is used inter­
nally within the processor for that page. We then discuss
the policies to implement capacity allocation and sharing.
The discussion below pertains to a multi-core system where
each core has private LI-D/I caches and a large shared L2.
Each L2 block maintains a directory to keep track of LI
cached copies and implement a MESI coherence protocol.

3.1 Page Re-Coloring
Baseline Design

In a conventional cache hierarchy, the CPU provides a
virtual address that is used to index into the L I cache and
TLB. The TLB converts the virtual page num ber (VPN) to
a physical page num ber (PPN). Most LI caches are virtu­
ally indexed and physically tagged and the output of the
TLB is required before performing the tag comparison.

The top of Figure 1 shows the structure of a typical
physical address. The intersection of the physical page
number bits and the cache index bits are often referred to
as the page color bits. These are the bits that the OS has
control over, thereby also exercising control over where
the block gets placed in cache. Without loss of general­
ity, we focus on a subset of these bits that will be modified
by our mechanisms to alter where the page gets placed in
L2 cache. This subset of bits is referred to as the Original
Page Color (OPC) bits in Figure 1.

Modern hardware usually assumes 64-bit wide memory
addresses, but in practice only employs a subset of these
64 bits. For example, SUN's UltraSPARC-Ill architec­
ture [17] has 64-bit wide memory addresses but uses only

252

44 and 41 bits for virtual and physical addresses, respec­
tively. The most significant 23 bits that are unused are re­
ferred to as Shadow Bits (SB). Since these bits are unused
throughout the system, they can be used for internal ma­
nipulations within the processor.
Page Re-Naming

The goal of our page migration mechanism is to pre­
serve the original location of the page in physical memory,
but refer to it by a new name within the processor. When
the virtual address (V A) indexes into the TLB, instead of
producing the original true physical address (P A), the TLB
produces a new physical address (P A '). This new address
is used to index into the L I and L2 caches. If there is an
L2 cache miss and the request must travel off-chip, P A '
is converted back to P A before leaving the processor. In
order for these translations to happen efficiently and cor­
rectly, we must make sure that (i) complex table look-ups
are not required and (ii) the new name P A ' does not over­
write another existing valid physical address. This is where
the shadow bits can be leveraged.
Unique Addresses

When a page is migrated (renamed within the proces­
sor), we change the OPC bits of the original address to a
set of New Page Color (NPC) bits to generate a new ad­
dress. We then place the OPC bits into the most significant
shadow bits of this new address. We are thus creating a
new and unique address as every other existing physical
address has its shadow bits set to zero. The address can
also not match an existing migrated address: if two P i ' s
are equal, the corresponding P A s must also be equal. If the
original P A is swapped out of physical memory, the TLB
entries for P A ' are invalidated (more on TLB organization
shortly); so it is not possible for the name P A ' to represent
two distinct pages that were both assigned to address P A
in physical memory at different times.
TLB Modifications

To effect the name change, the TLBs of every core on
chip must be updated (similar to the well-known process of
TLB shootdown). Each TLB entry now has a new field that
stores the NPC bits if that page has undergone migration.
This is a relatively minor change to the TLB structure. Es­
timates with CACTI 6.0 [28] show that the addition of six
bits to each entry of a 128-entry TLB does not affect access
time and slightly increases its energy per access from 5.74
to 5.99 pJ (at 65 nm technology). It is therefore straight­
forward to produce the new address.
Off-Chip Access

If the request must travel off-chip, P A ' must be con­
verted back to P A . This process is trivial as it simply re­
quires that the NPC bits in P A ' be replaced by the OPC
bits currently residing in shadow space and the shadow bits
are all reset (see Figure 1). Thus, no table look-ups are
required for this common case.
Translation Table (TT)

In addition to updating TLB entries, every page re-color
must also be tracked in a separate structure (co-located with

the L2 cache controller) referred to as the Translation Ta­
ble (TT). This structure is required in case a TLB entry
is evicted, but the corresponding blocks still reside with
their new name in LI or L2. This structure keeps track of
process-id, VPN, PPN, and NPC. It must be looked up on
a TLB miss before looking up page tables. It must also be
looked up when the processor receives a coherence request
from off-chip as the off-chip name P A must be translated
to the on-chip name P A ' . This structure must be somewhat
large as it has to keep track of every recent page migration
that may still have blocks in cache. If an entry is evicted
from this structure, it must invalidate any cached blocks for
that entry and its instances in various TLBs.

Our simulations assume a fully-associative LRU struc­
ture with 1 0 K entries and this leads to minimal evictions.
We believe that set-associative implementations will also
work well, although, we haven’t yet focused on optimiz­
ing the design of the TT. Such a structure has a storage
requirement of roughly 160KB, which may represent a
minor overhead for today’s billion-transistor architectures.
The TT is admittedly the biggest overhead of the proposed
mechanisms, but it is accessed relatively infrequently. In
fact, it serves as a second-level large TLB and may be more
efficient to access than walking through the page tables that
may not be cache-resident; it may therefore be a structure
worth considering even for a conventional processor de­
sign. The inefficiency of this structure will be a problem
if the processor is inundated with external coherence re­
quests (not a consideration in our simulations). One way
to resolve this problem is to not move individual pages, but
entire colored regions at a time, i.e., all pages colored red
are re-colored to yellow.
Cache Flushes

When a page is migrated within the processor, the TLB
entries are updated and the existing dirty lines of that page
in L2 cache must be flushed (written back). If the direc­
tory for that L2 cache line indicates that the most recent
copy of that line is in an LI cache, then that L I entry must
also be flushed. All non-dirty lines in L I and L2 need not
be explicitly flushed. They will never be accessed again as
the old tags will never match a subsequent request and they
will be naturally replaced by the LRU replacement policy.
Thus, every page migration will result in a number of LI
and L2 cache misses that serve to re-load the page into its
new locations in cache. Our results later show that these
“compulsory” misses are not severe if the data is accessed
frequently enough after its migration. These overheads can
be further reduced if we maintain a small writeback buffer
that can help re-load the data on subsequent reads before
it is written back to memory. For our simulations, we pes­
simistically assume that every first read of a block after its
page migration requires a re-load from memory. The LI
misses can be potentially avoided if the LI caches continue
to use the original address while the L2 cache uses the new
address (note that page migration is being done to improve
placement in the L2 and does not help LI behavior in any

253

way). But this would lead to a situation where data blocks
reside in L I, but do not necessarily have a back-up copy
in L2, thus violating inclusivity. We do not consider this
optimization here in order to retain strict inclusivity within
the L1-L2 hierarchy.
Cache Tags and Indexing

Most cache tag structures do not store the most signif­
icant shadow bits that are always zero. In the proposed
scheme, the tag structures are made larger as they must
also accommodate the OPC bits for a migrated page. Our
CACTI 6.0 estimates show that this results in a 5% in­
crease in area/storage, a 2.64% increase in access time, and
a 9.3% increase in energy per access for our 16 KB/4-way
LI cache at 65 nm technology (the impact is even lower
on the L2 cache). We continue to index into the L I cache
with the virtual address, so the TLB look-up is not on the
LI critical path just as in the baseline. The color bits that
we modify must therefore not be part of the LI index bits
(as shown at the top of Figure 1).

3.2 M a n a g in g C a p a c ity A llo ca tio n a n d S h a r in g
In our study, we focus our evaluations on 4- and 8 -core

systems as shown in Figure 2. The L2 cache is shared by
all the cores and located centrally on chip. The L2 cache
capacity is assumed to be 2 MB for the 4-core case and
4 MB for the 8 -core case. Our solutions also apply to a
tiled architecture where a slice of the shared L2 cache is co­
located with each core. The L2 cache is partitioned into 16
banks and connected to the cores with an on-chip network
with a grid topology. The L2 cache is organized as a static-
NUCA architecture. In our study, we use 64 colors for the
4-core case and 128 colors for the 8 -core case.

When handling multi-programmed workloads, our pro­
posed policy attempts to spread the working set of a sin­
gle program across many colors if it has high capacity
needs. Conversely, a program with low working-set needs
is forced to share its colors with other programs. When
handling a multi-threaded workload, our policies attempt to
move a page closer to the center-of-gravity of its accesses,
while being cognizant of cache capacity constraints. The
policies need not be aware of whether the workload is
multi-programmed or multi-threaded. Both sets of policies
run simultaneously, trying to balance capacity allocations
as well as proximity of computation to data. Each policy is
discussed separately in the next two sub-sections.

3.2.1 Capacity Allocation Across Cores
Every time a core touches a page for the first time, the OS
maps the page to some region in physical memory. We
make no change to the OS’ default memory management
and alter the page number within the processor. Every core
is assigned a set of colors that it can use for its pages and
this is stored in a small hardware register. At start-up time,
colors are equally distributed among all cores such that
each core is assigned colors in close proximity. When a
page is brought in for the first time, does not have an en­
try in the TT, and has an original page color (OPC) that is

not in the assigned set of colors for that core, it is migrated
to one of the assigned colors (in round-robin fashion). Ev­
ery time a page re-coloring happens, it is tracked in the
TT, every other TLB is informed, and the corresponding
dirty blocks in L2 are flushed. The last step can be time­
consuming as the tags of a number of sets in L2 must be
examined, but this is not necessarily on the critical path.
In our simulations, we assume that every page re-color is
accompanied by a 2 0 0 cycle stall to perform the above op­
erations. A core must also stall on every read to a cache
line that was flushed. We confirmed that our results are not
very sensitive to the 2 0 0 cycle stall penalty as it is incurred
infrequently and mostly during the start of the application.

There are two key steps in allocating capacity across
cores. The first is to determine the set of colors assigned
to each core and the second is to move pages out of banks
that happen to be heavily pressured. Both of these steps
are performed periodically by the OS. Every 10 million cy­
cle time interval is referred to as an epoch and at the end
of every epoch, the OS executes a routine that examines
various hardware counters. For each color, these hardware
counters specify number of misses and usage (how many
unique lines yield cache hits in that epoch). If a color has
a high miss rate, it is deemed to be in need of more cache
space and referred to as an ‘'A cceptor”. If a color has low
usage, it is deemed to be a "D onor”, i.e., this color can
be shared by more programs. Note that a color could suffer
from high miss rate and low usage, which hints at a stream­
ing workload, and the color is then deemed to be a Donor.
For all cores that have an assigned color that is an Acceptor,
we attempt to assign one more color to that core from the
list of Donor colors. For each color i in the list of Donor
colors, we compute the following cost function:

color s u i t a b i l i t y i = a a x d is ta n c e i l a j j x u sa g e *

a a and a s are weights that model the relative importance
of usage and the distance between that color and the core in
question. The weights were chosen such that the distance
and usage quantities were roughly equal in magnitude in
the common case. The color that minimizes the above cost
function is taken out of the list of Donors and placed in
the set of colors assigned to that core. At this point, that
color is potentially shared by multiple cores. The OS rou­
tine then handles the next core. The order in which we
examine cores is a function of the number of Acceptors in
each core’s set of colors and the miss rates within those
Acceptors. This mechanism is referred to as PROPOSED-
COLOR-STEAL in the results section.

If a given color is shared by multiple cores and its miss
rate exceeds a high threshold for a series of epochs, it sig­
nals the fact that some potentially harmful re-coloring de­
cisions have been made. At this point, one of the cores
takes that color out of its assigned set and chooses to mi­
grate a number of its pages elsewhere to another Donor
color (computed with the same cost function above). The
pages that are migrated are the ones in the TLB of that

254

Figure 2. Arrangement of processors, NUCA cache banks, and the on-chip interconnect.

core with the offending color. This process is repeated for
a series of epochs until that core has migrated most of its
frequently used pages from the offending color to the new
Donor color. With this policy included, the mechanism is
referred to as PROPOSED-COLOR-STEAL-MIGRATE.

Minimal hardware overhead is introduced by the pro­
posed policies. Each core requires a register to keep track
of assigned colors. Cache banks require a few counters to
track misses per color. Each L2 cache line requires a bit
to indicate if the line is touched in this epoch and these
bits must be counted at the end of the epoch (sampling
could also be employed, although, we have not evaluated
that approximation). The OS routine is executed once ev­
ery epoch and will incur overheads of less than 1 % even if
it executes for as many as 100,000 cycles. An update of the
color set for each core does not incur additional overheads,
although, the migration of a core’s pages to a new donor
color will incur TLB shootdown and cache flush overheads.
Fortunately, the latter is exercised infrequently in our sim­
ulations. Also note that while the OS routine is performing
its operations, a core is stalled only if it makes a request to
a page that is currently in the process of migrating1.

3.2.2 Migration for Shared Pages
The previous sub-section describes a periodic OS routine
that allocates cache capacity among cores. We adopt a
similar approach to also move pages that are shared by the
threads of a multi-threaded application. Based on the ca­
pacity heuristics just described, pages of a multi-threaded
application are initially placed with a focus on minimizing
miss rates. Over time, it may become clear that a page hap­
pens to be placed far from the cores that make the most
frequent accesses to that page, thus yielding high average
access times for L2 cache hits. As the access patterns for
a page become clear, it is important to move the page to
the Center-of-Grcivity (CoG) of its requests in an attempt
to minimize delays on the on-chip network.

Just as in the previous sub-section, an OS routine exe­
cutes at the end of every epoch and examines various hard­
ware counters. Hardware counters associated with every
TLB entry keep track of the number of accesses made to

LJ I-cache J6KB 4-way J-cycle
LJ D-cache 16KB 4-way 1 -cycle
Page Size 4 KB

Memory latency 200 cycles for the first block
L2 unified cache 2MB (4-core) /4M B (8-core) 8-way

DRAM Size 4 GB
NUCA Parameters

Network 4 x 4 grid Bank access time 3 cycles
Hop Access time 2 cycles Router Overhead 3 cycles

(Vertical & Horizontal)

'T h is is indicated by a bit in the TLB. This bit is set at the start of the
TLB shootdown process and reset at the very end of the migration.

Table 1. Simics simulator parameters.

that page by that core. The OS collects these statistics for
the 10 most highly-accessed pages in each TLB. For each
of these pages, we then compute the following cost func­
tion for each color i:
color s u i t , a b ili ty i = n..\ x to ta l la te n c y * + a b x usage j

where to ta l la t e n c y i is the total delay on the network ex­
perienced by all cores when accessing this page, assum­
ing the frequency of accesses measured in the last epoch.
The page is then moved to the color that minimizes the
above cost function, thus attempting to reduce latency for
this page and cache pressure in a balanced manner. Page
migrations go through the same process as before and can
be relatively time consuming as TLB entries are updated
and dirty cache lines are flushed. A core’s execution will
be stalled if it attempts to access a page that is undergoing
migration. For our workloads, page access frequencies are
stable across epochs and the benefits of low-latency access
over the entire application execution outweigh the high ini­
tial cost of moving a page to its optimal location.

This policy introduces hardware counters for each TLB
entry in every core. Again, it may be possible to sam­
ple a fraction of all TLB entries and arrive at a better
performance-cost design point. This paper focuses on eval­
uating the performance potential of the proposed policies
and we leave such approximations for future work.

4. Results
4.1 M eth o d o lo g y

Our simulation infrastructure uses Virtutech’s Simics
platform [26]. We build our own cache and network mod­
els upon Simics’ g-cciche module. Table 1 summarizes the
configuration of the simulated system. All delay calcula­
tions are for a 65 nm process and a clock frequency of

255

Acceptor Applications bzip2*, gobmk*, hmmer*, h264ref*, omnetpp*, xalancbmk*, soplex*, mummer*, tig r*, fasta-dna*
Donor Applications namd*, libquantum*, sjeng*, mile* ,povray* .swaptions*

Table 2. Workload Characteristics. * - SpecCpu2006, * - BioBench, * - PARSEC

Application Pages Mapped to Stolen Colors Total Pages Touched
bzip l 200 3140

gobmk 256 4010
hmmer 124 2315
h264ref 189 2272
omnetpp 376 8529

xalancbmk 300 6751
soplex 552 9632

mimmer 9073 29261
% r 6930 17820

fasta-dna 740 1634

5 GHz and a large 16 MB cache. The delay values are
calculated using CACTI 6.0 [28] and remain the same ir­
respective of cache size being modeled. For all of our sim­
ulations, we shrink the cache size (while retaining the same
bank and network delays), because our simulated work­
loads are being shrunk (in terms of number of cores and
input size) to accommodate slow simulation speeds. Ordi­
narily, a 16 MB L2 cache would support numerous cores,
but we restrict ourselves to 4 and 8 core simulations and
shrink the cache size to offer 512 KB per core (more L2
capacity per core than many modern commercial designs).
The cache and core layouts for the 4 and 8 core CMP sys­
tems are shown in Figure 2. Most of our results focus on the
4-core system and we show the most salient results for the
8 -core system as a sensitivity analysis. The NUCA L2 is
arranged as a 4x4 grid with a bank access time of 3 cycles
and a network hop (link plus router) delay of five cycles.
We accurately model network and bank access contention.
An epoch length of 10 million instructions is employed.

Our simulations have a warm-up period of 25 million
instructions. The capacity allocation policies described in
Section 3.2.1 are tested on multi-programmed workloads
from SPEC, BioBench, and PARSEC [4], described in Ta­
ble 2. As described shortly, these specific programs were
selected to have a good mix of small and large working sets.
SPEC and BioBench programs are fast forwarded by 2 bil­
lion instructions to get past the initialization phase while
the PARSEC programs are observed over their defined re­
gions o f interest. After warm-up, the workloads are run
until each core executes for two billion instructions.

The shared-page migration policies described in Sec­
tion 3.2.2 are tested on multi-threaded benchmarks from
SPLASH-2 [41] and PARSEC described in Table 5. All
these applications were fast forwarded to the beginning of
parallel section or the region of interest (for SPLASH-2 and
PARSEC, respectively) and then executed for 25 million
instructions to warm up the caches. Results were collected
over the next 1 billion instruction execution, or, end of par­
allel section/region-of-interest, whichever occurs first.

Just as we use the terms Acceptors and Donors for col­
ors in Section 3.2.1, we also similarly dub programs de­
pending on whether they benefit from caches larger than
512 KB. Figure 3(a) shows 1PC results for a subset of pro­
grams from the benchmark suites, as we provide them with
varying sizes of L2 cache while keeping the L2 (UCA) ac­
cess time fixed at 15 cycles. This experiment gives us a
good idea about capacity requirements of various applica­
tions and the 10 applications on the left of Figure 3(a) are
termed Acceptors and the other 6 are termed Donors.

4.2 B ase lin e C o n fig u ra tio n s
We employ the following baseline configurations to un­

derstand the roles played by capacity, access times, and

Table 3. Behavior of PROPOSED-COLOR-STEAL.

data mapping in S-NUCA caches:
1. BASE-UCA: Even though the benefits of NUCA are

well understood, we provide results for a 2 MB UCA
baseline as well for reference. Similar to our NUCA
estimates, the UCA delay of 15 cycles is based on
CACTI estimates for a 16 MB cache.

2. BASE-SNUCA: This baseline does not employ any
intelligent assignment of colors to pages (they are ef­
fectively random). Each color maps to a unique bank
(the least significant color bits identify the bank). The
data accessed by a core in this baseline are somewhat
uniformly distributed across all banks.

3. BASE-PRIVATE: All pages are colored once on first
touch and placed in one of the four banks (in round-
robin order) closest to the core touching this data. As
a result, each of the four cores is statically assigned a
quarter of the 2 MB cache space (resembling a base­
line that offers a collection of private caches). This
baseline does not allow spilling data into other colors
even if some color is heavily pressured.

The behavior of these baselines, when handling a single
program, is contrasted by the three left bars in Figure 3(b).
This figure only shows results for the Acceptor applica­
tions. The UCA cache is clearly the most inferior across the
board. Only two applications (gobmk, hmmer) show better
performance with BASE-PRIVATE than BASE-SHARED
- even though these programs have large working sets, they
benefit more from having data placed nearby than from
having larger capacity. This is also of course trivially true
for all the Donor applications (not shown in figure).

4.3 M u lti-P ro g ra m m e d R esu lts
Before diving into the multi-programmed results, we

first highlight the behavior of our proposed mechanisms
when executing a single program, while the other three
cores remain idle. This is demonstrated by the rightmost
bar in Figure 3(b). The proposed mechanisms (refered to
as PROPOSED-COLOR-STEAL) initially color pages to
place them in the four banks around the requesting core.
Over time, as bank pressure builds, the OS routine alters
the set of colors assigned to each core, allowing the core to
steal colors (capacity) from nearby banks. Since these are

256

4 Cores

2 Acceptors

{gobrak, tigr, libquantura, namd) :'i ? 1. {mummer, bzip2, mile, povniy} :'i ? ’ . {mummer, mummer, mile, libquantum} ? .
{mummer, omnetpp, swaptions, swaptions}M 4, {soplex, hmmer, sjeng, m ilc }M o, {soplex, h264ref, swaptions, swaptions}Me

{bzip2, soplex, swaptions, povray}M ' , {fasta-dna, hmmer, swaptions, libquantum} M 8 , {hmmer, omnetpp, swaptions, m ilc }M 9,
{xalancbmk, hmmer, namd, swaptions}M 10, {tigr, hmmer, povray, libquantum}M11, {tigr, mummer, mile, namd) ;i / 1 ’ .

{tigr, tigr,povray, sjeng}M13, {xalancbmk, h264ref, mile, sjeng}M14,

3 Acceptors
{h264ref, xalancbmk, hmmer, sjeng}AJ1°, {mummer, bzip2, gobmk, m ile }*116,

{fasta-dna, tigr, mummer, namd}M 1 ' , {omnetpp, xalancbmk, fasta-dna, povray}M 18,
{gobmk, soplex, tigr, swaptions}M19, {bzip2, omnetpp, soplex, libquantum}M20

4 Acceptors
{bzip2, soplex, xalancbmk, omnetpp}A:!21, {fasta-dna, mummer, mummer, soplex} A:! 22,
{gobmk, soplex, xalancbmk, h264ref}M23, {soplex, h264ref,mummer, omnetpp}M24,

{bzip2, tigr, xalancbmk, mummer} M2°
8 -cores

4 Acceptors {mummer,hmmer,bzip2,xalancbmk,swaptions,namd,sjeng,povray} M 26,
{omnetpp,h264ref,tigr,soplex,libquantum,mile, swaptions,namd} M 2 '

6 Acceptors {h264ref,bzip2,tigr,omnetpp,fasta-dna,soplex,swaptions,namd} M2li
{mummer, tigr, fasta-dna, gobmk, hmmer, bzip2, mile, namd} M‘2&

8 Acceptors {bzip2, gobmk,hmmer,h264ref,omnetpp,soplex,mummer,tigr} M 30
{fasta-dna,mummer,h264ref,soplex,bzip2,omnetpp,bzip2,gobmk} M31

Table 4. Workload Mixes - 4 and 8 cores. Each workload will be referred to by its superscript name.

single-program results, the program does not experience
competition for space in any of the banks. The proposed
mechanisms show a clear improvement over all baselines
(an average improvement of 15% over BASE-SNUCA and
21% over BASE-PRIVATE). They not only provide high
data locality by placing most initial (and possibly most crit­
ical) data in nearby banks, but also allow selective spillage
into nearby banks as pressure builds. Our statistics show
that compared to BASE-PRIVATE, the miss rate reduces
by an average of 15.8%. The number of pages mapped to
stolen colors is summarized in Table 3. Not surprisingly,
the applications that benefit most are the ones that touch
(and spill) a large number of pages.

4.3.1 Multicore Workloads
We next present our simulation models that execute four
programs on the four cores. A number of workload mixes
are constructed (described in Table 4). We vary the number
of acceptors to evaluate the effect of greater competition
for limited cache space. In all workloads, we attempted
to maintain a good mix of applications not only from dif­
ferent suites, but also with different runtime behaviors.
For all experiments, the epoch lengths are assumed to be
10 million instructions for PROPOSED-COLOR-STEAL.
Decision to migrate already recolored pages (PROPOSED-
COLOR-STEAL-MIGRATE) are made every 50 million
cycles. Having smaller epoch lengths results in frequent
movement of recolored pages.

The same cache organizations as described before are
compared again; there is simply more competition for the
space from multiple programs. To demonstrate the im­
pact of migrating pages away from over-subscribed colors,
we show results for two versions of our proposed mecha­
nism. The first (PROPOSED-COLOR-STEAL) never mi­
grates pages once they have been assigned an initial color;
the second (PROPOSED-COLOR-STEAL-MIGRATE) re­
acts to poor initial decisions by migrating pages. The
PROPOSED-COLOR-STEAL policy, to some extent, ap­
proximates the behavior of policies proposed by Cho and

Jin [11], Note that there are several other differences be­
tween our approach and theirs, most notably, the mecha­
nism by which a page is re-colored within the hardware.

To determine the effectiveness of our policies, we use
weighted system throughputs as the metric. This is com­
puted as follows:

weigh.teajbh.rough.put =

N U M - C O R E S — 1

Y { I P C i / I P C i _ B A S E - P R I V A T E }
i= 0

Here, I P C i refers to the application IPC for that exper­
iment and T P C i_b a s e -p r i v a t e refers to the IPC of that
application when it is assigned a quarter of the cache space
as in the BASE-PRIVATE case. The weighted throughput
of the BASE-PRIVATE model will therefore be very close
to 4.0 for the 4-core system.

The results in Figures 4 and 5 are organized based on
the number of acceptor programs in the workload mix.
For 2, 3, and 4 acceptor cases, the maximum/average im­
provements in weighted throughput with the PROPOSED-
COLOR-STEAL-MIGRATE policy, compared to the best
baseline (BASE-SNUCA) are 25%/20%, 16%/13%, and
14%/10%, respectively. With only the PROPOSED-
COLOR-STEAL policy, the corresponding improvements
are 21%/14%, 14%/10%, and 10%/6%. This demonstrates
the importance of being able to adapt to changes in working
set behaviors and inaccuracies in initial page coloring deci­
sions. This is especially important for real systems where
programs terminate/sleep and are replaced by other pro­
grams with potentially different working set needs. The
ability to seamlessly move pages with little overhead with
our proposed mechanisms is important in these real-world
settings, an artifact that is hard to measure for simulator
studies. For the 1, 2, 3, and 4-acceptor cases, an average
18% reduction in cache miss rates and 2 1 % reduction in
average access times were observed.

Not surprisingly, improvements are lower as the number
of acceptor applications increases because of higher com­
petition for available colors. Even for the 4-acceptor case,

257

Benchmark Benchmark

a. iPC iraproveraents with increasing L2 capacities. b. Relative IPC improvements for single core with color stealing.

Figure 3. (a) Experiments to determine workloads (b) Relative IPC improvements of proposed color stealing approach.

6 I BASE-PRIVATE I BASE-SNUCA □ PROPOSED-
COLOR-STEAL

PROPOSED-
COLOR-STEAL-
MIGRATE

I BASE-PRIVATE ■ BASE-SNUCA □ PROPOSED- ■ PROPOSED-
6 COLOR-STEAL COLOR-STEAL-
5 _ MIGRATE

m m m
2 2 2 2 ^
Application Mix

a. Weighted Throughput o f system with 2 acceptors and 2 donors.

(O
i

01
i

Application Mix

b. Weighted Throughput of system with 3 acceptors and 1 donor.

Figure 4. System throughputs. Results for workloads with 2 acceptors are shown in (a) and with 3 acceptors in (b).

non-trivial improvements are seen over the static baselines
because colors are adaptively assigned to applications to
balance out miss rates for each color. A maximum slow­
down of 4% was observed for any of the donor applica­
tions, while much higher improvements are observed for
many of the co-scheduled acceptor applications.

As a sensitivity analysis, we show a limited set of exper­
iments for the 8 -core system. Figure 5(b) shows the behav­
ior of the two baselines and the two proposed mechanisms
for a few 4-acceptor, 6 -acceptor, and 8 -acceptor workloads.
The average improvements with PROPOSED-COLOR-
STEAL and PROPOSED-COLOR-STEAL-MTGRATE are
8 .8 % and 1 2 %, respectively.

4.4 R esu lts fo r M u lti- th re a d e d w o rk lo ad s
In this section, we evaluate the page migration poli­

cies described in Section 3.2.2. We implement a MESI
directory-based coherence protocol at the LI -L2 boundary
with a writeback L2. The benchmarks and their properties
are summarized in Table 5. We restrict most of our analy­
sis to the 4 SPLASH-2 and 2 PARSEC programs in Table 5
that have a large percentage of pages that are frequently
accessed by multiple cores. Not surprisingly, the other ap­
plications do not benefit much from intelligent migration of
shared pages and are not discussed in the rest of the paper.

Since all these benchmarks must be executed with
smaller working sets to allow for acceptable simulation
times (for example, PARSEC programs can only be sim­

ulated with large input sets, not the native input sets), we
must correspondingly also model a smaller cache size [41].
If this is not done, there is almost no cache capacity pres­
sure and it is difficult to test if page migration is not neg­
atively impacting pressure in some cache banks. Preserv­
ing the NUCA access times in Table 1, we shrink the total
L2 cache size to 64 KB. Correspondingly, we use a scaled
down page size of 512B. The LI caches are 2-way 4KB.

We present results below, first for a 4-core CMP, and
finally for an 8 -core CMP as a sensitivity analysis. We ex­
perimented with two schemes for migrating shared pages.
Proposed-C.oG migrates pages to their C.oG, without regard
for the destination bank pressure. Proposed-C.oG-Pressure,
on the other hand, also incorporates bank pressure into
the cost metric while deciding the destination bank. We
also evaluate two other schemes to compare our results.
First, we implemented an Oracle placement scheme which
directly places the pages at their C.oG (with and without
consideration for bank pressure - called Oracle-C.oG and
Oracle-C.oG-Pressure, respectively). These optimal loca­
tions are determined based on a previous identical simu­
lation of the baseline case. Second, we shrink the page
size to merely 64 bytes. Such a migration policy attempts
to mimic the state-of-the-art in D-NUC.A fine-grain migra­
tion policies that move a single block at a time to its C.oG.
Comparison against this baseline gives us confidence that
we are not severely degrading performance by performing

258

Pe
rc

en
l

Ch
an

ge

in
Ne

tw
or

k
Co

nt
en

tio
n

Ov
er

Ba
se

lin
e

Pe
rc

en
ia

ge

Im
pr

ov
em

en
i

in
T

hr
ou

gh
pu

i

cn 3

i— 2

I BASE-PRIVATE □ BASE-SNUCA □ PROPOSED- B PROPOSED-
COLOR-STEAL COLOR-STEAL-

MIGRATE

Minim
M21 M22 M23 M24 M25

I BASE-PRIVATE □ BASE-SNUCA □ PROPOSED- E PROPOSED-
COLOR-STEAL COLOR-STEAL-

M26 M27 M28 M29 M30 M31

Application Mix Application Mix

a. Weighted Throughput o f system with 4 Cores and 4 Acceptors. b. Weighted throughputs for 8 core workloads.

Figure 5. Normalized system throughputs as compared to BASE-PRIVATE. Results for workloads with 4 Cores/4 acceptors
are shown in (a) and all 8 Core mixes in (b).

Application Percentage o f RW-shared pages Application Percentage of RW-shared pages

fftlref) 62.4% water-nsq(ref) 22%
choleskylref) 30.6% water-spalref) 22.2%

fmm(ref) 31% blackscholes(sim large) 24.5%
barneslref) 67.7% freqmine(simlarge) 16%
iii-noncf ref) 61% bodytrack(sim large) 19.7%
lu-cont(ref) 62% swaptions(sim large) 20%

ocean-cont(ref) 50.3% streamcluster(simlarge) 10.5%
ocean-nonc(ref) 67.2% x264(sim large) 30%

radix (.ref) 40.5%

Table 5. SPLASH-2 and PARSEC programs with their inputs and percentage of RW-shared pages.

20% % Improvement in □ % Improvement in % Accesses to % Accesses toThroughput(Propo Throughput(Propo Moved Movedsed-CoG) sed-CoG-Pres- Pages(Pro posed- Pages(Proposed-sure) CoG) CoG-Pressure)

swaptions blackscholes barnes
lu-cont ocean-none

a. Percentage improvement in throughput. b. Improvement in throughput and percentage accesses to moved pages

Figure 6, (a). Percentage improvement in throughput (b). Percentage improvement in throughput overlaid with percentage
accesses to moved pages

“I--------- 1--------- 1--------- 1--------- 1--------- T
H Proposed—CoG

swaptions blackscholes barnes fft lu—cont ocean—none

a. Percentage change in network contention due to proposed schemes.

swaprionsbl.ac.kschol.es bcirn.es fft lu—cont ocean—none

b. Number o f cache Lines flushed due to migration of RW-shared pages.

Figure 7, (a). Network contention behavior, (b). Cache flushes.
259

migrations at the coarse granularity of a page. The baseline
in all these experiments is BASE-SNUCA.

Figure 6 (a) presents the percentage improvement in
throughput for the six models, relative to the baseline. The
Proposed-C.oG-Pressure model outperforms the Proposed-
C.oG model by 3.1 % on average and demonstrates the im­
portance of taking bank pressure into account during mi­
gration. This feature was notably absent from prior D-
NUC.A policies (and is admittedly less important if capac­
ity pressures are non-existent). By taking bank pressure
into account, the number of L2 misses is reduced by 5.31 %
on average, relative to Proposed-C.oG. The proposed mod­
els also perform within 2.5% and 5.2%, on average, of
the corresponding oracle scheme. It is difficult to bridge
this gap because the simulations take fairly long to deter­
mine the optimal location and react. This gap will natu­
rally shrink if the simulations are allowed to execute much
longer and amortize the initial inefficiencies. Our policies
are within 1 % on average to the model that migrates 64B
pages. While a larger page size may make sub-optimal
C.oG decisions for each block, it does help prefetch a num­
ber of data blocks into a close-to-optimal location.

To interpret the performance improvements, we plot the
percentage of requests arriving at L2 for data in migrated
pages. Figure 6 (b) overlays this percentage with percent­
age improvement in throughput. The Y-axis represents per­
centage improvement in throughput and percentage of ac­
cesses to moved pages. The curves plot acceses to moved
pages and the bars show improvement in throughput. As
can be seen, the curves closely track the improvements as
expected, except for barnes. This is clarified by Figure 7(a)
that shows that moving pages towards central banks can
lead to higher network contention in some cases (barnes),
and slightly negate the performance improvements. By re­
ducing capacity pressures on a bank, the Proposed-C.oG-
Pressure also has the side effect of lowering network con­
tention. At the outset, it might appear- that migrating pages
to central locations may increase network contention. In
most cases however, network contention is lowered as net­
work messages have to travel shorter distances on average,
thus reducing network utilization.

Figure 7(b) plots the number of lines flushed due to
migration decisions. The amount of data flushed is rela­
tively small for nearly 1 billion or longer instruction exe­
cutions. barnes again is an outlier with highest amount of
data flushed. This also contributes to its lower performance
improvement. The reason for this high amount of data flush
is that the sharing pattern exhibited by barnes is not uni­
form. The accesses by cores to RW-shared data keeps vary­
ing (due to possibly variable producer-consumer relation­
ship) among executing threads. This leads to continuous
corrections in C.oG which further leads to large amount of
data flushes.

As a sensitivity analysis of our scheme, for an 8 -core
CMP we only present percentage improvement in through­
put in Figure 8 . The proposed policies show an average

Figure 8. Throughput improvement for 8-core CMP.

improvement of 6.4%.

5. Conclusions
In this paper, we attempt to combine the desirable fea­

tures of a number of state-of-the-art proposals in large
cache design. We show that hardware mechanisms based
on shadow address bits are effective in migrating pages
within the processor at low cost. This allows us to design
policies to allocate cache space among competing threads
and migrate shared pages to optimal locations. The result­
ing architecture allows for high cache hit rates, low cache
access latencies on average, and yields overall improve­
ments of 1 0 -2 0 % with capacity allocation, and 8 % with
shared page migration. The design also entails low com­
plexity for the most part, for example, by eliminating com­
plex search mechanisms that are commonly seen in way-
partitioned NUCA designs. The primary complexity in­
troduced by the proposed scheme is the Translation Table
(TT) and its management. Addressing this problem is im­
portant future work. We also plan to leverage the page col­
oring techniques proposed here to design mechanisms for
page replication while being cognizant of bank pressures.

References

[1] S. Akioka, F. Li, M. Kandcmir, and M. J. Irwin. Ring Pre­
diction for Non-Uniform Cachc Architectures . In Proceed­
ings o f PACT-2007, September 2007.

[2] B. Beckmann, M. Marty, and D. Wood. ASR: Adaptive
Selective Replication for CMP Caches. In Proceedings o f
MIC.RO-39, December 2006.

[3] B. Beckmann and D. Wood. Managing Wire Delay in Large
Chip-Multiprocessor Caches. In Proceedings o f MICRO-
37, December 2004.

[4] C. Benia, S. Kumar. J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Im­
plications. Technical report, 2008.

[5] J. Carter, W. Hsieh, L. Stroller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,
M. Parker, L. Schaclickc. and T. Tatcyama. Impulse:
Building a Smarter Memory Controller. In Proceedings o f
HPC.A-5, January 1999.

[6] R. Chandra, S. Devine, B. Verghese, A. Gupta, and
M. Rosenblum. Scheduling and page migration for multi­
processor compute servers. In Proceedings o f ASP LOS- VI,
1994.

260

[7] J. Chang and G. Sohi. Co-Operative Caching for Chip Mul­
tiprocessors. In Proceedings o f ISCA-33, June 2006.

[8] M. Chaudhuri. PageNUCA: Selected Policies for
Page-grain Locality Management in Large Shared Chip-
Multiprocessor Caches. In Proceedings ofHPCA-15, 2009.

[9] Z. Chishti, M. Powell, and T. Vijaykumar. Distance As­
sociativity for High-Performance Energy-Efficient Non­
Uniform Cache Architectures. In Proceedings o f MICRO-
36, December 2003.

[10] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
Replication, Communication, and Capacity Allocation in
CMPs. In Proceedings ofISCA-32, June 2005.

[11] S. Cho and L. Jin. Managing Distributed, Shared L2
Caches through OS-Level Page Allocation. In Proceedings
o f MICRO-39, December 2006.

[12] J. Corbalan, X. Martorell, and J. Labarta. Page Migra­
tion with Dynamic Space-Sharing Scheduling Policies: The
case of SGI0200. International Journal o f Parallel Pro­
gramming, 32(4), 2004.

[13] X. Ding, D. S. Nikopoulosi, S. Jiang, and X. Zhang. MESA:
Reducing Cache Conflicts by Integrating Static and Run­
Time Methods . In Proceedings o f ISPASS-2006, 2006.

[14] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private
NUCA Cache Partitioning Scheme for Chip Multiproces­
sors. In Proceedings o f HPCA-13, February 2007.

[15] B. Falsafi and D. Wood. Reactive NUMA: A Design for
Unifying S-COMA and cc-NUMA. In Proceedings o f
ISCA-24, 1997.

[16] E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. In Proceedings o f HPCA, 1999.

[17] T. Horel and G. Lauterbach. UltraSPARC III: Designing
Third Generation 64-Bit Performance. IEEE Micro, 19(3),
May/June 1999.

[18] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. Keck-
ler. A NUCA Substrate for Flexible CMP Cache Sharing.
In Proceedings o f ICS-19, June 2005.

[19] R. Iyer, L. Zhao, F. Guo, R. Illikkal, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. QoS Policies and Architecture
for Cache/Memory in CMP Platforms. In Proceedings o f
Sl(,METRICS. June 2007.

[20] Y. Jin, E. J. Kim, and K. H. Yum. A Domain-Specific On-
Chip Network Design for Large Scale Cache Systems. In
Proceedings o f HPCA-13, February 2007.

[21] R. E. Kessler and M. D. Hill. Page Placement Algorithms
for Large Real-Indexed Caches. ACM Trans. Comput. Syst.,
10(4): 338-359, 1992.

[22] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non­
Uniform Cache Structure for Wire-Dominated On-Chip
Caches. In Proceedings o f ASPEOS-X, October 2002.

[23] P. Kundu. On-Die Interconnects for Next Generation
CMPs. In Workshop on On- and Off-Chip Interconnection
Networks fo r Multicore Systems (OCIN), December 2006.

[24] P. R. LaRowe and S. C. Ellis. Experimental comparison
of memory management policies for numa multiprocessors.
Technical report, Durham, NC, USA, 1990.

[25] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayap-
pan. Gaining Insights into Multicore Cache Partitioning:
Bridging the Gap between Simulation and Real Systems.
In Proceedings ofHPCA-14, February 2008.

[26] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50-58, February 2002.

[27] R. Min and Y. Hu. Improving Performance of Large
Physically Indexed Caches by Decoupling Memory Ad­
dresses from Cache Addresses. IEEE Trans. Comput.,
50(11): 1191-1201, 2001.

[28] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA Organizations and Wiring Alternatives
for Large Caches with CACTI 6.0. In Proceedings o f
the 40th International Symposium on Microarchitecture
(MICRO-40), December 2007.

[29] M. Qureshi and Y. Patt. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism
to Partition Shared Caches. In Proceedings o f MICRO-39,
December 2006.

[30] N. Rafique, W. Lim, and M. Thottethodi. Architectural sup­
port for operating system-driven CMP cache management.
In Proceedings o f PACT-2006, September 2006.

[31] J. Richard P. LaRowe and C. S. Ellis. Page placement poli­
cies for numa multiprocessors. J. Parallel Distrib. Comput.,
11(2): 112-129, 1991.

[32] J. Richard P. LaRowe, J. T. Wilkes, and C. S. Ellis. Exploit­
ing operating system support for dynamic page placement
on a numa shared memory multiprocessor. In Proceedings
ofPPOPP, 1991.

[33] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An
Argument for Simple COMA. In Proceedings o f HPCA,
1995.

[34] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive
Mechanisms and Policies for Managing Cache Hierarchies
in Chip Multiprocessors. In Proceedings o f ISCA-32, 2005.

[35] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partition­
ing of Shared Cache Memory. J. Supercomput., 28(l):7-26,
2004.

[36] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing L2
Caches in Multicore Systems. In Proceedings o f CMPMSI,
June 2007.

[37] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In Pro­
ceedings oflSSCC, February 2007.

[38] K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,
S. Makineni, and D. Newell. Molecular Caches: A Caching
Structure for Dynamic Creation of Application-Specific
Heterogeneous Cache Regions. In Proceedings o f MICRO-
39, December 2006.

[39] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Op­
erating System Support for Improving Data Locality on
CC-NUMA Compute Servers. S1GPLANNot., 31(9):279-
289, 1996.

[40] H. S. Wang, L. S. Peh, and S. Malik. A Power Model for
Routers: Modeling Alpha 21364 and InfiniBand Routers.
In IEEE Micro, Vol 24, No 1, January 2003.

[41] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodologi­
cal Considerations. In Proceedings o f ISCA-22, pages 24­
36, June 1995.

[42] M. Zhang and K. Asanovic. Victim Replication: Maximiz­
ing Capacity while Hiding Wire Delay in Tiled Chip Multi­
processors. In Proceedings o f ISCA-32, June 2005.

261

