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Abstract— Verification of embedded systems is complicated 
by the fact that they are composed of digital hardware, analog 
sensors and actuators, and low level software. In order to 
verify the interaction of these heterogeneous components, it 
would be beneficial to have a single modeling formalism that is 
capable of representing all of these components. To address this 
need, this paper describes an extended labeled hybrid Petri net 
(LHPN) model that includes constructs for Boolean, discrete, 
and continuous variables as well as constructs to model timing. 
This paper also presents a method to verify these extended 
LHPNs. Finally, this paper presents a case study to illustrate the 
application of this model to the verification of a fault-tolerant 
temperature sensor.

I. INTRODUCTION

Embedded systems are an unavoidable part of life. In the 
past, their software has generally been small and frequently 
written in assembly language. Even though embedded soft­
ware is now often written in C or other high level languages, 
such software usually includes embedded assembly code. 
The effects of this low-level code need to be taken into 
account. Often things that seem atomic at the higher level 
become distinct and introduce risky behavior once compiled 
into assembly. Compilers often do not appropriately treat the 
low level constructs critical to the proper behavior of these 
systems [7]. Embedded systems also interact with external 
analog sensors and actuators, so continuous environment 
variables must also be considered.

Due to the heterogeneous nature of embedded systems, 
traditional software testing is often insufficient. Formal veri­
fication, the process of mathematically analyzing systems to 
determine their properties, has been shown to be a promising 
method for validating software [6]. Efforts have been focused 
in two areas: static analysis and m odel checking. Static analy­
sis parses the program to determine its properties structurally. 
Model checking, on the other hand, creates a representative 
model and systematically explores all reachable states of 
the system. These states are then analyzed to determine 
if invalid reachable states exist. The model constructed is 
often abstracted , removing portions of the system whose 
complexity does not affect the desired property. The model 
is also often decom posed  into simpler subsystems that can 
be analyzed completely in isolation. An abstract version of 
these subsystems is then used to analyze the overall system.

In order to apply model checking to embedded systems, 
it is necessary to develop a single model that is capable of 
representing both discrete software and continuous interface 
behavior. Timed automata  are one candidate, but they require 
all continuous variables to progress at the same rate, and they 
do not allow a variable's progress to be stopped. H ybrid

automata are more expressive, but their use of invariants 
to ensure progress is a difficult compilation target, as it is 
not a natural way in which such systems are expressed in 
higher level languages such as VHDL-AMS and Verilog- 
AMS. H ybrid Petri nets are also considered, but their use of 
separate continuous places and transitions is again a difficult 
compilation target from high level languages. Recently, the 
labeled hybrid Petri net (LHPN) model has been developed 
and applied to the verification of analog and mixed-signal 
circuits [10], [12], [14]. Compilers have been developed from 
VHDL-AMS as well as SPICE simulation data [10], [11]. 
This model includes both Boolean variables for representing 
digital circuits and continuous variables for representing ana­
log circuits. This paper presents an extended LHPN model 
that includes discrete variables for representing embedded 
software variables as well as expressions to check and modify 
them. These extensions allow for both embedded hardware 
and software to be represented in a single model. This 
paper also describes how this new model can be applied 
to the verification of embedded systems. Finally, this paper 
presents an algorithm for state space reachability analysis 
which enables model checking of these extended LHPNs.

This paper is organized as follows. First, Section II de­
scribes a motivating example of a fault-tolerant temperature 
sensor for a nuclear reactor which includes both contin­
uous and discrete variables. Next, Section III introduces 
the extended LHPN model while Section IV presents its 
semantics. Since the state space of extended LHPNs is 
infinite, Section V presents state sets which can potentially 
yield a finite representation of the state space. Section VI 
describes a reachability method that enables verification of 
extended LHPN models. Finally, Section VII presents verifi­
cation results for our motivating example while Section VIII 
presents our conclusions and future plans.

II. M otivating  Ex a m ple

A traditional hybrid systems example is the cooling system 
for a nuclear reactor [9], [1]. In this example, the temperature 
of the nuclear reactor core is monitored, and when the 
temperature is too high, one of two control rods is inserted 
to cool the reactor core. After a control rod is used, it 
must be removed for a set period of time before it can be 
used again. If the temperature is too high and no control 
rod is available, the reactor is shut down. In our modified 
version of the example, there are two temperature sensors 
to add fault tolerance. Namely, each temperature sensor is 
periodically sampled and if at any point the temperature 
difference between them is too large, it is assumed that one
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Fig. 1. Fault tolerant cooling system for a nuclear reactor.

of the temperature sensors has become faulty and the reactor 
is shut down. A block diagram for this fault tolerant cooling 
system for a nuclear reactor is shown in Fig. 1.

This example is interesting because it includes analog 
components (i.e., the temperature sensors), mixed-signal 
components (i.e., the analog/digital converters (ADCs)), dig­
ital components (i.e., the microcontroller), and embedded 
software (i.e., the program running on the microcontroller).1 
The verification problem for this example is to determine 
if  the reactor can be shut down even when the temperature 
sensors are operating correctly. On the surface, this does not 
appear to be a problem. However, there are a number of 
implementation details that make this not so obvious. First, 
there is typically only one ADC on a microcontroller which 
is multiplexed to sample from each ADC input one at a time. 
This means that the temperature sensors are not sampled at 
exactly the same time. A second problem is that since the 
comparison of the results is not done with a single atomic 
instruction at the assembly level, it is possible that the results 
are not even from the same sampling cycle.

Fig. 2 illustrates an LHPN which models this system. 
It includes elements to model the environment, the ADC, 
and the assembly language program. The following sections 
explain the details and semantics of this model and how it 
can be analyzed using our new verification method

III. A n Ex ten d ed  LHPN M odel

An LHPN is a Petri net model originally developed to 
represent analog/m ixed-signal (AMS) circuits [10], [12], 
[14]. This model is inspired by features found in both 
hybrid Petri nets [4] and hybrid automata [2]. Methods 
have been developed for generating LHPNs from both a 
subset of VHDL-AMS [10] and SPICE simulation data
[11]. Model checking algorithms have been developed for 
LHPNs using both explicit zone-based  methods [10], [12] 
as well as implicit BDD and SMT-based methods [13]. 
This paper extends LHPNs to accurately model assembly 
language level embedded software. Namely, discrete integer 
values are added to represent register and memory values. 
An extended expression syntax for enabling conditions and 
assignments is also introduced to facilitate the manipulations 
of variables in the model. An extended LHPN is a tuple N  
= (P , T , B , X , V , F , L, Mo, So, Yq, Qo, Ro):

1 It should be noted that the traditional version of this example as a hybrid
automata does not consider the software directly as this is cumbersome to 
do in that formalism.

• P  : is a finite set of places;

• T  : is a finite set of transitions;

• B  : is a finite set of Boolean variables;

• X  : is a finite set of discrete integer variables;

• V  : is a finite set of continuous variables;

• F  C (P  x T ) U (T  x P ) is the flow relation;

• L : is a tuple of labels defined below;

• M 0 C P  is the set of initially marked places;

• S 0 : B  —̂ {0,1, ± }  is the initial value of each Boolean 
variable;

• Y 0 : X  — {Z U —to} x {Z U to}  is the initial range of 
values for each discrete variable;

• Q 0 : V — {Q U —to} x {Q U to} is the initial range 
of values for each continuous variable;

• R 0 : V  — {Q U —to }  x {Q U to}  is the initial range 
of rates of change for each continuous variable.2

Consider the LHPN for the reactor example shown in 
Fig. 2. The places are the circles labeled p 0, . . . ,  p 6. The 
places p 0, p 2, and p 4 are initially marked indicated by the 
token within the place. The transitions are the boxes labeled 
t 0, . . . ,  t 7. The flow relation, F , is represented in the figure 
by the arcs connecting the places and the transitions. This 
example has one Boolean variable, sh u td o w n , which is 
initially false. This example has four discrete variables, A,
B , A D C  1, and A D C 2 which are all initially undefined (i.e., 
[—to , to]). Finally, this example has one continuous variable, 
te m p , which has an initial value of 2200 and an initial rate 
of change of -2.

A connected set of places and transitions, or sub-graph, 
within an LHPN is referred to as a process. The LHPN shown 
in Fig. 2 includes three processes. The process on the left 
models the temperature of the reactor, the process in the 
middle models the ADC hardware, and the process on the 
right models the embedded software.

Before defining the labels formally, let us first introduce 
the grammar used by these labels. First, the numerical portion 
of the grammar is defined as follows:

X ::=  C | x  | Vi | (x ) | -  X I X +  X I X -  X I X * X I 

x / x  | X~X | X%X | n o t ( x )  | O R (x ,x ) | 
AND(x, x) | X O R (x ,x ) | INT(^)

where Ci is a rational constant from Q, Xi is a discrete 
variable, and vi is a continuous variable. The functions NOT, 
OR, AND, and XOR are bit-wise logical operations, and they 
are only applicable to integers and assume a 2's complement 
format with arbitrary precision. The function INT converts 
a Boolean tru e  value to an integer 1 and fa lse  value to an 
integer 0. Note that when continuous values are assigned 
to discrete variables, they are truncated (i.e., 13.5 becomes

2 The rate of change is the first time derivative of the associated continuous 
variable.
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{ —shutdown A temp < 2200}
{temp := 2}

{—shutdown A temp > 9800} ti
{temp := —2} V [3, 5]

{—shutdown} 

{ADC1 := temp * 256/10000}

{—shutdown}

{ADC2 := temp * 256/10000}

shutdown =  false 
temp =  2200 
temp =  —2 

AD C  1 = ADC2 = A  =  B  =  [—to, to]

{A := A D C 1}
■ t4
[35, 45]

{B := ADC2} [5, 5]

[5, 5]

{((A — B) > 3) V ((B — A) > 3)} 
{shutdown := true}

{ — (((A — B) > 3) V ((B — A) > 3))}
I t6
[5, 5]

Fig. 2. Extended LHPN for the reactor example. The process on the left models the temperature of the reactor core (environment). The process in the center 
models the ADC subsystem of the microcontroller (hardware). The process on the right models the embedded software running on the microcontroller. 
Listed at the bottom left are the initial values of the system variables.

13). The set P x is defined to be all formulas that can be 
constructed from the x  grammar.

The Boolean part of the grammar is as follows:

^  ::=  tru e  | fa lse  | bi | —̂  | ^  A ^  | ^  V ^  | x  =  X |

X >  X | X > X  | X <  X | X < X  | B I T  (x, x)

where bi is a Boolean variable, and B I T ( a 1, a 2) extracts 
bit a 2 from a i . 3 The set V<p is defined to be all formulas 
that can be constructed from the ^  grammar.

The analysis algorithm restricts enabling conditions to a 
subset of the x  and ^  grammars. The numerical part of this 
restricted grammar, x e, is defined as follows:

Xe ::=  Ci | Xi | (Xe) | — Xe | Xe +  Xe | Xe — Xe | 

Xe * Xe | Xe /  Xe | Xe" Xe | Xe % Xe | 

NOT(Xe) | OR(Xe,Xe) | AND(Xe,Xe) | 

XOR(Xe, Xe)

This grammar does not allow continuous variables to be used, 
nor does it allow Boolean expressions to be converted into 
integers. The set P xe is defined to be all formulas that can 
be constructed from the Xe grammar. The Boolean part of 
this restricted grammar, >̂e, is defined as follows:

^e ::=  tru e  | fa lse  | bi | — ̂  | ^e A ^  | ^  V ^  |

B IT(X e,X e) |Xe =  Xe | Xe >  Xe | Xe >  Xe | 

Xe <  Xe | Xe <  Xe | V >  Xe | Vi <  Xe

The set P ^ e is defined to be all formulas that can be 
constructed from the ^ e grammar. Intuitively, enabling con­
ditions only allow continuous variables to appear on the

3Only defined when the expressions a \ and a 2 evaluate to integer values.

left side of relations of the form vi >  x e or vi <  x e. 
This guarantees that the right side of these relations remains 
constant between transition firings as time advances.

Each transition in an LHPN is labeled with an enabling 
condition as well as a set of assignments. In particular, the 
labels permitted in LHPNs are represented using a tuple L 
= {En, D , B A , XA, VA, RA}:

• E n  : T  ^  P ^ e labels each transition t  e  T  with an 
enabling condition.

• D : T  ^  Q x (Q U {to}) labels each transition t  e  T  
with a lower and upper delay bound, [di(t), du (t)].

• BA : T  x B  ^  P ^  labels each transition t  e  T  and 
Boolean variable b e  B  with the Boolean assignment 
made to b when t  fires.

• XA : T  x X  ^  P x x P x labels each transition 
t  e  T  and discrete variable x e  X  with the discrete 
variable assignment, specified as a pair of expressions 
[y;(t, x), yu (t, x)], that is made to x when t  fires.

• VA : T  x V  ^  P x x P x labels each transition t  e  
T  and continuous variable v e  V with the continuous 
variable assignment, specified as a pair of expressions 
[a; (t, v), a„ (t, v)], that is made to v when t  fires.

• RA : T  x V ^  P x x P x labels each transition t  e  T  
and continuous variable v e  V with the continuous 
rate assignment, specified as a pair of expressions 
[r;(t, v), r u (t, v)], that is made to v when t  fires.

Note that vacuous assignments (i.e., assignments to the exist­
ing value) are not represented in the graphical representation.

Transition t 0 from the environmental process of Fig. 2 has 
an enabling condition of {—shutdow n A tem p <  2200}.
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The delay of this transition varies from 3 to 5 time units. 
When t 0 fires, the rate, te m p , is assigned to 2. The firing 
of t 2 results in a discrete variable assignment to A D C  1 
which sets its value to the value of the expression te m p  * 
256/10000. Note that this assignment scales a continuous 
variable and assigns a truncated value to an integer. The 
firing of transition t 7 assigns the Boolean variable sh u td o w n  
to true. This example contains no assignments to continuous 
variables outside the initial state. The value of te m p  changes 
continuously over time at its current specified rate of change.

IV. Sem a n tics  fo r  E x ten d ed  LH PN s

The state of an LHPN is defined using a 7-tuple of the 
form a  =  ( M , S , Y , Q, R, I , C } where:

• M  C P  is the set of marked places;

• S  : B  —̂ {0,1} is the value of each Boolean variable;

• Y  : X  —  Z  is the value of each discrete variable;

• Q : V  —  Q is the value of each continuous variable;

• R  : V  —  Q is the rate of each continuous variable;

• I  : I  — {0,1} is the value of each continuous 
inequality.

• C  : T  —  Q is the value of each transition clock.
The set of continuous inequalities, I ,  consists of all sub­
expressions of the form v i ix a  where ix is <  or > , and a  
is a member of the set P Xe. In this example, this includes 
te m p  < 2200 and te m p  > 9800. These inequalities are 
treated in a unique way because their truth values can change 
due to time advancement. Maintaining this set is not strictly 
necessary for the semantics, but it is convenient in several 
definitions and is used by the analysis method.

The current state of an LHPN can change either by the 
firing of an enabled transition or by time advancement. Every 
transition t  e  T  has a preset denoted by • t  =  {p  | (p, t)  e  
F } and a postset denoted by U  =  {p  | ( t ,p )  e  F }. A 
transition t  e  T  is enabled when all of the places in its preset 
are marked (i.e., • t  C M ), and the enabling condition on 
t  evaluates to true (i.e., E v a l ( E n ( t ) ,a )  where the function 
E v a l  evaluates an expression for a given state). The function 
E (a) is defined to return the set of enabled transitions for 
the given state. When a transition t  becomes enabled, its 
clock is initialized to zero. The transition t  can then fire 
at any time after its clock satisfies its lower delay bound 
and must fire before it exceeds its upper delay bound (i.e., 
d i(t) < C ( t)  < du (t))  as long as it remains continuously 
enabled. A transition is disabled any time one of the places 
in its preset becomes unmarked or its enabling condition 
evaluates to false. From a state a , a new state a ' can be 
reached by firing a transition t  found in E (a). This new 
state is determined as follows:

• M ' =  (M  -  • t )  U t^;

• S '(b i ) =  E v a l ( B A ( t ,b i ) ,a )

• Y  '( x i)  =  E v a l(y i ( t ,X i) ,a )

• Q '(v i)  =  E v a l (a i ( t ,v i  ) ,a )

R '(v i)  =  E v a l ( r i ( t , v i ) ,a )

I ' (vi ix a ) =  (Q '(v i)  ix E v a l(a ,  a ))

C  '( t i)  =
0 if t i e  E (a) A t i e  E (a ')

C  ( ti ) otherwise 
In other words, the marking is updated, Boolean, discrete, 
continuous value, and continuous rate assignments associated 
with transition t  are executed, the state of the continuous in­
equalities are updated, and the clocks associated with newly 
enabled transitions are reset to 0. Due to space limitations, 
to simplify the semantics, it is assumed that the lower and 
upper bound for all assignments are equal. Arbitrary ranges 
require some additional state to be maintained [15].

In a state a , time can advance by any value t  which is less 
than Tmax(a ). The value of Tmax(a) is the largest amount of 
time that may pass before a transition is forced to fire (i.e., 
the clock associated with it exceeds its upper bound) or an 
inequality changes value (i.e., for an inequality of the form 
vi >  a , its continuous variable's value, v i , crosses the value 
returned by its expression, a ). This is defined as follows:

. \ C ( t i )  -  d u (ti)  V ti e E ( a )
Tmax(a) =  m in  \  Eval(a,a)-Q(vj) y(vi>a)eI.

(. R(vi) I(vi>a) = (R(vi)> 0)

The new state, a ',  after t  time units have advanced is defined 
as follows:

• Q '( v i ) =  Q (v i)  +  T ■ R (v i)

R (v i ) ix 0 if Q '(v i)  =  E v a l(a ,  a)
I ' (vi ix a ) =

I (v i  i< a )  otherwise

C  '( ti)
0 if t i e  E (a ) A t i e  E (a ')

C  ( ti ) +  t  otherwise 
All other parts of the state are unaffected.

Consider again the extended LHPN model for the reactor 
example shown in Fig. 2. The left process models the 
temperature of the reactor simply as a triangle wave which 
increases with a rate of two until it exceeds 9800 at which 
point it changes direction and decreases at a rate of two 
until it reaches 2200. The middle process models the ADC 
subsystem of the microcontroller which samples one of the 
temperature sensors every 10 time units with the results 
going into one of the internal 8-bit ADC registers. Note that 
perfect temperature sensors are assumed in that the same 
temperature value, te m p , is sampled in both ADC inputs. 
The right process that models the software running on the 
microcontroller begins with a delay of 35 to 45 time units 
to represent instructions in the loop that are not related to 
checking the temperature sensors. Next, the software loads 
the value in A D C 1  into register A  followed 5 time units 
later with the value of A D C 2  being loaded into register B . 
Finally, the difference is calculated between A  and B , and 
if the absolute value of this difference is three or larger, the 
reactor is shut down. Otherwise, the software loop repeats.

To illustrate LHPN semantics, consider a few states for 
the example in Fig. 2. In the initial state, p0, p2, and p4  
are marked; shutdow n  is false; A D C 1 , A D C 2 , A, and B
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are undefined (i.e., [—to , to]); temp is 2200 and changing 
at a rate of - 2 .  In this state, transitions t 0, t 2, and t 4 are all 
enabled. Note that t 0 is guarded by the Boolean expression 
{ —sh u td o w n  A tem p <  2200} which is satisfied in the 
initial state. In the initial state, Tmax is 5, since t 0 must fire 
within 5 time units. Let us assume that 4 time units pass. In 
this new state, the value of tem p is now 2192, since it has 
decreased at a rate of 2 for 4 time units. The clocks for t 0, t 2, 
and t 4 now all have the value of 4. Transition t 0 can fire at 
any point after its clock reaches a value of 3, and it must fire 
before its clock exceeds a value of 5. Since its clock now has 
a value of 4, t 0 can potentially fire. Alternatively, the value 
of Tmax is now 1, so time can be advanced by any real value 
less than or equal to 1. Let us assume that transition t 0 fires 
resulting in the rate of change of tem p to be changed to 2. 
Note that since tem p >  9800 is not true, transition t i  does 
not become enabled. In this new state, Tmax has a value of 
6, since transition t 2 must fire after 6 more time units have 
passed. After 6 time units have passed, the value of tem p is 
now 2204 while the values of the clocks for t 2 and t 4 reach 
10. At this point, transition t 2 must fire resulting in A D C  1 
taking the value 56. This firing also enables transition t 3, so 
its clock is reset to 0. From here, new states can continue to 
be found by advancing time and firing transitions.

V. State Sets

State space exploration is required to analyze and verify 
properties of LHPNs. This exploration is complicated by the 
fact that LHPNs typically have an infinite number of states. 
Therefore, to perform state space exploration on LHPNs, 
this infinite number of states must be represented by a finite 
number of convex state equivalence classes called state se ts . 
State sets for extended LHPNs are represented with the tuple
0  =  (M , S ,Y ,Q , R, I ,  Z ) where:

• M  C P  is the set of marked places;

• S  : B  — {0,1, ± }  is the value of each Boolean 
variable;

• Y  : X  — Z x Z  is a range of values for each discrete 
integer variable;

• Q : V — Q x Q is a range of values for each inactive 
continuous variable;

• R  : V — Q x Q is the current rate of change for each 
continuous variable;4

• I  : I  — {0,1, ± }  is the value of each continuous 
inequality;

• Z  : (TU V U {c0}) x (TU V U {c0}) — Q is a difference 
bound m atrix (DBM) [5] composed of active transition 
clocks, active continuous variables, and c0 (a reference 
clock that is always 0).

State sets and states differ in several ways. First, entries in 
S  and I  are extended to be able to take the value of unknown

4Note that although the rate is defined to be a range, the method requires 
the rate to be a single value. This is not a problem as an LHPN with ranges 
of rates can be transformed into one with only single valued rates [12].

(± ) to indicate uncertainty in their value. Second, discrete 
integer and inactive continuous variables (i.e., R (vi ) =  0) are 
extended to allow them to take a range of values. Finally, 
a DBM Z  is used to represent the ranges of values for 
clocks and active continuous variables. It should be noted 
that despite the use of state sets, due to the use of discrete 
and continuous variables, the state space of an LHPN may 
still be infinite making verification undecidable.

The use of state sets requires that the expression evaluation 
function, Eval(a, 0 ), as well as the enabled transition 
function E (0 ), be extended to operate on ranges of values 
and to return a range of values. For example, the relational 
operators on ranges are defined as follows:

([1l,Ui] =  [l2,u2]) =

([li, ui] > [l 2, U2]) =

([1l,ui] > [Z2,«2]) =

([li, ui] < [l 2, U2]) =

([1l,ui] < [l2,U2]) =

if (li = l2 = ui = u2) then 1 
elseif ((li > u2)|(l2 > ui)) then 0 
else ±
if (li > u2) then 1 
elseif (l2 > u i) then 0 
else ±
if (li > u2) then 1 
elseif (l2 > u i) then 0 
else ±
if (ui < l2) then 1 
elseif (u2 < li ) then 0 
else ±
if (ui < l2) then 1 
elseif (u2 < li ) then 0 
else ±

When applying relational operators to ranges, the result may 
be “± ” since the relational operator must be applied to all 
values in the range. For example, the statement [1,2] =  [1, 2] 
returns “± ” because the comparison is between all pairs of 
values in the ranges, not between the two ranges themselves.

Arithmetic on ranges has been well studied [8]. Addition 
and subtraction is fairly straightforward as shown below:

[li,ui] +  [l2,u2] = [li +  l2,u i +  u2]
[li,ui] -  [l2,u2]=  [li -  u2,u i -  l2]

However, dealing with the sign of the operands makes 
multiplication and division somewhat more complicated:

[li, ui] * [l2, u2] = [mm(li * l2, li * u2, ui * l2, ui * u2), 
max(li * l2, li * u2, ui * l2, ui * u2)]
f[li,ui] * [1/ l2, 1/u 2] if 0 0 [l2,u2]
|  [—ro, ro] otherwise

Division by a range that includes 0 is quite involved [8], so 
for simplicity a conservative unbounded range is returned.

The modulo, bitwise, and bit extraction operations on 
ranges cannot be easily performed exactly and may result in 
non-continuous ranges. For example, the operation [6,9]%8 
generates the results 0, 1,6, and 7. These can be grouped into 
the ranges [0,1] and [6, 7], but this would require splitting 
the zone. One method to do this is to use a multizone DBM 
approach, as described in [3] which we plan to investigate 
in the future. Currently, a more conservative approach is 
taken, choosing the larger region [0,7] which encapsulates

[li,ui]/[l2 ,u2] =
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all possible values. As another example, the bitwise A N D  
operator may clear bits, but never results in new bits being 
set. Therefore, it never results in an answer greater than the 
larger of the operands. The A N D  of two negative numbers 
though can result in an even smaller negative number but 
never smaller than 11 +  12. To address these problems, these 
operations are performed exactly when the operands are sin­
gle values (i.e., 1i =  u i), and the conservative approximations 
shown below are used when any operand is a range:

[li,ui]%[l2,u2] = [min(0,

NOT ([li,ui]) 
AND([Ii,ui], [f2, U2])

OR([Ii, ui], [I2, U2]) 
XOR([Ii,ui], [f2,U2])

BIT([fiJui]J [f2,U2])

c(-(ma*(|f2 |, |u21) -  1), fi)),
max(0, min (max (| I2|, |u21) — 1,ui))]

[—(ui + 1)! —(fi + 1)]
[min(li + f2, 0), max(ui ,U2)] 
[min(li, f 2), max(ui + U2, — 1)] 
[min(li — U2, 2̂ — ui, 0), 
max(ui + U2, —(fi + I2), —1)]

Any time abstraction is used, it is possible to capture in­
valid behaviors. False negatives can thus be found. Any error 
trace derived from an abstracted system must be scrutinized 
carefully to determine its validity.

VI. State Space E xplo ra tio n

This section describes a state exploration method which 
uses zones that are defined using DBMs to represent the 
continuous portion of the state space. In particular, this sec­
tion extends the state space exploration method for LHPNs 
described in [10], [12] to utilize the extended expression 
syntax for enabling conditions and assignments.

The DBM based method shown in Fig. 3 uses a depth 
first search to find the reachable state space for an extended 
LHPN. Note that because the state space of an LHPN may 
not have a finite representation, this is a semi-algorithm as 
it may not terminate. First, this method constructs the initial 
state set for the extended LHPN and adds it to the set of 
reachable state sets, ^ .  The initial state set is {M0, S 0, 
Y0, Q 0, R 0, I 0, Z 0} where I 0 contains the initial value for 
all continuous inequalities (i.e., I 0(vi n  a )  =  (Q 0(vi ) n  
E va1(a, 0 0))), and Z 0 includes active continuous variables 
(i.e., R 0(vi ) =  0) set to their initial value and clocks for 
enabled transitions set to zero. Next, the method uses the 
f i n d P o s s i b l e E v e n t s  function to determine all possible 
events, E , that can result in a new state set. A single event, 
e, is arbitrarily chosen from E  using the s e l e c t  function. 
If after removing e from E , events still remain in E , the 
remaining events and the current state set are pushed onto 
the stack for later exploration. At this point, the current state 
set, 0 , is updated to reflect the occurrence of the event, e. 
If this new state set, 0 ',  has not been seen before, it is 
added to the state space, ^ ,  a new set of possible events 
is calculated, and the exploration continues from this new 
state. If the state set is not new, a previously explored state 
set and set of unexplored events are popped from the stack, 
and the exploration continues from this point. Finally, when 
the stack is found to be empty, the entire reachable state 
space has been found, and it is returned. This section now 
explains each of these steps in more detail.

reach()
^  = in i t ia lS ta te S e t( )
^  = W
E = findPossib leE vents(^) 
while(true)

e = se lec t(E )
if(E — {e} = 0) then push(E — {e},^)

= updateS ta te(^ , e) 
if ^ ' 0  ^  then 

^  = ^  U{^'}
^  = ^ '
E = findPossib leE vents(^) 

else
if(stack not empty) then (E,^>) = pop() 
else return ^

Fig. 3. Semi-algorithm to find the reachable states.

The f i n d P o s s i b l e E v e n t s  function shown in Fig. 4 
determines the set of all possible events from the current 
state. There are two event types: a transition can fire or 
an inequality can change value due to the advancement of 
time. A transition may fire at any time after its clock has 
reached the lower bound of the delay for that transition, and 
it must fire before its clock exceeds the upper bound of its 
delay. Transition clocks become active when they become 
enabled, and, as mentioned before, only clocks for enabled 
transitions are kept in Z . Therefore, any transition whose 
clock is in Z  (denoted t  e  Z) that can reach its lower 
bound (i.e., ub(Z , t) >  dl(t)) may fire. Note that ub(Z , t) is 
defined to retrieve the upper bound for t 's  clock from Z. An 
inequality, vi n  a , may change value when it is possible 
for time to advance to the point where the value of the 
continuous variable, vi, crosses the value of the expression,
a . This is determined by the in e q C a n C h a n g e  function by 
examining the current state set, 0 . The in e q C a n C h a n g e  
function must be modified from the one described in [12] 
since the original version only allowed a  to be a rational 
constant. The new version must evaluate a  based on the 
current state. It is important to note that a  must be relatively 
constant. Namely, the value of a  must only change as a 
result of transition firings. It is this requirement that led to 
the restrictions described earlier on the forms of expressions 
that can be used in enabling conditions. For each possible 
event, the a d d S e t I t e m  function is used to determine if 
this event can actually be the next to occur. The event may 
actually not be able to occur before some event already found 
in E , and it would not be added in this case. Alternatively, 
the event may be possible to occur next, and it may in turn 
prevent some other events in E  from being next. The details 
of this function are the same as the previous version of the 
algorithm, so the interested reader should see [12].

The u p d a t e S t a t e  function shown in Fig. 5 determines 
the new state set that is reached after the occurrence of an 
event, e. First, this function calls the r e s t r i c t  function 
to modify Z  to reflect that time must have advanced to 
the point necessary for the event to have occurred (i.e., 
the clock for the transition firing reaches its lower bound, 
or the continuous variable vi reaches the value of its right 
hand expression a). This function also must be extended
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findPossib leE vents(^)
E  = 0 
for t € Z

if ub(Z, t) > di(t) then
E = addSetItem(E, t) 

for (vi x  a) € I
if ineqCanChange(^, vi, a) then 

E = addSetItem(E, (vi K a j) 
return E

Fig. 4. Algorithm to find possible events.

to address the fact that inequalities can now be bounded 
by expressions. Next, the r e c a n o n i c a l i z e  function uses 
Floyd’s all-pairs shortest path algorithm to restore Z  to a 
canonical form. When the event is an inequality changing 
value, the next step simply updates its value in I . When the 
event is a transition firing, however, the state update is more 
involved as shown in Fig. 6 which is described below. Next, 
the transitions are checked to see if they have become newly 
enabled or disabled. A clock for a transition t  not in Z  that 
is enabled must be added to Z  while a clock for a transition 
t  in Z  that is not enabled must be removed from Z . Here 
again is another necessary modification in that determining 
if a transition is enabled requires the evaluation of the more 
complex expressions that are allowed in extended LHPNs. 
Finally, time is advanced using the algorithm shown Fig. 7, 
Z  is recanonicalized, and the new state set is returned.

updateS ta te(^ , e)
Z = r e s t r i c t ^ ,  e)
Z = recanon icalize(Z ) 
if e € T  then

^  = updateIneq(^, e) 
else

^  = f ire T ra n s itio n (^ ,e )  
for t € T

if t € Z A t € £ (^) then 
Z = addT(Z, t) 

else if t € Z A t € £ (^) then 
Z = rmT(Z,t)

Z = advanceTime(^)
Z = recanon icalize(Z ) 
return ^

Fig. 5. Algorithm to update the state.

The f i r e T r a n s i t i o n  function shown in Fig. 6 is 
called by the u p d a t e S t a t e  function to fire a transition 
t  in state set ^ . This function must first update the marking 
by removing the tokens from all places in • t  and adding 
tokens to all places in t^. Next, the transition t  is removed 
from Z . Then, all assignments labeled on t  are performed. 
This includes Boolean variable, discrete variable, continuous 
variable, and rate assignments. For extended LHPNs, these 
assignment functions are more involved. While in the basic 
LHPNs only constants are assigned, in extended LHPNs 
these assignments involve more complex expressions which 
must be evaluated on the current state. The assignments may 
have changed the values of some inequalities, so these must 
be updated next. The rate assignments may have activated or 
deactivated a continuous variable, so all continuous variables

are checked and added or removed from Z  as necessary. 
Finally, Z  is warped using dbmW arp to properly account 
for any rate changes that may have occurred. The warping 
function described in [10], [12] is a technique that allows 
zones to be used even when continuous variables evolve 
at non-unity rates. The warping function does not need to 
be changed for extended LHPNs, so the interested reader is 
referred to [10], [12]. Once again, the warping of zones is 
an abstraction of the state space which can result in false 
negatives. It does not, however, ever produce false positives, 
and it has been shown to be a reasonable abstraction allowing 
for accurate verification of several interesting systems [12].

f ire T ra n s itio n (^ , t)
M' = (M -  •t) U t^
Z ' = rmT(Z,t)
S' = doBoolAsgn(^)
Y ' = doIntAsgn(^)
(Z ',Q ') = doVarAsgn(^)
R' = doRateAsgn(^)
I ' = updateI(S ', Y', Q', R', I, Z') 
for v € V

if v € Z A R'(v) = 0 then 
(Z' ,Q ')=  addV(Z',Q' ,v) 

else if v € Z A R'(v) = 0 then 
(Z' ,Q ')=  rmV(Z',Q',v)

(Z ',R ')=  dbmWarp(Z', R, R') 
return <M', S', Y', Q', R', I ', Z')

Fig. 6. Algorithm to fire a transition.

The u p d a t e S t a t e  function calls the a d v a n c e T im e  
function, shown in Fig. 7, to advance time in Z . The basic 
idea behind this function is that it allows time to advance 
as far as possible without missing an event. To ensure that 
a transition firing t  is not missed, a d v a n c e T im e  sets the 
upper bound value for the clock associated with t  to the 
upper delay bound for t . To ensure that a change in inequality 
value is not missed on a variable v , all inequalities involving 
variable v  are checked by the function c h e c k I n e q ,  and the 
largest amount of time that can advance before one of these 
inequalities changes value is assigned to the upper bound 
value for v . Note that this function must be modified to 
evaluate the expressions now found in these inequalities.

advanceTime(^) 
for t € Z 

ub(Z, t) = du(t) 
for v € Z

ub(Z, v )=  checkIneq(^, v) 
return Z

Fig. 7. Algorithm for advancing time.

VII. Case  Study

We have updated the LEMA verification tool to support 
extended LHPNs as described in this paper. This includes 
an editor to create extended LHPNs. We have applied this 
updated version of LEMA to the fault-tolerant temperature 
sensor with several variations in parameter values. The 
results are shown in Table I. For each case, the number of
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TABLE I
Verification results for the reactor example.

Parameters State sets Runtime (s) Verifies
Original 61469 2050 Yes
t4 delay [5, 15] 10 0.035 No
9-bit ADCs 50028 598 No
t2, t3 delay [20, 20] 45325 268 No
temp rates [—4,4] 23235 180 No
temp rates [—4,4], 
7-bit ADCs 32636 603 Yes

state sets found, runtime in seconds, and whether it verifies to 
be correct are reported. Recall that the property being verified 
is that the reactor never shuts down since the temperature 
sensors are assumed to be perfect in the LHPN model.

The original model parameters shown in Fig. 2 verify 
to be correct in 2050 seconds (about 34 minutes) after 
finding 61469 state sets. If the delay between iterations of 
the software loop is reduced (i.e. the delay of transition t 4 
is reduced to [5,15]), it no longer verifies to be correct after 
finding 10 state sets in 0.035 seconds. The reason for this 
failure is that A and B  can be loaded and compared before 
the ADC subsystem has sampled any valid temperatures. If 
the ADCs use 9-bits (i.e., 256 is replaced with 512 in the 
expressions for A D C 1  and A D C 2 ), the example again fails. 
In this case, there is too much resolution, and the discrete 
values of the temperatures can differ by three or more. If the 
sampling rate is decreased (i.e., the delays for t 2 and t3 are 
changed to [20, 20]), the example fails, since the temperature 
can change too much between two subsequent samples. If 
the rate of temperature change is increased to [-4 ,4 ] , the 
example fails because the temperature can again change 
too much between samples. Changing multiple parameters 
can make the example start to verify correctly again. For 
example, if  both the rate of temperature change is increased 
to [-4 ,4 ] and the resolution of the ADCs is reduced to 7- 
bits, the reactor does not shut down. These results indicate 
that the correctness of this fault-tolerant temperature sensor 
is quite sensitive to parameter choices.

V III. Co n c lu sio n

This paper proposes a formal model for the verification 
of embedded systems. This model enables the modeling of 
complete systems, including environmental sensor inputs. In 
particular, the LHPN model is extended to include discrete 
variables and expressions to check and modify them in 
order to represent registers and memory values in embedded 
software. This paper also presents a method for reachability 
analysis of extended LHPNs that is used to perform formal 
verification. Finally, a case study is presented for a fault- 
tolerant temperature sensor that includes both a continuous 
environment signal as well as discrete register values. Pre­
liminary results on this case study are promising.

Recently, we have extended the lem a  tool to compile 
extended LHPNs from embedded software which can then 
be integrated with existing methods for creating LHPNs for 
analog/mixed signal circuits. The fault-tolerant temperature

sensor presented in this paper is an abstraction of the 
complete model that can be derived using this compiler. To 
derive such an abstract model, we are investigating automatic 
methods to reduce the LHPN to include only the elements 
necessary to verify the property of interest. Since such ab­
stractions as well as those in this paper can potentially result 
in false negative results, we are also developing techniques 
to analyze the error trace ultimately resulting in a complete 
abstraction-refinement verification method.
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