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A broad range of problems in the physics of mate­
rials involve highly disordered media whose effective 
behavior depends critically on the connectedness, 
or percolation properties of a particular component. 
Examples include smart materials such as piezore­
sistors and thermistors, smart insulators, radar ab­
sorbing composites, cermets, porous media, doped 
semiconductors, thin metal films, and sea ice. In 
numerous composite and smart materials, the mi­
crostructure can be characterized by conducting par­
ticles embedded in an insulating host , and one is 
interested in the effective DC conductivity (or com­
plex permittivity for interactions with waves) near 
the critical volume fraction for percolation of the 
conducting phase. Such media frequently arise due 
to the desirability of light materials having the at­
tractive mecha!lical properties of common polymers 
and the electrical conductivities of metals. In mod­
eling transport in such materials, one often consid­
ers a two component random medium with compo­
nent conductivities (}l and (}2, in the volume frac­
tions 1 - P and p. The medium may be discrete, 
like the random resistor network, or continuous, like 
the random checkerboard and Swiss cheese models. 
In these systems, as h = Q.J. -+ 0 the effective 

(12 ' 
conductivity (}*(p, h) exhibits critical behavior near 
the percolation threshold Pc, (}*(p, O) f'V (p - Pc)t as 
p -+ pt (with (}1 = 0 and (}2 = 1), and at p = Pc, 
(}*(Pc, h) f'V h1/ 8 , h -+ 0+. 

In the lattice case of the random resistor network , 
it has been widely proposed that the scaling behav­
ior of ()* as a function of both p and h around p = Pc 
and h = 0 is similar to a phase transition in sta­
tistical mechanics, like that exhibited by the mag­
netization M (T, H) of an Ising ferromagnet around 
its Curie point at temperature T = Tc and applied 
field H = O. However, despite the numerous works 
based on this similarity, a rigorous understanding of 
it has been elusive. In the continuum, such as for the 
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Swiss cheese model (a conducting host with random 
holes cut out), the situation is even more complex -
while the underlying percolation exponents remain 
the same as for the lattice (and satisfy the standard 
scaling relations of statistical mechanics), the trans­
port exponents, such as t in three dimensions, can 
be different from their lattice values [1]. For the 
random checkerboard in two dimensions, it has been 
argued [2] that the exponent 8 is different from its 
lattice value, while the percolation exponents (and t) 
remain the same. These examples of non-universal 
behavior raise a fundamental question as to what 
features of the lattice problem remain true in the 
continuum. 

In recent work [3] we have shown that although 
the critical exponents of transport in the continuum 
may be different from their lattice values, they still 
satisfy the standard scaling relations of statistical 
mechanics, as do their lattice counterparts. This is 
accomplished through a direct , analytic correspon­
dence between transport in two component random 
media and the magnetization M of an Ising ferro­
magnet [4], which has been developed further and 
applied to critical behavior [3]. In particular, we ob­
tain a new integral representation for m = ()* / (}2 , 

_ (Xl d</>(z) 
m(h) = 1 + (h - l)g(h), 9 - io 1 + hz ' (1) 

where 9 is a Stieltjes function of h, </> is a posi­
tive measure which for our percolation models with 
p > Pc is supported only in [0, S(p)], where S(p) '" 
(p - Pc) -.6. ,p -+ Pc +, and ~ is called the gap expo­
nent. This formula is the direct analogue for trans­
port of Baker's formula [5] for the magnetization M 
in the variable T = tanh(,BH), 

M(T) = T+T(I_T2)G(T2), G = roo d'lj;(Z) , (2) 
io 1 + T 2 Z 

where G is a Stieltjes function of T2, 'Ij; is a posi­
tive measure which for T > Tc is supported only 
in [0, S(T)], where S(T) '" (T - Tc)-2.6., T -+ Tc +, 
and ~ is a different gap exponent . These formulas 

. make the connection of transport in random media 
to statistical mechanics almost transparent. Then, 
methods which have been used to analyze the criti­
cal behavior of the Ising model can be appropriately 
modified for transport in lattice and continuum per­
colation models to obtain 

~ 
8=~, 

u-,,( 
t = ~ - ,,(, (3) 

363 



where 'Y is the susceptibility exponent defined by 
X(p) = !l&- '" (p - Pc) -"( ,p ~ Pc +, h = O. These laws 
are satisfied by the analogous critical exponents for 
phase transitions in statistical mechanics. 

The Stieltjes integral representation above has 
been used previously in a different form to obtain rig­
orous, general bounds on the effective complex per­
mittivity E* of two component random media in the 
continuum [6, 7J. These bounds are obtained under 
statistical constraints on the microstructure, such 
as known volume fractions and statistical isotropy 
(Hashin-Shtrikman), and are valid in the quasistatic 
regime. For high contrast materials, the bounds 
are very broad, and give little practical information 
about the effective behavior. However, Bruno [8J 
found that if one assumes the condition that one 
phase is contained in separated inclusions in a matrix 
of the other material (matrix-particle assumption), 
then there is a gap in the support of the measure in 
the integral representation, and tighter versions of 
the Hashin-Shtrikman bounds in the case of real pa­
rameters can be obtained. In [9, 10] we have found 
complex versions of the fixed volume fraction and 
Hashin-Shtrikman bounds for matrix-particle com­
posites. Even when the inclusions are fairly close to 
touching, characterized by a parameter 0 :S q :S 1, 
which is 1 when the inclusions are allowed to touch, 
the new bounds give a dramatic improvement over 
the original complex bounds [6, 7], as illustrated in 
Figure 1. 
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Figure 1: Bounds Rl (outer, dotted), R2 (in­
ner, dotted), R";P (outer, solid), and Rr;"P (inner, 
solid) on the complex permittivity E* of a PEO­
PPY insulator-conductor composite. Rl assumes 
only knowledge of the conductor volume fraction 
Pi = 0.02, and R2 assumes statistical isotropy as 
well. R";P and Rr;"P further assume the material 
is a matrix-particle composite with q = 0.9. The 
complex permittivities of the components are E1 = 
0+ i180 and E2 = 10 + iO.00018. 
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