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GENETIC EVIDENCE FOR A PLEISTOCENE POPULATION EXPLOSION

A bstrac t.— Expansions of population size leave characteristic signatures in mitochondrial “ mismatch distributions.” 
Consequently, these distributions can inform us about the history of changes in population size. Here, I study a simple 
model of population history that assumes that, t  generations before the present, a population grows (or shrinks) 
suddenly from female size N0 to female size A .̂ Although this model is simple, it often provides an accurate description 
of data generated by complex population histories. I develop statistical methods that estimate 0O = 2uN0, 0, = 2uN l , 
and t  = 2ut (where u is the mutation rate), and place a confidence region around these estimates. These estimators 
are well behaved, and insensitive to simplifying assumptions. Finally, I apply these methods to published mitochondrial 
data, and infer that a major expansion of the human population occurred during the late Pleistocene.
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It is remarkable that genetic data can inform us about de­
mographic changes that occurred 100,000 yr ago. The pos­
sibility exists because genetic differences between individ­
uals measure the genealogical distance between them, and 
genealogical distances tend to increase with population size. 
Two random individuals are more likely to be siblings (con­
nected by a short genealogy) in a population of 10 than in 
one of 10 million. Consequently, a population’s history is 
written in its genes.

The question is, How can this record best be deciphered? 
Geneticists have been relating various genetic statistics to 
population size for many years (Wright 1931), but the clas­
sical methods do not make adequate use of modern molecular 
data. In principle, the most powerful methods are those that 
base inference on the lengths of branches in a phylogenetic 
tree (Felsenstein 1992). Unfortunately, these methods pose 
challenging numerical problems, and have not yet been im­
plemented for the case of a nonstationary population.

Instead of sorting through phylogenetic trees, one can also 
work with the relative frequencies of pairs of individuals in 
a sample who differ by i nucleotide (or restriction) sites, 
where / = 0, 1, . . . (Slatkin and Hudson 1991; Rogers and 
Harpending 1992). The frequency distribution of such dif­
ferences has been called the “ distribution of pairwise genetic 
differences” and the “mismatch distribution” (Hartl and 
Clark 1989; Harpending et al. 1993). For brevity, I adopt the 
latter term here. Analysis of the mismatch distribution may 
not be optimal, but it is fast and will be shown to have 
satisfactory statistical properties.

The sections that follow (1) introduce the model of pop­
ulation history that underlies the analysis, (2) develop meth­
ods of point and of interval estimation, (3) investigate their 
behavior with simulated data, (4) defend these results against 
various criticisms, and (5) discuss their implications for the 
debate about modern human origins.

T h e  M o d e l  o f  S u d d e n  E x p a n s io n

Analysis is based on a simplified model of population his­
tory that Harpending and I (Rogers and Harpending 1992) 
have called the model of “ sudden expansion” : An initial 
population of female size N0 is at equilibrium between the

effects of mutation and genetic drift, then grows (or shrinks) 
quickly to a new female size, N t , and is observed t generations 
later. Only the female population sizes matter because the 
mitochondria of males are not transmitted to offspring. Strict­
ly speaking, N0 and N l refer not to the actual numbers of 
females but to their “ effective number,” defined as the re­
ciprocal of the probability that two random individuals have 
the same mother.

This model of demographic history is unrealistically sim­
ple. Its value results from three features of the dynamics of 
the mismatch distribution (Rogers and Harpending 1992): 
First, after a population decreases to a small size, conver­
gence to the new equilibrium is rapid. This implies that “bot­
tlenecks,” or temporary reductions in population size, 
amount to growth from an equilibrium population unless the 
bottleneck is very brief. Thus, it is often reasonable to assume 
that the pre-expansion population was at equilibrium. Second, 
after a population grows large, convergence to the new equi­
librium is exceedingly slow. Third, an initial expansion will 
obscure the effects of later expansions (and even those of 
minor bottlenecks) for a very long time. Throughout this 
extended period, the signature of the original expansion dom­
inates the mismatch distribution. Consequently, the model of 
sudden expansion provides a good fit to data even when the 
true story is one of continued exponential growth (Rogers 
and Harpending 1992).

This model reduces population history to three parameters: 
N 0, N i, and t. Unfortunately, the effect of each is confounded 
with M,the sum of per-nucleotide mutation rates in the region 
of DNA under study. Thus, the mismatch distribution can 
inform us only about three composite parameters, 0O = 2uN0,
0] = 2uNi , and t  = 2ut. These parameters measure female 
population size in units of l /2w individuals and time in units 
of 1/2u generations.

E s t im a t io n  b y  t h e  M e t h o d  o f  M o m e n t s

The estimators proposed here are obtained by fitting the 
empirical mean and variance to their theoretical counterparts. 
This procedure, called the method of moments, is widely used 
and usually successful. However, this is no basis for confi­
dence here. Method of moments estimators are ordinarily
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F ig .  1. Fit o f  the m odel to data. F , is the relative frequency o f  
pairs o f  individuals that differ by i restriction sites. The circles 
show the em pirical distribution o f  Cann et al. (1987), based on their 
figure 1. The solid line is the theoretical distribution fit using equa­
tions (2) and (3).

applied to data with statistically independent observations. 
The observations that contribute to an empirical mismatch 
distribution, however, are far from independent: each pair of 
individuals is correlated to a greater or lesser degree with 
every other pair. Thus, later sections will use computer sim­
ulations to show that the statistics introduced here are in fact 
useful as estimators. In the meantime, the argument of this 
present section is intended to motivate these estimators, not 
to justify them.

The expectation of the rth power of a random variable is 
called its rth moment about zero. The method of moments 
estimates parameters by equating observed with theoretical 
moments, and solving the resulting equations. With three 
parameters to estimate, three equations are required. Thus, 
the straightforward approach would equate the first three the­
oretical moments with their empirical analogues. However, 
this approach requires numerical methods that often fail to 
converge. Better estimators are obtained from a reduced mod­
el obtained by letting 0!—>°°. This is a useful simplification 
because the case in which 0 ,—»<* closely approximates that 
in which 0j is merely large (Rogers and Harpending 1992). 
It also applies exactly to pairs of individuals drawn from 
separate populations that have not exchanged migrants for t  

generations.
Let Gj(t) denote the probability that two such individuals 

differ by i nucleotide (or restriction) sites. Letting 0 !— in 
Rogers and Harpending’s (1992) equation (4) gives
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3 -

Fig. 2. Quantiles o f  t .  One-thousand data sets were simulated at 
each o f several values o f  t  , and each was used to estim ate the 
m odel’s parameters. The bold dots indicate points at which t  =  t .  

The solid line is the median, the dashed lines enclose the central 
50% o f the distribution, and the dotted lines the central 95%. Each 
simulated data set was generated using the coalescent algorithm  
with 0O = 1 , 0 !  =  500, and N  =  147.

Setting the observed mean, m, and variance, v, 
(jb! and v = (jl2 — |xf leads to two statistics,

= V v -

f  = m — 6n

equal to m —

(2) 

(3)

(1)

The moment generating function, obtained from this expres­
sion or from Li’s (1977, eq. 2) probability generating func­
tion, is

Standard methods (Kendall and Stuart 1977, eq. 3.18) provide 
the first two moments about zero:

Mi = 0o + n

i M2 =  01 + 00 +  T +

which I propose to interpret as estimators. In practice, 1 set 
§o= 0 if v <  m, and t  = 0 if m <  0O.

To illustrate the method, I use the mitochondrial mismatch 
distribution from the world human sample of Cann et al. 
(1987, fig. 1). Figure 1 shows that the method provides an 
excellent description of the data. The estimates presented 
there are similar to the least squares estimates of Rogers and 
Harpending (1992). The fit of the theoretical curve should 
not, however, be interpreted as support for my proposal that
0O and t  be interpreted as estimators—many other two-pa­
rameter functions would fit as well. The case in favor of these 
statistics is made in the section that follows.

Statistical Properties o f  Point Estimates

To determine the statistical properties of 0O and t, I used 
the coalescent algorithm (Hudson 1990) to generate 1000 
simulated data sets at each of a wide variety of parameter 
values. In order to allow for changes in population size, I 
used a modified version of the coalescent algorithm, which 
is described elsewhere (Rogers in press). I estimated 0O and 
t  from each simulated data set, thus obtaining an estimate of 
the sampling distribution of the estimators for each set of 
parameter values.

Figure 2 shows how the sampling distribution of t
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F i g . 3 . Quantiles o f  0 O One-thousand data sets were simulated at 
each o f several values o f  0O, and each was used to estim ate the 
m odel’s three parameters. In each run, 0! =  1000, t  =  7, and N  = 
147. The lines and bold dots are interpreted as in figure 2.
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of log10 M SE
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F i g . 4 .  Quantiles o f  lo g i0M SE. Quartiles were estimated from  
1000 data sets simulated at each o f  several values o f 0 ,. In each  
run, 0O =  1, t  =  7, and N  = 147. The lines are interpreted as in 
figure 2 .

ch an ges in resp on se to variation in the underlying param eter 
t .  I f  t  is in fact an estim ator o f  t ,  w e w ou ld  ex p ect the 
m edian o f  t (show n  as a so lid  lin e  in the figure) to increase  
in resp onse to in creases in t .  T his is in deed  the case. An 
ideal estim ator should  a lso  have a re la tively  narrow d istri­
bution at each  va lu e o f  t .  T he dashed and dotted lin es show  
that t  a lso  sa tisfies this test. The dashed lin es en c lo se  the 
central 50%  o f  the d istribution , and the dotted lin es the 
central 95% . B oth  sets o f  lin es en c lo se  a re la tively  narrow  
in terval about the m edian. In all o f  these resp ects, f  behaves  
as an estim ator o f  t .

Figure 3 perform s a sim ilar analysis on 0O, and show s it 
to perform  w ell as an estim ator w hen 0O >  1. The distribution  
is tightly  centered about the bold  dots, show ing that 0 is rich 
in  inform ation  and nearly unbiased  w hen 0O >  1. But w hen
0O <  1, the upper quantiles o f  1og10 0O are horizontal, w h ile  
the m edian and low er quantiles o f  0O equal zero. Thus, an 
estim ate o f  0O ~  1 is equally con sisten t w ith the hypotheses  
that 0O =  1 and that 0O =  0. A lthough 0 O w ill a lw ays a llow  
us to p lace an upper bound on 0O, it can provide no low er  
bound u nless 0 O is m uch greater than one. T his is no serious 
problem ; it m eans on ly  that w hen the estim ate is near unity, 
the confidence interval w ill reach all the w ay to zero.

B ut what about 0 t? We have no estim ate o f  this parameter, 
but Harpending has show n that em pirical d istributions tend 
to be “ sm ooth ” w hen 0! is large and 0O is m uch sm aller than 
t  ; oth erw ise, they tend to be “ rough ” (H arpending et al. 
1993; Harpending 1994). Thus, a m easure o f  roughness may  
provide inform ation about 0j. H arpending et al. m easure 
roughness by the sum o f  squared d ifferences betw een  suc­
c e ss iv e  entries o f  the em pirical m ism atch distribution. M y 
ow n  sim ulations su ggest that this statistic is less  inform ative  
than another m easure o f  roughness, the m ean squared error 
(M SE  ) betw een  the ob served  and fitted m ism atch distribu­
tion s. Rather than calcu lating the fit using equation 1, w hich  
assum es that 0 ]—>°°, I use the fu ll three-param eter equation  
(R ogers and Harpending 1992, eq. 4 ), w ith 0j =  F q 1 — 1,

w here F 0 is the relative frequency in the data o f  pairs o f  
ind ividuals that d iffer by zero sites. This approach w as su g ­
gested  by R ogers and H arpending, and usually provides a 
better fit w hen P 0 is far from  zero. The quantiles o f  the 
sam pling distribution o f  lo g 10M SE  are plotted against 0] in  
figure 4, and verify that this statistic contains inform ation  
about 0 :.

This section  has show n that the statistics presented above 
contain inform ation about the parameters they are intended  
to estim ate. I turn next to the task o f  constructing a confidence  
region.

C o n f id e n c e  R eg io n s

In this section , I ask w hich  parameter values can be rejected  
by the data, and w hich  cannot. The set o f  parameter values  
that cannot be rejected w ill be interpreted as a confidence  
region. This procedure is justified  by the very definition o f  
a con fidence region . A 95% confidence region is a set o f  
parameter values constructed by any procedure that guar­
antees the fo llo w in g  property (K endall and Stuart 1979, p. 
110): If, each tim e w e construct a 95% confidence region, 
w e assert that it includes the true parameter value, w e w ill 
in the long run be correct 95% o f  the tim e (and incorrect 5% 
o f  the tim e). One w ay to construct such a region  is to define 
som e statistical test w h ose outcom e depends on ly  on the data 
and the param eters o f  interest. The set o f  parameter values  
that cannot be rejected at sign ifican ce lev e l a  w ill constitute  
a 100 X (1 — a )%  con fidence region.

There are innum erable w ays to construct such a test, and 
each w ill lead  to a valid  confidence region . H ow ever, som e  
are m ore usefu l than others. To m ake m y confidence intervals 
sm all, I have tried to construct a test w hose region  o f  ac­
ceptance A  is sm all, subject to the constraint that there be a 
fixed probability 1 -  a  that an observation  w ill fa ll w ithin  
it. T his requires that A be ch osen  so that all points along its 
boundary have equal probability density. In other w ords, the
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region  o f  acceptance should be defined by one o f  the contour 
lines o f  the d ensity  function . W hen the distribution is m ul­
tivariate norm al, points o f  equal density a lso  have equal va l­
ues o f  the M ahalanobis distance,

D (X )  =  (X  -  M ) TC - ! ( X  -  M )

w here X  is a vector o f  observations; M ; the corresponding  
vector o f  mean values; C , the covariance matrix; and the 
superscript T  ind icates the matrix transpose. T his suggests a 
procedure for constructing sm all confidence intervals from  
normal data: For each set o f  parameter values, the first step  
w ou ld  estim ate M  and C from sim ulated data. The second  
w ould  calcu late D  both from the real data and also from  each  
sim ulated data set. The parameter values cou ld  be rejected  
at the 5% leve l i f  le ss  than 5% o f  the sim ulated d istances 
w ere as large as the observed  distance.

U nfortunately, this test generates confidence intervals that 
are d isappointingly  large, apparently because the probability  
distribution is far from  m ultivariate normal. Graphical anal­
y sis  indicates that lo g |O0o and t are approxim ately bivariate 
norm al, and that the m arginal distribution o f  lo g ,0M SE  is 
also  approxim ately norm al. But the distribution is l'ar from  
norm al w hen the three variables are considered  together. 
T herefore, I use a m odified procedure that exp lo its the b i­
variate norm ality o f  log  0oand t but does not assum e full 
m ultivariate norm ality. The m odified  test is perform ed as 
fo llow s;

1. U se  1000 sim ulated data sets to estim ate M  and C as 
above, but include on ly  tw o variables, lo g lo0o and t .

2. D efine the M ahalanobis distance D  using on ly  these tw o  
variables. In this calcu lation , I use the algorithm  d e­
scribed by Dongarra et al. (1979 , pp. 8 .8 -8 .9 ) .

3. Count the number n o f  sim ulated data sets for w hich  
the sim ulated D  is at least as large as the observed  D, 
and the sim ulated M SE  is at least as sm all as the ob­
served  M SE, and reject if  « /1 0 0 0  <  0 .05 .

This test uses the approxim ately normal distribution o f  
l ° g io0o and t to define a relatively  sm all region  o f  acceptance, 
and then reduces that region still further by im posing  an 
additional condition  in vo lv in g  the M SE. A s figure 4 show s, 
the M SE  tends to be sm allest in data from  populations that 
have grow n. Thus, the test is more appropriate for expanded  
than for equilbrium  populations, producing a narrower co n ­
fidence region  in the form er case than in the latter.

T his ch o ice  is sen sib le  because the behavior o f  the m ethod  
w ith data from equilibrium  populations is not very  important. 
Equilibrium  populations produce m ism atch distributions that 
are extrem ely  ragged, and not at all like the corresponding  
theoretical curves (Slatkin and H udson 1991; R ogers and 
H arpending 1992). The estim ators develop ed  here should  
work poorly w ith such data anyw ay. M ism atch  distributions 
from  equilibrium  populations can be recogn ized  by their 
roughness (H arpending et al. 1993; H arpending 1994), and 
I don ’t expect the present m ethods to be applied to such data 
anyw ay. Thus, it m akes sense to sacrifice precision  w ith eq u i­
librium  populations in order to gain  precision  w ith expanded  
populations.

To evaluate this m ethod for producing confidence regions,
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Fig. 5. N inety-five percent confidence region for a simulated pop­
ulation with t  =  4. A data set o f size N  = 147 was simulated  
assum ing that 60 = 1. 0]  =  500, and t  = 4, and a confidence region 
was then generated as described in the text. Open circles represent 
points outside the 95% confidence region; filled circles represent 
points within. '

I sim ulated data under several different assum ptions and con ­
structed confidence regions for each. The first o f  these, show n  
in figure 5, is based on data for w h ich  90 = 1 , 0 ! =  500 , and 
t  =  4. Each panel there considers a different hypothesis about 
the m agnitude o f  the population expansion . A t each point in 
the “ n o-grow th ” panel, 0, =  0O, w hich  leaves t  undefined. 
Thus, there is on ly  one parameter to vary, 0„. The eigh t open  
circ les indicate that eigh t different values o f  0O w ere con sid ­
ered and rejected. Thus, the m ethod correctly rejects the hy­
pothesis o f  no grow th. The “ tenfo ld  grow th” panel in figure 
5 entertains the hypothesis that the population increased  in 
s ize  by a factor o f  ten, so that 0[ =  1O0O. Here, there are tw o  
free param eters, so a rectangular matrix o f  param eter values  
w as considered . A ll w ere rejected. The hypothesis o f  100­
fo ld  grow th w as also (correctly) rejected. In the “ 103-fo ld  
grow th” panel, w e see  for the first tim e a new  sym bol, the 
filled  circ le , w hich ind icates a set o f  parameter values that 
w as not rejected. T he 95%  confidence region is defined by 
the filled  circ les in the various panels. N ote that the con fi­
dence region  is narrow, and includes the true param eter va l­
ues.
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F ig .  6 .  Ninety-five percent confidence region for a simulated pop­
ulation with t  = 12. A data set o f size N  =  147 was simulated 
assuming that 0O — 1, 0! = 500, and t  = 12, and a confidence 
region was then generated as described in the text. Open circles 
represent points outside the 95% confidence region; filled circles 
represent points within.

F ig .  7. Ninety-five percent confidence region from a simulated 
equilibrium population. A data set of size N  =  147 was simulated 
assuming that the population was at equilibrium with 0 = 3.1623, 
and a confidence region was then estimated as described in the text. 
Open circles represent points outside the 95% confidence region; 
filled circles represent points within.

The confidence interval in figure 6 is based on data for 
which the true value of t  is 12. Once again, the confidence 
interval is small and includes the true parameter values.

Figure 7 shows a confidence region for a case in which I 
expect the method to work poorly—that of an equilibrium 
population. Note that there are closed circles in each panel, 
indicating that no value of growth (0i/0o) is excluded. Neither 
does the confidence region exclude any value of t .  Thus, it 
informs us neither about the amount of growth that has oc­
curred, nor about the time of this growth. This poor perfor­
mance agrees with my low expectations for equilibrium data. 
I was surprised, however, by the relatively narrow (and ac­
curate) bound on 0O. The method provides some useful in­
formation even with worst-case data.

In summary, it appears that the present method produces 
narrow confidence regions when applied to data from pop­
ulations that have expanded. It does not misinform us even 
when applied to worst-case data.

A  C o n fid en ce  R e g io n  f o r  H u m an  D a ta

Figure 8 shows a confidence region calculated from the 
Cann-Stoneking-Wilson data shown in figure 1. The first three

panels, corresponding to no growth, 10-fold growth, and 100­
fold growth, contain only the open circles that indicate re­
jected hypotheses. Thus, the confidence region indicates that 
the human population expanded by more than 100-fold. It 
places no upper limit on the magnitude of growth, but does 
place rather narrow limits on the other parameters: 0O < 10, 
and 4 <  t  <  9.

S e n s itiv ity  to  S im p lify in g  A ssu m p tio n s  ,

Before discussing what this confidence region implies, we 
should consider the possibility that it is unreliable. There are 
several causes for concern.

The M o d e l  o f  S u d d en  E x p a n s io n  Is  N o t an  A c c u ra te  D e ­
sc r ip t io n  o f  P o p u la tio n  H is to r y .—The theoretical mismatch 
distribution is remarkably insensitive to violations of the 
model of sudden expansion. This was demonstrated by Rog­
ers and Harpending (1992), whose results were summarized 
in the second section of the present paper. When an initial 
expansion is followed by later expansions or minor bottle­
necks of population size, the theoretical mismatch distribu­
tion is affected only slightly. The empirical mismatch dis-



PLEISTOCENE POPULATION EXPLOSION 613

No growth
10

#0 1 -

0.1

10
1

0.1 - 1

10 
i  H 

0.1

101-fold grow th

102-fold grow th
o o o o o o oo o o o o o o 0 o

o o o o oo o o o oo o o o oo o o o o

10  -  

1 -  
0.1  -

10 
l  H

o o o o o

o o o o o

7.5
r

10

104-fold  grow th
o o o o o o0 o o o

O O O •  •  0 o
O O O •  •  O 0

00

7.5
r

10

106-fold grow th

00
10 -

1 -  
0.1

io  H 
l

0.1 - 1

10

1

0.1
7.5
r

10

1 1 

5  7 . 5

1

10
T

103-fold growth
u <_< u u O O O O O <_» u O O
O • •  •  O O O O
O O O •  • 
n  A n  n  o

O O 0
U V U U U
O O O O 0 0  0  0

1 1 

5  7 . 5

1
10

T

105-fold growth
w u  u  

O O O O O
u  u  
O

O • •  •  O O O 0

O O O •  • 0  0  0

O O O •  • O O 0
1 1 

5  7 . 5

I
10

T

107-fold growth
O O O O 0

u  u  u  
O

0 •  •  •  o O O O

O O 0 • • O O O

O O O •  • O O 0
1 1 
5 7.5

1
10

r

T a b l e  1. Theoretical m ismatch distributions in a subdivided and 
a randomly mating population. The subdivided and the randomly 
mating populations both began at time 0  as randomly mating pop­
ulations at equilibrium with 0O =  1, which then grew suddenly by 
a factor o f  200. Both are observed at time t  =  8 . At time 0 the 
subdivided population split into two isolated subpopulations. C ol­
umn 2  contains the distribution for pairs within subdivisions, co l­
umn 3 that for pairs from different subdivisions, colum n 4 that for 
pairs drawn at random from the entire subdivided population, and 
colum n 5 that for pairs from the randomly mating population.

Subdivided
Random
matingi Within Btw Total

0 0.0101 0.0002 0.0051 0.0051
1 0.0111 0.0014 0.0063 0.0063
2 0.0152 0.0061 0.0107 0.0106
3 0.0252 0.0174 0.0214 0.0213
4 0 .0430 0.0373 0.0402 0.0402
5 0.0672 0.0645 0.0659 0.0658
6 0.0926 0.0933 0.0930 0.0930
7 0.1126 0.1164 0.1145 0.1145
8 0.1220 0.1280 0.1250 0.1250
9 0.1190 0.1260 0.1225 0.1225

10 0.1057 0.1127 0.1091 0.1092
11 0.0864 0.0924 0.0893 0.0894
12 0.0655 0.0703 0.0678 0.0679
13 0.0464 0.0499 0.0482 0.0482
14 0.0310 0.0334 0.0322 0.0322
15 0.0197 0.0212 0.0204 0.0205
16 0.0119 0.0129 0.0124 0.0124
17 0.0069 0.0075 0.0072 0.0072
18 0.0039 0.0042 0.0041 0.0041
19 0.0021 0.0023 0.0022 0.0022

20 0.0011 0.0012 0.0012 0.0012

F ig .  8 . N inety-five percent confidence region for the CSW  data. 
Large filled circles indicate points within the 95% confidence re­
gion, and open circles indicate points outside o f the confidence 
region. 10*-fold growth means that 0 j /0O =  10*. Data are from Cann 
et al. (1987).

tribution is also robust w hen the in itial population is sm all, 
and is not subdivided (R ogers in press).

M u ta tio n  R a te s  V a ry  A c r o s s  N u c le o tid e  S ite s .— M utation is 
assum ed to fo llo w  K im ura’s (1 9 7 1 ) m odel o f  “ infinite s ite s ,” 
w hich  im plies that no nucleotide site m utates m ore than once. 
H ow ever, several o f  the sites studied have clearly mutated 
repeatedly (K ocher and W ilson  1991). T his suggests that 
som e sites may mutate faster than others, a p ossib le  problem  
sin ce rate variation can generate signatures that m im ic those  
produced by population grow th (R. Lundstrom  M S). H o w ­
ever, I have show n elsew here (R ogers 1992) that this probably  
introduces on ly  a n eg lig ib le  error o f  about 3% in the expected  
num ber o f  site d ifferences betw een  pairs o f  individuals in 
hum an data. T his suggests that little error is introduced into  
the theoretical curves, and p oss ib ly  that the em pirical curves 
w ill be sim ilarly  unaffected. Further w ork is needed on this 
point.

R e a l P o p u la tio n s  A re  S u b d iv id e d  a n d  D o  N o t M a te  a t  R a n ­
d o m .— The statistical m ethods assum e random m ating. Yet I 
apply them  to the human population , w hich , far from  m ating  
at random , is d iv ided  into a large number o f  partially iso lated  
subd iv ision s. This application can be defended  on ly  to the

extent that the m ism atch distribution is in sen sitive  to sub­
d iv ision . I treat this problem  in detail e lsew here (R ogers in 
press) and deal here on ly  w ith  the effect o f  one form  o f  
subd iv ision  on the theoretical m ism atch distribution.

C onsider a population that in itia lly  m ates at random and 
is at equilibrium  w ith s ize  0O, but then splits into K  com pletely  
iso lated  populations o f  s ize  ^ t/ K  w hich  are observed  t  units 
o f  m utational tim e later. Pairs o f  individuals drawn at random  
from  the total population d iffer by i sites w ith  probability

H M  =  F j(T )/K  +  (1 -  1 /K ) G ; ( t), (4)

w here F ,(t)  is  the m ism atch distribution for pairs w ithin  a 
sin g le  random ly m ating population o f  size  %X!K  (R ogers and 
H arpending 1992, eq  4), and G ,(t) the m ism atch distribution  
for pairs from separate, com p letely  iso lated  populations (eq.
1)-

N ote that H t =  F,- w hen K  =  1, and that >G; as AT—
H i fa lls betw een  these lim its w hen K  takes interm ediate va l­
ues. B ut w e already know  that G, ~  F, w hen & \/K  is large 
and 0O sm all. This is illustrated b elow  and is a lso illustrated  
by the c lo se  fit o f  the tw o-param eter m odel to the data in 
figure 1. I f  Gj ~  Fj, then equation (4) im plies that H, ~  F, 
w hatever the value o f  K . Thus, the theory for a random ly  
m ating population should hold  approxim ately even  w hen sub­
d iv ision s are com p letely  iso lated . W hen sub d iv isions are in ­
com p lete ly  iso lated , the random  m ating approxim ation  
should be even  better.

Table 1 illustrates this result for the case  o f  a population  
with tw o com p lete ly  iso lated  subdivisions. T he subdivided
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population  is com pared w ith one o f  equal s ize  that m ates at 
random . The tw o populations have identical dem ographic  
histories excep t that one has been  subdivided for t  units o f  
m utational tim e. The table sh ow s that subdivision  has a re­
m arkably sm all effect. Indeed, the e ffect is entirely in v isib le  
w hen these distributions are d isp layed  graphically. T he s im ­
ilarity o f  these distributions is even  m ore rem arkable in v iew  
o f  m y extrem e assum ption that there was no gene flow  at all 
betw een  su b d iv isions. W ith gene flow , the tw o distributions 
w ould  be even  m ore similar.

T his sh ow s that population structure has a n eg lig ib le  effect  
on the theoretical distribution in one im portant case: that in  
w hich 0O is sm all, 0,/AT is large, and the tim e o f  population  
grow th co in cid es w ith the tim e o f  subdivision . E lsew here  
(R ogers in press), I show  that, in this case, the e ffec t on the 
em pirical distribution is sim ilarly sm all. The e ffect is not so  
sm all w hen the in itial population is subdivided: subdivision  
m akes the upper bound on 0O even  smaller.

The S a m p le  Is L ess  Than Id e a l.—M y estim ates are based  
on the sam ple o f  Cann et al. (1987 ), w hich  has been criticized  
b ecause its “ A frican ” com ponent actually con sists o f  A m er­
ican b lacks (Spuhler 1988; Kruger and V ogel 1989). Yet, 
sim ilar results are obtained from  m any other sam ples (Har­
pending et al. 1993; Sherry et al. 1994; H arpending 1994). 
Thus, the main con clu sion s o f  this analysis cannot be attrib­
uted to problem s w ith this particular sam ple.

P a ir s  o f  In d iv id u a ls  in the S a m p le  A re  N o t In d e p e n d e n t .—  
Ideally , the estim ators d eveloped  here should be applied to 
an em pirical distribution based  on statistically  independent 
pairs o f  individuals. U nfortunately, this is im possib le . The 
pairs o f  individuals studied here are correlated both because  
o f  gen ea log ica l relationships and because each  individual 
participates in m any d ifferent'pairings. C onsequently , there 
is no reason a priori to exp ect these estim ators to perform  
w ell at all. Yet the sim ulations show  that they do. The be- 
tw een-pair correlations are present not on ly  in the C SW  data, 
but a lso in the sim ulated data. F igures 2 -4  show  that the 
univariate estim ators are usefu l, correlations notw ithstand­
ing, and figures 5 -7  show  that the confidence region  is also  
usefu l.

In sum m ary, the analysis m akes several unrealistic sim ­
p lify in g  assum ptions, but for each there is reason to suppose  
that the v io lated  assum ption probably has no large e ffec t on 
the estim ates. .

M o d e r n  H u m a n  O r i g i n s

In this final section , I consider what the results obtained  
above im ply  about the origin  o f  m odern hum ans. Figure 8 
ind icates that the low er bound on the confidence interval for 
t  is betw een  4  and 5, w hereas the upper bound is betw een  
8 and 9. On a conservative interpretation, w e can conclude  
that the ancestors o f  the present human population expanded  
dram atically betw een 4 and 9 units o f  m utational tim e ago. 
The analysis p laces a low er bound, but no upper bound on 
the m agnitude o f  the expansion: the increase m ust have been  
m ore than 100-fo ld . It should not be inferred that this increase  
occurred as the m odel assu m es— all at once. D ata like those  
observed  cou ld  also have been  produced by other trajectories 
o f  grow th, including continued exponential grow th beginning

at around t  =  6 (Slatkin and H udson 1991; R ogers and Har­
pending 1992). The results im ply that substantial population  
grow th occurred in  the neighborhood o f  t  =  6, but say noth­
ing about the later h istory o f  population grow th.

To re-express t  in years, w e m ust d iv ide by 2 u (tw ice the 
m utation rate) and m ultip ly by the length o f  a generation, 
say, 25 yr. U nfortunately, the m utation rate is not know n with  
great accuracy. T he rate o f  human m itochondrial nu cleotide  
divergence has been variously  estim ated at 2% and 4% per 
m illion  years (Cann et al. 1987), but the confidence intervals  
around these estim ates are unknown. The tw o estim ates place  
u at 7 .5  X  1 0 -4 and 1.5 X  10~3, resp ectively  (R ogers and 
H arpending 1992). If w e knew  the larger estim ate o f  u to be 
correct, then each  unit o f  the m utational tim e scale w ould  
correspond to 8333 yr, and the confidence interval for t  w ould  
correspond to 3 3 ,0 0 0 -7 5 ,0 0 0  yr B .R  The sm aller estim ate o f  
u doubles these values, g iv in g  6 6 ,0 0 0 -1 5 0 ,0 0 0  B .R  N either  
o f  these is a true confidence interval, because neither takes 
proper account o f  the sam pling distribution o f  u. C alculation  
o f  a true confidence interval for t m ust aw ait better infor­
m ation about the sam pling distribution o f  u.

Sim ilar com m ents apply to the estim ates o f  90. The co n ­
fidence region  says that 0o <  10. W ith the sm aller estim ate  
o f  u, this g ives approxim ately N 0 <  7 000 , in good  agreem ent 
both w ith earlier estim ates o f  our long-term  e ffectiv e  pop­
ulation  s ize  and w ith earlier estim ates o f  N 0 (rev iew ed  by 
R ogers and Jorde 1995). The upper bound on N 0 is rem ark­
ably sm all and may be b iased  dow nw ard. If the w ave in the 
em pirical distribution resulted from  a very brief bottleneck, 
the pre-expansion  population m ay have been far from  equ i­
librium . This cou ld  cause a dow nw ard bias in 0O, and may 
account for the sm all estim ates (R ogers and Harpending  
1992). Further sim ulations are needed  to ch eck  this co n jec­
ture. An opposite  bias m ay be introduced by the assum ption  
o f  random m ating— if  the in itial population were structured, 
then the upper bound inferred here w ould  be too high (R ogers 
in press).

Takahata (1 9 9 3 ) used high genetic  diversity at the H LA  
locu s to argue that the human population has not passed  
through any sm all bottleneck . H ow ever, the bottlenecks he 
is exclu d in g  are sm aller than the 70 0 0  fem ales in the initial 
population inferred here. Thus, Takahata’s results are co n ­
sistent w ith  m ine (R ogers and Jorde 1995).

The w ave in the m ism atch distribution m ight also reflect 
natural se lection  rather than a population expansion . If a fa ­
vorable mutation occurred in a m itochondrion, the carriers 
o f  that m utation m ight increase in number until the new  a lle le  
w as fixed. Thus, our “ p opulation” m ight con sist o f  the fe ­
m ale carriers o f  a new  a lle le . H ow ever, H arpending et al. 
(1 9 9 3 ) argued that this interpretation is inconsistent w ith re­
sults from betw een-population  m ism atch distributions.

Furtherm ore, the archeolog ica l record provides som e sup­
port for the v iew  that an expansion  did occur. Throughout 
m uch o f  the P le istocen e, stone too ls w ere relatively  uniform  
over vast d istances and spans o f  tim e. But at around 4 0 ,0 0 0  
B.P. new  types o f  stone too ls appear throughout m ost o f  the 
Old W orld, and thereafter tech n o log ica l change is faster. 
W hen skeleta l rem ains are found at these later sites, they are 
alm ost invariably those o f  anatom ically  modern humans
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(K lein  1992). T hese ob servations have led  som e prehistorians 
to  propose the “ replacem ent m o d el” o f  m odern human or­
ig in s, w hich  holds that m odern hum ans ev o lv ed  in A frica  
som e 5 0 ,0 0 0 -1 0 0 ,0 0 0  yr ago, and then spread throughout the 
w orld, replacing earlier peop les as they w ent (Stringer and 
A ndrew s 1988). The expansion  that this m odel proposes o c ­
curs at approxim ately the sam e tim e as that im plied  by the 
m itochondrial data.

The com peting “ m ultiregional m o d el” (W olp off 1989) 
holds that m odern hum ans ev o lv ed  in a w idespread popu­
lation that inhabited m uch o f  Europe, A frica, and A sia . F a­
vorable m utations arising in one p lace spread throughout the 
w orld  by gene flow , not by the replacem ent o f  w h ole p op­
ulations. This h ypothesis does not require a population e x ­
pansion, but neither does it preclude one. It is p ossib le  that 
the orig in  o f  m odern hum ans in vo lved  som e adaptation that 
a llow ed  our ancestors to inhabit the landscape m ore densely. 
If so, a population expansion  cou ld  have occurred even  under 
the m ultiregional m odel. H ow ever, it is hard to im agine that 
this in -p lace expansion  cou ld  have been as large as the sev ­
eral-hundred-fold  expansion  inferred here. To this extent, e v ­
idence for a population expansion  w eigh s against the m ul­
tiregional m odel. Furthermore, the m ultiregional m odel im ­
p lies that m odern hum ans ev o lv ed  in a population that 
spanned several continents, yet the present results im ply that 
this population  contained few er than 70 0 0  fem ales. A nd this 
num ber b ecom es even  sm aller i f  population structure is in ­
troduced into the analysis (R ogers in press). It is im plausib le  
that a population this sm all cou ld  have spanned three co n ­
tinents and still been  connected  by gene flow. Thus, the sm all 
estim ate o f  N 0 a lso  w eigh s against the m ultiregional m odel.

F inally , the w ave the the m ism atch distribution cou ld  also  
have been produced by a separation o f  the human population  
into several relatively  iso lated  subpopulations. A nalysis o f  
betw een-group  m ism atch distributions indicates that this may 
w ell be the case (H arpending et al. 1993; G ibbons 1993). 
T his interpretation o f  the data is a lso inconsisten t w ith the 
m ultiregional m odel sin ce the date o f  the event inferred here 
is m uch later than the original expansion  o f  H o m o  e re c tu s  
populations throughout Europe and A sia .
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