
A N e w V e r i f i c a t i o n M e t h o d F o r E m b e d d e d S y s t e m s

R obert A. Thacker, C hris J. M yers and K evin Jones Scott R. L ittle
University o f Utah Freescale Semiconductor, Inc.

{thacker, myers,kjones] @ vlsigroup.ece.utah.edu Scott.Little@ freescale.com

Abstract— Verification of embedded systems is complicated
by the fact that they are composed of digital hardware, analog
sensors and actuators, and low level software. In order to
verify the interaction of these heterogeneous components, it
would be beneficial to have a single modeling formalism that is
capable of representing all of these components. To address this
need, this paper describes an extended labeled hybrid Petri net
(LHPN) model that includes constructs for Boolean, discrete,
and continuous variables as well as constructs to model timing.
This paper also presents a method to verify these extended
LHPNs. Finally, this paper presents a case study to illustrate the
application of this model to the verification of a fault-tolerant
temperature sensor.

I. INTRODUCTION

Embedded systems are an unavoidable part of life. In the
past, their software has generally been small and frequently
written in assembly language. Even though embedded soft­
ware is now often written in C or other high level languages,
such software usually includes embedded assembly code.
The effects of this low-level code need to be taken into
account. Often things that seem atomic at the higher level
become distinct and introduce risky behavior once compiled
into assembly. Compilers often do not appropriately treat the
low level constructs critical to the proper behavior of these
systems [7]. Embedded systems also interact with external
analog sensors and actuators, so continuous environment
variables must also be considered.

Due to the heterogeneous nature of embedded systems,
traditional software testing is often insufficient. Formal veri­
fication, the process of mathematically analyzing systems to
determine their properties, has been shown to be a promising
method for validating software [6]. Efforts have been focused
in two areas: static analysis and m odel checking. Static analy­
sis parses the program to determine its properties structurally.
Model checking, on the other hand, creates a representative
model and systematically explores all reachable states of
the system. These states are then analyzed to determine
if invalid reachable states exist. The model constructed is
often abstracted , removing portions of the system whose
complexity does not affect the desired property. The model
is also often decom posed into simpler subsystems that can
be analyzed completely in isolation. An abstract version of
these subsystems is then used to analyze the overall system.

In order to apply model checking to embedded systems,
it is necessary to develop a single model that is capable of
representing both discrete software and continuous interface
behavior. Timed automata are one candidate, but they require
all continuous variables to progress at the same rate, and they
do not allow a variable's progress to be stopped. H ybrid

automata are more expressive, but their use of invariants
to ensure progress is a difficult compilation target, as it is
not a natural way in which such systems are expressed in
higher level languages such as VHDL-AMS and Verilog-
AMS. H ybrid Petri nets are also considered, but their use of
separate continuous places and transitions is again a difficult
compilation target from high level languages. Recently, the
labeled hybrid Petri net (LHPN) model has been developed
and applied to the verification of analog and mixed-signal
circuits [10], [12], [14]. Compilers have been developed from
VHDL-AMS as well as SPICE simulation data [10], [11].
This model includes both Boolean variables for representing
digital circuits and continuous variables for representing ana­
log circuits. This paper presents an extended LHPN model
that includes discrete variables for representing embedded
software variables as well as expressions to check and modify
them. These extensions allow for both embedded hardware
and software to be represented in a single model. This
paper also describes how this new model can be applied
to the verification of embedded systems. Finally, this paper
presents an algorithm for state space reachability analysis
which enables model checking of these extended LHPNs.

This paper is organized as follows. First, Section II de­
scribes a motivating example of a fault-tolerant temperature
sensor for a nuclear reactor which includes both contin­
uous and discrete variables. Next, Section III introduces
the extended LHPN model while Section IV presents its
semantics. Since the state space of extended LHPNs is
infinite, Section V presents state sets which can potentially
yield a finite representation of the state space. Section VI
describes a reachability method that enables verification of
extended LHPN models. Finally, Section VII presents verifi­
cation results for our motivating example while Section VIII
presents our conclusions and future plans.

II. M otivating Ex a m ple

A traditional hybrid systems example is the cooling system
for a nuclear reactor [9], [1]. In this example, the temperature
of the nuclear reactor core is monitored, and when the
temperature is too high, one of two control rods is inserted
to cool the reactor core. After a control rod is used, it
must be removed for a set period of time before it can be
used again. If the temperature is too high and no control
rod is available, the reactor is shut down. In our modified
version of the example, there are two temperature sensors
to add fault tolerance. Namely, each temperature sensor is
periodically sampled and if at any point the temperature
difference between them is too large, it is assumed that one

978-1-4244-5028-2/09/S25.00 ©2009 IEEE 193

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Scott.Little@freescale.com

Fig. 1. Fault tolerant cooling system for a nuclear reactor.

of the temperature sensors has become faulty and the reactor
is shut down. A block diagram for this fault tolerant cooling
system for a nuclear reactor is shown in Fig. 1.

This example is interesting because it includes analog
components (i.e., the temperature sensors), mixed-signal
components (i.e., the analog/digital converters (ADCs)), dig­
ital components (i.e., the microcontroller), and embedded
software (i.e., the program running on the microcontroller).1
The verification problem for this example is to determine
if the reactor can be shut down even when the temperature
sensors are operating correctly. On the surface, this does not
appear to be a problem. However, there are a number of
implementation details that make this not so obvious. First,
there is typically only one ADC on a microcontroller which
is multiplexed to sample from each ADC input one at a time.
This means that the temperature sensors are not sampled at
exactly the same time. A second problem is that since the
comparison of the results is not done with a single atomic
instruction at the assembly level, it is possible that the results
are not even from the same sampling cycle.

Fig. 2 illustrates an LHPN which models this system.
It includes elements to model the environment, the ADC,
and the assembly language program. The following sections
explain the details and semantics of this model and how it
can be analyzed using our new verification method

III. A n Ex ten d ed LHPN M odel

An LHPN is a Petri net model originally developed to
represent analog/m ixed-signal (AMS) circuits [10], [12],
[14]. This model is inspired by features found in both
hybrid Petri nets [4] and hybrid automata [2]. Methods
have been developed for generating LHPNs from both a
subset of VHDL-AMS [10] and SPICE simulation data
[11]. Model checking algorithms have been developed for
LHPNs using both explicit zone-based methods [10], [12]
as well as implicit BDD and SMT-based methods [13].
This paper extends LHPNs to accurately model assembly
language level embedded software. Namely, discrete integer
values are added to represent register and memory values.
An extended expression syntax for enabling conditions and
assignments is also introduced to facilitate the manipulations
of variables in the model. An extended LHPN is a tuple N
= (P , T , B , X , V , F , L, Mo, So, Yq, Qo, Ro):

1 It should be noted that the traditional version of this example as a hybrid
automata does not consider the software directly as this is cumbersome to
do in that formalism.

• P : is a finite set of places;

• T : is a finite set of transitions;

• B : is a finite set of Boolean variables;

• X : is a finite set of discrete integer variables;

• V : is a finite set of continuous variables;

• F C (P x T) U (T x P) is the flow relation;

• L : is a tuple of labels defined below;

• M 0 C P is the set of initially marked places;

• S 0 : B —̂ {0,1, ± } is the initial value of each Boolean
variable;

• Y 0 : X — {Z U —to} x {Z U to} is the initial range of
values for each discrete variable;

• Q 0 : V — {Q U —to} x {Q U to} is the initial range
of values for each continuous variable;

• R 0 : V — {Q U —to } x {Q U to} is the initial range
of rates of change for each continuous variable.2

Consider the LHPN for the reactor example shown in
Fig. 2. The places are the circles labeled p 0, . . . , p 6. The
places p 0, p 2, and p 4 are initially marked indicated by the
token within the place. The transitions are the boxes labeled
t 0, . . . , t 7. The flow relation, F , is represented in the figure
by the arcs connecting the places and the transitions. This
example has one Boolean variable, sh u td o w n , which is
initially false. This example has four discrete variables, A,
B , A D C 1, and A D C 2 which are all initially undefined (i.e.,
[—to , to]). Finally, this example has one continuous variable,
te m p , which has an initial value of 2200 and an initial rate
of change of -2.

A connected set of places and transitions, or sub-graph,
within an LHPN is referred to as a process. The LHPN shown
in Fig. 2 includes three processes. The process on the left
models the temperature of the reactor, the process in the
middle models the ADC hardware, and the process on the
right models the embedded software.

Before defining the labels formally, let us first introduce
the grammar used by these labels. First, the numerical portion
of the grammar is defined as follows:

X ::= C | x | Vi | (x) | - X I X + X I X - X I X * X I

x / x | X~X | X%X | n o t (x) | O R (x ,x) |
AND(x, x) | X O R (x ,x) | INT(^)

where Ci is a rational constant from Q, Xi is a discrete
variable, and vi is a continuous variable. The functions NOT,
OR, AND, and XOR are bit-wise logical operations, and they
are only applicable to integers and assume a 2's complement
format with arbitrary precision. The function INT converts
a Boolean tru e value to an integer 1 and fa lse value to an
integer 0. Note that when continuous values are assigned
to discrete variables, they are truncated (i.e., 13.5 becomes

2 The rate of change is the first time derivative of the associated continuous
variable.

194

{ —shutdown A temp < 2200}
{temp := 2}

{—shutdown A temp > 9800} ti
{temp := —2} V [3, 5]

{—shutdown}

{ADC1 := temp * 256/10000}

{—shutdown}

{ADC2 := temp * 256/10000}

shutdown = false
temp = 2200
temp = —2

AD C 1 = ADC2 = A = B = [—to, to]

{A := A D C 1}
■ t4
[35, 45]

{B := ADC2} [5, 5]

[5, 5]

{((A — B) > 3) V ((B — A) > 3)}
{shutdown := true}

{ — (((A — B) > 3) V ((B — A) > 3))}
I t6
[5, 5]

Fig. 2. Extended LHPN for the reactor example. The process on the left models the temperature of the reactor core (environment). The process in the center
models the ADC subsystem of the microcontroller (hardware). The process on the right models the embedded software running on the microcontroller.
Listed at the bottom left are the initial values of the system variables.

13). The set P x is defined to be all formulas that can be
constructed from the x grammar.

The Boolean part of the grammar is as follows:

^ ::= tru e | fa lse | bi | —̂ | ^ A ^ | ^ V ^ | x = X |

X > X | X > X | X < X | X < X | B I T (x, x)

where bi is a Boolean variable, and B I T (a 1, a 2) extracts
bit a 2 from a i . 3 The set V<p is defined to be all formulas
that can be constructed from the ^ grammar.

The analysis algorithm restricts enabling conditions to a
subset of the x and ^ grammars. The numerical part of this
restricted grammar, x e, is defined as follows:

Xe ::= Ci | Xi | (Xe) | — Xe | Xe + Xe | Xe — Xe |

Xe * Xe | Xe / Xe | Xe" Xe | Xe % Xe |

NOT(Xe) | OR(Xe,Xe) | AND(Xe,Xe) |

XOR(Xe, Xe)

This grammar does not allow continuous variables to be used,
nor does it allow Boolean expressions to be converted into
integers. The set P xe is defined to be all formulas that can
be constructed from the Xe grammar. The Boolean part of
this restricted grammar, >̂e, is defined as follows:

^e ::= tru e | fa lse | bi | — ̂ | ^e A ^ | ^ V ^ |

B IT(X e,X e) |Xe = Xe | Xe > Xe | Xe > Xe |

Xe < Xe | Xe < Xe | V > Xe | Vi < Xe

The set P ^ e is defined to be all formulas that can be
constructed from the ^ e grammar. Intuitively, enabling con­
ditions only allow continuous variables to appear on the

3Only defined when the expressions a \ and a 2 evaluate to integer values.

left side of relations of the form vi > x e or vi < x e.
This guarantees that the right side of these relations remains
constant between transition firings as time advances.

Each transition in an LHPN is labeled with an enabling
condition as well as a set of assignments. In particular, the
labels permitted in LHPNs are represented using a tuple L
= {En, D , B A , XA, VA, RA}:

• E n : T ^ P ^ e labels each transition t e T with an
enabling condition.

• D : T ^ Q x (Q U {to}) labels each transition t e T
with a lower and upper delay bound, [di(t), du (t)].

• BA : T x B ^ P ^ labels each transition t e T and
Boolean variable b e B with the Boolean assignment
made to b when t fires.

• XA : T x X ^ P x x P x labels each transition
t e T and discrete variable x e X with the discrete
variable assignment, specified as a pair of expressions
[y;(t, x), yu (t, x)], that is made to x when t fires.

• VA : T x V ^ P x x P x labels each transition t e
T and continuous variable v e V with the continuous
variable assignment, specified as a pair of expressions
[a; (t, v), a„ (t, v)], that is made to v when t fires.

• RA : T x V ^ P x x P x labels each transition t e T
and continuous variable v e V with the continuous
rate assignment, specified as a pair of expressions
[r;(t, v), r u (t, v)], that is made to v when t fires.

Note that vacuous assignments (i.e., assignments to the exist­
ing value) are not represented in the graphical representation.

Transition t 0 from the environmental process of Fig. 2 has
an enabling condition of {—shutdow n A tem p < 2200}.

195

The delay of this transition varies from 3 to 5 time units.
When t 0 fires, the rate, te m p , is assigned to 2. The firing
of t 2 results in a discrete variable assignment to A D C 1
which sets its value to the value of the expression te m p *
256/10000. Note that this assignment scales a continuous
variable and assigns a truncated value to an integer. The
firing of transition t 7 assigns the Boolean variable sh u td o w n
to true. This example contains no assignments to continuous
variables outside the initial state. The value of te m p changes
continuously over time at its current specified rate of change.

IV. Sem a n tics fo r E x ten d ed LH PN s

The state of an LHPN is defined using a 7-tuple of the
form a = (M , S , Y , Q, R, I , C } where:

• M C P is the set of marked places;

• S : B —̂ {0,1} is the value of each Boolean variable;

• Y : X — Z is the value of each discrete variable;

• Q : V — Q is the value of each continuous variable;

• R : V — Q is the rate of each continuous variable;

• I : I — {0,1} is the value of each continuous
inequality.

• C : T — Q is the value of each transition clock.
The set of continuous inequalities, I , consists of all sub­
expressions of the form v i ix a where ix is < or > , and a
is a member of the set P Xe. In this example, this includes
te m p < 2200 and te m p > 9800. These inequalities are
treated in a unique way because their truth values can change
due to time advancement. Maintaining this set is not strictly
necessary for the semantics, but it is convenient in several
definitions and is used by the analysis method.

The current state of an LHPN can change either by the
firing of an enabled transition or by time advancement. Every
transition t e T has a preset denoted by • t = {p | (p, t) e
F } and a postset denoted by U = {p | (t ,p) e F }. A
transition t e T is enabled when all of the places in its preset
are marked (i.e., • t C M), and the enabling condition on
t evaluates to true (i.e., E v a l (E n (t) ,a) where the function
E v a l evaluates an expression for a given state). The function
E (a) is defined to return the set of enabled transitions for
the given state. When a transition t becomes enabled, its
clock is initialized to zero. The transition t can then fire
at any time after its clock satisfies its lower delay bound
and must fire before it exceeds its upper delay bound (i.e.,
d i(t) < C (t) < du (t)) as long as it remains continuously
enabled. A transition is disabled any time one of the places
in its preset becomes unmarked or its enabling condition
evaluates to false. From a state a , a new state a ' can be
reached by firing a transition t found in E (a). This new
state is determined as follows:

• M ' = (M - • t) U t^;

• S '(b i) = E v a l (B A (t ,b i) ,a)

• Y '(x i) = E v a l(y i (t ,X i) ,a)

• Q '(v i) = E v a l (a i (t ,v i) ,a)

R '(v i) = E v a l (r i (t , v i) ,a)

I ' (vi ix a) = (Q '(v i) ix E v a l(a , a))

C '(t i) =
0 if t i e E (a) A t i e E (a ')

C (ti) otherwise
In other words, the marking is updated, Boolean, discrete,
continuous value, and continuous rate assignments associated
with transition t are executed, the state of the continuous in­
equalities are updated, and the clocks associated with newly
enabled transitions are reset to 0. Due to space limitations,
to simplify the semantics, it is assumed that the lower and
upper bound for all assignments are equal. Arbitrary ranges
require some additional state to be maintained [15].

In a state a , time can advance by any value t which is less
than Tmax(a). The value of Tmax(a) is the largest amount of
time that may pass before a transition is forced to fire (i.e.,
the clock associated with it exceeds its upper bound) or an
inequality changes value (i.e., for an inequality of the form
vi > a , its continuous variable's value, v i , crosses the value
returned by its expression, a). This is defined as follows:

. \ C (t i) - d u (ti) V ti e E (a)
Tmax(a) = m in \ Eval(a,a)-Q(vj) y(vi>a)eI.

(. R(vi) I(vi>a) = (R(vi)> 0)

The new state, a ', after t time units have advanced is defined
as follows:

• Q '(v i) = Q (v i) + T ■ R (v i)

R (v i) ix 0 if Q '(v i) = E v a l(a , a)
I ' (vi ix a) =

I (v i i< a) otherwise

C '(ti)
0 if t i e E (a) A t i e E (a ')

C (ti) + t otherwise
All other parts of the state are unaffected.

Consider again the extended LHPN model for the reactor
example shown in Fig. 2. The left process models the
temperature of the reactor simply as a triangle wave which
increases with a rate of two until it exceeds 9800 at which
point it changes direction and decreases at a rate of two
until it reaches 2200. The middle process models the ADC
subsystem of the microcontroller which samples one of the
temperature sensors every 10 time units with the results
going into one of the internal 8-bit ADC registers. Note that
perfect temperature sensors are assumed in that the same
temperature value, te m p , is sampled in both ADC inputs.
The right process that models the software running on the
microcontroller begins with a delay of 35 to 45 time units
to represent instructions in the loop that are not related to
checking the temperature sensors. Next, the software loads
the value in A D C 1 into register A followed 5 time units
later with the value of A D C 2 being loaded into register B .
Finally, the difference is calculated between A and B , and
if the absolute value of this difference is three or larger, the
reactor is shut down. Otherwise, the software loop repeats.

To illustrate LHPN semantics, consider a few states for
the example in Fig. 2. In the initial state, p0, p2, and p4
are marked; shutdow n is false; A D C 1 , A D C 2 , A, and B

196

are undefined (i.e., [—to , to]); temp is 2200 and changing
at a rate of - 2 . In this state, transitions t 0, t 2, and t 4 are all
enabled. Note that t 0 is guarded by the Boolean expression
{ —sh u td o w n A tem p < 2200} which is satisfied in the
initial state. In the initial state, Tmax is 5, since t 0 must fire
within 5 time units. Let us assume that 4 time units pass. In
this new state, the value of tem p is now 2192, since it has
decreased at a rate of 2 for 4 time units. The clocks for t 0, t 2,
and t 4 now all have the value of 4. Transition t 0 can fire at
any point after its clock reaches a value of 3, and it must fire
before its clock exceeds a value of 5. Since its clock now has
a value of 4, t 0 can potentially fire. Alternatively, the value
of Tmax is now 1, so time can be advanced by any real value
less than or equal to 1. Let us assume that transition t 0 fires
resulting in the rate of change of tem p to be changed to 2.
Note that since tem p > 9800 is not true, transition t i does
not become enabled. In this new state, Tmax has a value of
6, since transition t 2 must fire after 6 more time units have
passed. After 6 time units have passed, the value of tem p is
now 2204 while the values of the clocks for t 2 and t 4 reach
10. At this point, transition t 2 must fire resulting in A D C 1
taking the value 56. This firing also enables transition t 3, so
its clock is reset to 0. From here, new states can continue to
be found by advancing time and firing transitions.

V. State Sets

State space exploration is required to analyze and verify
properties of LHPNs. This exploration is complicated by the
fact that LHPNs typically have an infinite number of states.
Therefore, to perform state space exploration on LHPNs,
this infinite number of states must be represented by a finite
number of convex state equivalence classes called state se ts .
State sets for extended LHPNs are represented with the tuple
0 = (M , S ,Y ,Q , R, I , Z) where:

• M C P is the set of marked places;

• S : B — {0,1, ± } is the value of each Boolean
variable;

• Y : X — Z x Z is a range of values for each discrete
integer variable;

• Q : V — Q x Q is a range of values for each inactive
continuous variable;

• R : V — Q x Q is the current rate of change for each
continuous variable;4

• I : I — {0,1, ± } is the value of each continuous
inequality;

• Z : (TU V U {c0}) x (TU V U {c0}) — Q is a difference
bound m atrix (DBM) [5] composed of active transition
clocks, active continuous variables, and c0 (a reference
clock that is always 0).

State sets and states differ in several ways. First, entries in
S and I are extended to be able to take the value of unknown

4Note that although the rate is defined to be a range, the method requires
the rate to be a single value. This is not a problem as an LHPN with ranges
of rates can be transformed into one with only single valued rates [12].

(±) to indicate uncertainty in their value. Second, discrete
integer and inactive continuous variables (i.e., R (vi) = 0) are
extended to allow them to take a range of values. Finally,
a DBM Z is used to represent the ranges of values for
clocks and active continuous variables. It should be noted
that despite the use of state sets, due to the use of discrete
and continuous variables, the state space of an LHPN may
still be infinite making verification undecidable.

The use of state sets requires that the expression evaluation
function, Eval(a, 0), as well as the enabled transition
function E (0), be extended to operate on ranges of values
and to return a range of values. For example, the relational
operators on ranges are defined as follows:

([1l,Ui] = [l2,u2]) =

([li, ui] > [l 2, U2]) =

([1l,ui] > [Z2,«2]) =

([li, ui] < [l 2, U2]) =

([1l,ui] < [l2,U2]) =

if (li = l2 = ui = u2) then 1
elseif ((li > u2)|(l2 > ui)) then 0
else ±
if (li > u2) then 1
elseif (l2 > u i) then 0
else ±
if (li > u2) then 1
elseif (l2 > u i) then 0
else ±
if (ui < l2) then 1
elseif (u2 < li) then 0
else ±
if (ui < l2) then 1
elseif (u2 < li) then 0
else ±

When applying relational operators to ranges, the result may
be “± ” since the relational operator must be applied to all
values in the range. For example, the statement [1,2] = [1, 2]
returns “± ” because the comparison is between all pairs of
values in the ranges, not between the two ranges themselves.

Arithmetic on ranges has been well studied [8]. Addition
and subtraction is fairly straightforward as shown below:

[li,ui] + [l2,u2] = [li + l2,u i + u2]
[li,ui] - [l2,u2]= [li - u2,u i - l2]

However, dealing with the sign of the operands makes
multiplication and division somewhat more complicated:

[li, ui] * [l2, u2] = [mm(li * l2, li * u2, ui * l2, ui * u2),
max(li * l2, li * u2, ui * l2, ui * u2)]
f[li,ui] * [1/ l2, 1/u 2] if 0 0 [l2,u2]
| [—ro, ro] otherwise

Division by a range that includes 0 is quite involved [8], so
for simplicity a conservative unbounded range is returned.

The modulo, bitwise, and bit extraction operations on
ranges cannot be easily performed exactly and may result in
non-continuous ranges. For example, the operation [6,9]%8
generates the results 0, 1,6, and 7. These can be grouped into
the ranges [0,1] and [6, 7], but this would require splitting
the zone. One method to do this is to use a multizone DBM
approach, as described in [3] which we plan to investigate
in the future. Currently, a more conservative approach is
taken, choosing the larger region [0,7] which encapsulates

[li,ui]/[l2 ,u2] =

197

all possible values. As another example, the bitwise A N D
operator may clear bits, but never results in new bits being
set. Therefore, it never results in an answer greater than the
larger of the operands. The A N D of two negative numbers
though can result in an even smaller negative number but
never smaller than 11 + 12. To address these problems, these
operations are performed exactly when the operands are sin­
gle values (i.e., 1i = u i), and the conservative approximations
shown below are used when any operand is a range:

[li,ui]%[l2,u2] = [min(0,

NOT ([li,ui])
AND([Ii,ui], [f2, U2])

OR([Ii, ui], [I2, U2])
XOR([Ii,ui], [f2,U2])

BIT([fiJui]J [f2,U2])

c(-(ma*(|f2 |, |u21) - 1), fi)),
max(0, min (max (| I2|, |u21) — 1,ui))]

[—(ui + 1)! —(fi + 1)]
[min(li + f2, 0), max(ui ,U2)]
[min(li, f 2), max(ui + U2, — 1)]
[min(li — U2, 2̂ — ui, 0),
max(ui + U2, —(fi + I2), —1)]

Any time abstraction is used, it is possible to capture in­
valid behaviors. False negatives can thus be found. Any error
trace derived from an abstracted system must be scrutinized
carefully to determine its validity.

VI. State Space E xplo ra tio n

This section describes a state exploration method which
uses zones that are defined using DBMs to represent the
continuous portion of the state space. In particular, this sec­
tion extends the state space exploration method for LHPNs
described in [10], [12] to utilize the extended expression
syntax for enabling conditions and assignments.

The DBM based method shown in Fig. 3 uses a depth
first search to find the reachable state space for an extended
LHPN. Note that because the state space of an LHPN may
not have a finite representation, this is a semi-algorithm as
it may not terminate. First, this method constructs the initial
state set for the extended LHPN and adds it to the set of
reachable state sets, ^ . The initial state set is {M0, S 0,
Y0, Q 0, R 0, I 0, Z 0} where I 0 contains the initial value for
all continuous inequalities (i.e., I 0(vi n a) = (Q 0(vi) n
E va1(a, 0 0))), and Z 0 includes active continuous variables
(i.e., R 0(vi) = 0) set to their initial value and clocks for
enabled transitions set to zero. Next, the method uses the
f i n d P o s s i b l e E v e n t s function to determine all possible
events, E , that can result in a new state set. A single event,
e, is arbitrarily chosen from E using the s e l e c t function.
If after removing e from E , events still remain in E , the
remaining events and the current state set are pushed onto
the stack for later exploration. At this point, the current state
set, 0 , is updated to reflect the occurrence of the event, e.
If this new state set, 0 ', has not been seen before, it is
added to the state space, ^ , a new set of possible events
is calculated, and the exploration continues from this new
state. If the state set is not new, a previously explored state
set and set of unexplored events are popped from the stack,
and the exploration continues from this point. Finally, when
the stack is found to be empty, the entire reachable state
space has been found, and it is returned. This section now
explains each of these steps in more detail.

reach()
^ = in i t ia lS ta te S e t()
^ = W
E = findPossib leE vents(^)
while(true)

e = se lec t(E)
if(E — {e} = 0) then push(E — {e},^)

= updateS ta te(^ , e)
if ^ ' 0 ^ then

^ = ^ U{^'}
^ = ^ '
E = findPossib leE vents(^)

else
if(stack not empty) then (E,^>) = pop()
else return ^

Fig. 3. Semi-algorithm to find the reachable states.

The f i n d P o s s i b l e E v e n t s function shown in Fig. 4
determines the set of all possible events from the current
state. There are two event types: a transition can fire or
an inequality can change value due to the advancement of
time. A transition may fire at any time after its clock has
reached the lower bound of the delay for that transition, and
it must fire before its clock exceeds the upper bound of its
delay. Transition clocks become active when they become
enabled, and, as mentioned before, only clocks for enabled
transitions are kept in Z . Therefore, any transition whose
clock is in Z (denoted t e Z) that can reach its lower
bound (i.e., ub(Z , t) > dl(t)) may fire. Note that ub(Z , t) is
defined to retrieve the upper bound for t 's clock from Z. An
inequality, vi n a , may change value when it is possible
for time to advance to the point where the value of the
continuous variable, vi, crosses the value of the expression,
a . This is determined by the in e q C a n C h a n g e function by
examining the current state set, 0 . The in e q C a n C h a n g e
function must be modified from the one described in [12]
since the original version only allowed a to be a rational
constant. The new version must evaluate a based on the
current state. It is important to note that a must be relatively
constant. Namely, the value of a must only change as a
result of transition firings. It is this requirement that led to
the restrictions described earlier on the forms of expressions
that can be used in enabling conditions. For each possible
event, the a d d S e t I t e m function is used to determine if
this event can actually be the next to occur. The event may
actually not be able to occur before some event already found
in E , and it would not be added in this case. Alternatively,
the event may be possible to occur next, and it may in turn
prevent some other events in E from being next. The details
of this function are the same as the previous version of the
algorithm, so the interested reader should see [12].

The u p d a t e S t a t e function shown in Fig. 5 determines
the new state set that is reached after the occurrence of an
event, e. First, this function calls the r e s t r i c t function
to modify Z to reflect that time must have advanced to
the point necessary for the event to have occurred (i.e.,
the clock for the transition firing reaches its lower bound,
or the continuous variable vi reaches the value of its right
hand expression a). This function also must be extended

198

findPossib leE vents(^)
E = 0
for t € Z

if ub(Z, t) > di(t) then
E = addSetItem(E, t)

for (vi x a) € I
if ineqCanChange(^, vi, a) then

E = addSetItem(E, (vi K a j)
return E

Fig. 4. Algorithm to find possible events.

to address the fact that inequalities can now be bounded
by expressions. Next, the r e c a n o n i c a l i z e function uses
Floyd’s all-pairs shortest path algorithm to restore Z to a
canonical form. When the event is an inequality changing
value, the next step simply updates its value in I . When the
event is a transition firing, however, the state update is more
involved as shown in Fig. 6 which is described below. Next,
the transitions are checked to see if they have become newly
enabled or disabled. A clock for a transition t not in Z that
is enabled must be added to Z while a clock for a transition
t in Z that is not enabled must be removed from Z . Here
again is another necessary modification in that determining
if a transition is enabled requires the evaluation of the more
complex expressions that are allowed in extended LHPNs.
Finally, time is advanced using the algorithm shown Fig. 7,
Z is recanonicalized, and the new state set is returned.

updateS ta te(^ , e)
Z = r e s t r i c t ^ , e)
Z = recanon icalize(Z)
if e € T then

^ = updateIneq(^, e)
else

^ = f ire T ra n s itio n (^ ,e)
for t € T

if t € Z A t € £ (^) then
Z = addT(Z, t)

else if t € Z A t € £ (^) then
Z = rmT(Z,t)

Z = advanceTime(^)
Z = recanon icalize(Z)
return ^

Fig. 5. Algorithm to update the state.

The f i r e T r a n s i t i o n function shown in Fig. 6 is
called by the u p d a t e S t a t e function to fire a transition
t in state set ^ . This function must first update the marking
by removing the tokens from all places in • t and adding
tokens to all places in t^. Next, the transition t is removed
from Z . Then, all assignments labeled on t are performed.
This includes Boolean variable, discrete variable, continuous
variable, and rate assignments. For extended LHPNs, these
assignment functions are more involved. While in the basic
LHPNs only constants are assigned, in extended LHPNs
these assignments involve more complex expressions which
must be evaluated on the current state. The assignments may
have changed the values of some inequalities, so these must
be updated next. The rate assignments may have activated or
deactivated a continuous variable, so all continuous variables

are checked and added or removed from Z as necessary.
Finally, Z is warped using dbmW arp to properly account
for any rate changes that may have occurred. The warping
function described in [10], [12] is a technique that allows
zones to be used even when continuous variables evolve
at non-unity rates. The warping function does not need to
be changed for extended LHPNs, so the interested reader is
referred to [10], [12]. Once again, the warping of zones is
an abstraction of the state space which can result in false
negatives. It does not, however, ever produce false positives,
and it has been shown to be a reasonable abstraction allowing
for accurate verification of several interesting systems [12].

f ire T ra n s itio n (^ , t)
M' = (M - •t) U t^
Z ' = rmT(Z,t)
S' = doBoolAsgn(^)
Y ' = doIntAsgn(^)
(Z ',Q ') = doVarAsgn(^)
R' = doRateAsgn(^)
I ' = updateI(S ', Y', Q', R', I, Z')
for v € V

if v € Z A R'(v) = 0 then
(Z' ,Q ')= addV(Z',Q' ,v)

else if v € Z A R'(v) = 0 then
(Z' ,Q ')= rmV(Z',Q',v)

(Z ',R ')= dbmWarp(Z', R, R')
return <M', S', Y', Q', R', I ', Z')

Fig. 6. Algorithm to fire a transition.

The u p d a t e S t a t e function calls the a d v a n c e T im e
function, shown in Fig. 7, to advance time in Z . The basic
idea behind this function is that it allows time to advance
as far as possible without missing an event. To ensure that
a transition firing t is not missed, a d v a n c e T im e sets the
upper bound value for the clock associated with t to the
upper delay bound for t . To ensure that a change in inequality
value is not missed on a variable v , all inequalities involving
variable v are checked by the function c h e c k I n e q , and the
largest amount of time that can advance before one of these
inequalities changes value is assigned to the upper bound
value for v . Note that this function must be modified to
evaluate the expressions now found in these inequalities.

advanceTime(^)
for t € Z

ub(Z, t) = du(t)
for v € Z

ub(Z, v)= checkIneq(^, v)
return Z

Fig. 7. Algorithm for advancing time.

VII. Case Study

We have updated the LEMA verification tool to support
extended LHPNs as described in this paper. This includes
an editor to create extended LHPNs. We have applied this
updated version of LEMA to the fault-tolerant temperature
sensor with several variations in parameter values. The
results are shown in Table I. For each case, the number of

199

TABLE I
Verification results for the reactor example.

Parameters State sets Runtime (s) Verifies
Original 61469 2050 Yes
t4 delay [5, 15] 10 0.035 No
9-bit ADCs 50028 598 No
t2, t3 delay [20, 20] 45325 268 No
temp rates [—4,4] 23235 180 No
temp rates [—4,4],
7-bit ADCs 32636 603 Yes

state sets found, runtime in seconds, and whether it verifies to
be correct are reported. Recall that the property being verified
is that the reactor never shuts down since the temperature
sensors are assumed to be perfect in the LHPN model.

The original model parameters shown in Fig. 2 verify
to be correct in 2050 seconds (about 34 minutes) after
finding 61469 state sets. If the delay between iterations of
the software loop is reduced (i.e. the delay of transition t 4
is reduced to [5,15]), it no longer verifies to be correct after
finding 10 state sets in 0.035 seconds. The reason for this
failure is that A and B can be loaded and compared before
the ADC subsystem has sampled any valid temperatures. If
the ADCs use 9-bits (i.e., 256 is replaced with 512 in the
expressions for A D C 1 and A D C 2), the example again fails.
In this case, there is too much resolution, and the discrete
values of the temperatures can differ by three or more. If the
sampling rate is decreased (i.e., the delays for t 2 and t3 are
changed to [20, 20]), the example fails, since the temperature
can change too much between two subsequent samples. If
the rate of temperature change is increased to [-4 ,4] , the
example fails because the temperature can again change
too much between samples. Changing multiple parameters
can make the example start to verify correctly again. For
example, if both the rate of temperature change is increased
to [-4 ,4] and the resolution of the ADCs is reduced to 7-
bits, the reactor does not shut down. These results indicate
that the correctness of this fault-tolerant temperature sensor
is quite sensitive to parameter choices.

V III. Co n c lu sio n

This paper proposes a formal model for the verification
of embedded systems. This model enables the modeling of
complete systems, including environmental sensor inputs. In
particular, the LHPN model is extended to include discrete
variables and expressions to check and modify them in
order to represent registers and memory values in embedded
software. This paper also presents a method for reachability
analysis of extended LHPNs that is used to perform formal
verification. Finally, a case study is presented for a fault-
tolerant temperature sensor that includes both a continuous
environment signal as well as discrete register values. Pre­
liminary results on this case study are promising.

Recently, we have extended the lem a tool to compile
extended LHPNs from embedded software which can then
be integrated with existing methods for creating LHPNs for
analog/mixed signal circuits. The fault-tolerant temperature

sensor presented in this paper is an abstraction of the
complete model that can be derived using this compiler. To
derive such an abstract model, we are investigating automatic
methods to reduce the LHPN to include only the elements
necessary to verify the property of interest. Since such ab­
stractions as well as those in this paper can potentially result
in false negative results, we are also developing techniques
to analyze the error trace ultimately resulting in a complete
abstraction-refinement verification method.

IX. Ack n o w led g em en ts

This research is supported by SRC contracts 2005-TJ-1357
and 2008-TJ-1851, and an SRC Graduate Fellowship.

REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3
- 34, 1995. Hybrid Systems.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems. In Robert L. Grossman, Anil Nerode, Anders P.
Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736 of
Lecture Notes in Computer Science, pages 209-229. Springer, 1992.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi.
Uppaal — a Tool Suite for Automatic Verification of Real-Time
Systems. In Proc. of Workshop on Verification and Control of Hybrid
Systems III, number 1066 in Lecture Notes in Computer Science, pages
232-243. Springer-Verlag, October 1995.

[4] R. David and H. Alla. On hybrid Petri nets. Discrete Event Dynamic
Systems: Theory and Applications, 11(1-2):9-40, January 2001.

[5] D. L. Dill. Timing assumptions and verification of finite-state concur­
rent systems. In Joseph Sifakis, editor, Proc. Automatic Verification
Methods for Finite-State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197-212. Springer, 1989.

[6] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Transac­
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 27(7):1165-1178, July 2008.

[7] E. Eide and J. Regehr. Volatiles are miscompiled, and what to do
about it. In EMSOFT ’08: Proceedings of the 7th ACM international
conference on Embedded software, pages 255-264, New York, NY,
USA, 2008. ACM.

[8] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From
principles to implementation. J. ACM, 48(5):1038-1068, 2001.

[9] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart.
Software requirements analysis for real-time process-control systems.
IEEE Transactions on Software Engineering, 17(3):241-258, 1991.

[10] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda. Verifica­
tion of analog/mixed-signal circuits using labeled hybrid Petri nets. In
Proc. International Conference on Computer Aided Design (ICCAD),
pages 275-282. IEEE Computer Society Press, 2006.

[11] S. Little, D. Walter, and C. Myers. Analog/mixed-signal circuit
verification using models generated from simulation traces. In Kedar S.
Namjoshi, Tomohiro Yoneda, Teruo Higashino, and Yoshio Okamura,
editors, Automated Technology for Verification and Analysis (ATVA),
volume 4762 of Lecture Notes in Computer Science, pages 114—128.
Springer, 2007.

[12] S. R. Little. Efficient Modeling and Verification of Analog/Mixed-
Signal Circuits Using Labeled Hybrid Petri Nets. PhD thesis, Univer­
sity of Utah, May 2008.

[13] D. Walter, S. Little, C. Myers, N. Seegmiller, and T. Yoneda. Verifi­
cation of analog/mixed-signal circuits using symbolic methods. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(12):2223-2235, 2008.

[14] D. C. Walter. Verification of analog and mixed-signal circuits using
symbolic methods. PhD thesis, University of Utah, May 2007.

[15] David Walter, Scott Little, Nicholas Seegmiller, Chris J. Myers, and
Tomohiro Yoneda. Symbolic model checking of analog/mixed-signal
circuits. In Proc. of Asia and South Pacific Design Automation
Conference (ASPDAC), pages 316-323, 2007.

200

