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S u m m a ry . The quasi-linear (QL) approximation replaces the (unknown) total field in 

the integral equation of electromagnetic (EM) scattering with a linear transformation 

of the primary field. This transformation involves the product of the primary field with 

a reflectivity tensor, which is assumed to vary slowly inside inhomogeneous regions 

and therefore can be determined numerically on a coarse grid by a simple optimization. 

The QL approximation predicts EM responses accurately over a wide range of fre­

quencies for conductivity contrasts of more than 100 to 1 between the scatterer and the 

background medium. It also provides a fast-forward model for 3-D EM inversion. The 

inversion equation is linear with respect to a modified material property tensor, which 

is the product of the reflectivity tensor and the anomalous conductivity. We call the 

(regularized) solution of this equation a quasi-Born inversion. The material property 

tensor (obtained by inversion of the data) then is used to estimate the reflectivity tensor 

inside the inhomogeneous region and, in turn, the anomalous conductivity. Solution of 

the nonlinear inverse problem thus proceeds through a set of linear equations. In prac­

tice, we accomplish this inversion through gradient minimization of a cost function that 

measures the error in the equations and includes a regularization term. We use synthetic 

experiments with plane-wave and controlled sources to demonstrate the accuracy and 

speed of the method.

1 In t r o d u c t io n

There has been great progress recently in 3-D electromagnetic (EM) modeling and 

inversion with both integral-equation (Eaton, 1989; Xiong. 1992; Xiong and Kirsch, 

1992; Tripp and Hohmann, 1993; Xiong and Tripp, 1993; Xie and Lee. 1995) and 

finite-difference methods (Madden and Mackie, 1989; Newman and Alumbaugh, 1995). 

These “exact” methods, however, usually require too large a computational effort to 

allow their routine use. We have been developing a practical 3-D inversion based on 

a fast new method of forward modeling called the quasi-linear (QL) approximation 

(Zhdanov and Fang, 1996a). In the QL approximation, the anomalous field inside the
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inhomogeneous region is written as the product of the incident field and a reflectivity 

tensor. This tensor is assumed to be slowly varying, and therefore can be computed on 

a much coarser grid than the field itself. Our experience is that the QL approximation 

is easy to compute and very accurate. For the inverse problem, we recast the QL 

approximation as a linear integral equation for a modified material property tensor, 

which then is estimated from the data. The results are used to determine the reflectivity 

tensor and the anomalous conductivity.

Our method resembles inversion based on the extended Bom approximation (Habashy 

et al., 1993; Torres-Verdfn and Habashy, 1994, 1995a,b), but there are some important 

differences. For example, the extended Bom approximation also replaces the (unknown) 

total field inside the scatterer with a product of the incident field and a tensor, but this 

scattering tensor is defined explicitly through a weighted integral of the anomalous 

conductivity. In the QL approximation, in contrast, the reflectivity tensor itself is de­

termined by the solution of an optimization problem.

We develop QL inversion for 3-D EM fields using a gradient algorithm to solve a 

set of coupled linear inverse problems. The inversion is stabilized by Tikhonov regular­

ization (Tikhonov and Arsenin, 1977; Zhdanov, 1993). Synthetic examples, with and 

without random noise, indicate that the algorithm for inverting 3-D EM data is fast and 

stable.

2 A p p ro x im a t io n s  to  EM  sca tte r in g

Consider a 3-D geoelectric model with the normal (or background) complex conduc­

tivity <x„ and local inhomogeneity D with conductivity ct =  ct„ + Act. Complex con­

ductivity includes the effect of displacement currents: ct =  ct — icos, where ct and s are 

electrical conductivity and dielectric permittivity. We assume that /i =  /iq =  4n x 10 7 

H/m, the free-space magnetic permeability. The model is excited by an EM field gener­

ated by an arbitrary source. This field is time harmonic as e  ,0J' . The EM fields in this 

model can be split into normal and anomalous fields:

E =  E" + Efl, H  =  FT + H a, . (1)

where the normal field is the field generated by the given sources in the model with 

the background distribution of conductivity ct„, (i.e., in the model without the inhomo­

geneity) and the anomalous field is the difference between the total field and the normal 

field. L.

The anomalous field can be expressed as an integral over the excess (scattering) 

currents in the inhomogeneous domain D (Hohmann, 1975; Weidelt, 1975):

Efl(r,) =  f f f D G"(r, I r)A<j(r)[E"(r) + E°(r)] dv, (2)

where G"(r;- | r) is the EM Green’s tensor for the medium with the normal conductiv­

ity ct„. ■

2 .1 Born and extended Born approximations -

If the anomalous field is small inside D (in comparison with the normal or incident 

field), then the anomalous field can be neglected inside the integral in Eq. (2), giving
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the Bom approximation for the scattering (Born, 1933):

E"(r,) =  j j j  G"(r; | r)Aor(r)E"(r)dv. (3)

This approximation, however, is not very accurate for EM scattering by the large con­

ductivity contrasts (or large bodies) that are typical of geophysical problems. Habashy 

et al. (1993) and Torres-Verdin and Habashy (1994) developed the extended Bom ap­

proximation, which replaces the internal field in the integral (2) not by the normal field, 

but by its projection onto a scattering tensor T(r):

E(r) = r(r)E"(r). (4)

An expression for the scattering tensor is derived by rewriting Eq. (2) as an integral 

equation for the total field,

E(r,) =  E"(r; ) + J J J  Gn(r; | r)A<7(r)E(r)</v, (5)

and then approximating E(r) in the integral by its value at the point r

E(r,) % E"(r,) + E(r,) J J j  G"(r7 | r)A a(r)dv, (6)

or

-i—l
E(r,) ///:I -  G"(rj | r)Aa(r)dv E"(ry). (7)

The expression in brackets is the scattering tensor; it does not depend on the illu­

minating sources and is an explicit nonlinear functional of the anomalous conductiv­

ity. In forward modeling with the extended Born approximation, the scattering tensor 

can be calculated directly; in inversion, the scattering tensor is calculated for an (as­

sumed) initial model, and then updated iteratively after solving an inverse problem 

for the anomalous conductivity. Torres-Verdin and Habashy (1994) also showed that, 

for some models, the iterative procedure could be collapsed into a simple two-step 

inversion.

2.2 QL approximation

In Zhdanov and Fang (1996a), we developed ideas that can be considered an extension 

of Torres-Verdin and Habashy’s (1994) method. Expression (2) can be rewritten in 

operator form:

E" =  C[E“], (8)

where C[Ea] is an integral operator on the anomalous field Ea:

C | E" ] =  A|En] + A[E"], (9)

and A is a linear scattering operator:

A[E1 =  / / / ,  G"(r; | r)Aor(r)E(r)rfu. (10)
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The solution of the integral equation (8) for the anomalous field E" is a fixed point of 

the operator C. This solution therefore can be obtained by the method of successive 

iterations,

EoW =  C[Efl(JV_1)], N =  1 ,2 ,3 . . . ,  (11)

which converges if C is a contraction operator; that is, if ||C|| < 1.

The Bom approximation is simply the first iteration of this scheme when the initial 

approximation Eal0’ is set to zero,

Eb =  Ea(1) =  C[0] =  A[E"]. (12)

We try to obtain a more accurate approximation by assuming that the anomalous field 

inside the inhomogeneous domain is linearly related to the normal field by a tensor A, 

which we call an electrical reflectivity tensor:

En(r) % A(r)E"(r). (13)

If expression (13) is taken as the zeroth-order approximation for the scattered field 

inside the inhomogeneity [Ea(0) =  AE"], then the first-order approximation is

Ea(1) =  C[AE"1 =  A[E" + AE"] =  A[(I + A)En] =  Euqt. (14)

We call this a QL approximation Eaqt for the anomalous field. Written out explicitly, 

the approximation is

Eaqt «  A[(I + A)E”1 =  J J J  G"(r,■ | r)A5(r)[I + A(r)]EB(r)dw. (15)

The accuracy of the QL approximation obviously depends on the accuracy of the 

representation (13). The actual anomalous field E" is equal to

Ea =  A[E'!] + A[En] . , (16)

The error is therefore

|E“ - Eaql | =  ||A(E“ -  AE")|| < ||A||||E° - AE" || (17)

or,

|E° — Eaql || < || A || e, • ' (18)

where e =  |]E" — AE" ||, and ||....|| is an L 2 norm. If the electrical reflectivity tensor 

A(r) is allowed to be a general function of r, it is clear that s can be made arbitrarily 

small. In fact, the error is zero if the reflectivity tensor is taken as the normalized dyadic 

product

A(r) =  [E"*(r) • E'l(r)]^1Ea(r)E,I*(r), '

where the center dot is the (real) inner product a • b  =  ^  aib, and the asterisk indicates 

complex conjugate. O f course, this expression is not very useful in practice because it 

involves the unknown total field.
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Zhdanov and Fang (1996a) analyze different methods of determining an optimal A. 

They show that one can use the following condition to determine A:

- J I J ™ >
A(r,)E"(r,) - G"(r, | r)A<?(r)[(J + A)E"(r)]</i> =  <p(X) =  min! (19)

In numerical calculations we usually asume that A(r) is a slowly varying (tensor) 

function inside the anomalous domain D (the simplest form is a constant). Equation 

(19) then can be treated as an overdetermined problem and solved numerically by 

a least-squares method (Zhdanov and Fang, 1996a). After the A is found, the QL 

approximation to the field is calculated using

///* •
| r)A<?(r)[I + A(r)]E"(r)*/v. (20)

where F" stands for the anomalous electric (E") or magnetic (H ") field observed out­

side the scatterer (e.g., at surface of the Earth), and GF is the appropriate (electric or 

magnetic) Green's function.

2.3 Comparison

In their roles relating unknown anomalous or total fields to the incident field, the 

electrical reflectivity tensor A of the QL approximation and the scattering tensor T of 

the extended Born approximation are themselves related by the simple formula:

A = T - l .  (21)

The two approximations differ significantly, however, in computing these tensors. The 

scattering tensor T is defined explicitly by expression (7). The accuracy of the extended 

Born approximation depends on how well the integral in Eq. (5) is approximated by 

taking the constant value for the field E(ry). Because the Green’s dyadic is strongly 

peaked for values r % r ,̂ the approximation should be good if the field itself is not 

varying rapidly at rj. Habashy et al. (1993) called this the “localized approximation.” 

The QL approximation determines the electrical reflectivity tensor by solving a 

minimization problem (Eq. 19) on a coarse grid. The accuracy of QL approximation 

depends only on the accuracy of this discretization of A and. in principle, can be made 

arbitrarily good, though care may be needed with a fine discretization, because Eq. (19) 
can become underdetermined.

3 N u m e r ic a l e x a m p le s  o f  th e  Q L  a p p ro x im a t io n

This section compares the fields obtained by solving the integral equation (2) numeri­

cally, by computing the Bom approximation (3). and by computing the QL approxima­

tion (15). Figure 1 shows the 3-D geoelectrical model, which consists of a homogeneous 

half-space of resistivity 100 ohm-m and a conductive rectangular inclusion with resis­

tivity 1 ohm-m. The EM field in the model is excited by a horizontal rectangular loop, 

which is 10 x 10 m, carries a current of 1 A, and is 50 m to the left of the model. We 

have used the full integral-equation (IE) code, SYSEM (Xiong, 1992), and QL code, 

S YSEMQL (Zhdanov and Fang, 1996a) for computing the frequency-domain response 

of the complex conductivity structure along profiles parallel to the Ji-axis.
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Quasi-linear approximation (full tensor)

Figure 2. Numerical comparison of full IE solution and QL approximation computed for Model I 
(Fig. I) at the frequency range from 0.1 Hz to 10 kHz. Calculations were performed for the receivers 
located along profiles parallel to the y-axis on the surface. Plots show the differences between IE 
solution and QL approximation for .v-component of the secondary electric field normalized by the 
value of corresponding component of the field at the point y  = 40 (normalized error).

Figures 2 and 3 compare the different solutions for real and imaginary parts of the 

anomalous electrical field E‘’ for different frequencies. The point x =  0 along each pro­

file corresponds to the location of the conductive rectangular inclusion center. Figure 2 

shows the differences between IE solution and QL approximation, normalized by the 

value of the corresponding component of the field at the point y =  40. The accuracy of 

the QL approximation for the electric-field components is within 5% for frequencies 

from 0.1 Hz to 10 kHz. Figure 3 presents the differences between the IE solution and 

Bom approximation, normalized by the value of the corresponding component of the 

field at the point y =  40. The QL approximation produces a reasonable result, whereas 

the conventional Born approximation is far off the mark.

The next set of comparisons uses the same geometric model, but varies the body’s 

conductivity. We selected four different resistivities of the inclusion: 1 ohm-m, 0.1 

ohm-m. 0.01 ohm-m, and 0.001 ohm-m. Figure 4 shows the differences between the IE 

solution and the QL approximation, at a frequency 0.1 Hz, normalized by the value of 

the corresponding component of the field at the point y =  40. One of the horizontal axes 

on Fig. 4 is the resistivity contrast C =  p, /p/„ where pt, =  100 ohm-m is the resistivity 

of the background, and pt is the resistivity of the conductive inclusion. The errors of QL 

approximation are generally small and grow only for very-high-conductivity contrasts, 

equal to 1/C =  10s, reaching about 10% in extremum point for the electric field. For 

lower-conductivity contrasts, the relative errors are below 5%.
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Table 1. Comparison of CPU time (s) for the frequency- 
domain EM modeling, using different methods

Cells in anomalous domain 

Method ' 250 cells 400 cells 800 cells

Full IE solution 1029.1 2995.0 13127.0
QL approximation 382.4 530.4 1170.1

Born approximation

10000

Figure 3. Numerical comparison of full IE solution and Born approximation computed for Model 1 
(Fig. 1) at the frequency range from 0.1 Hz to 10 kHz. Calculations were performed for the receivers 
located along profiles parallel to the >'-axis on the surface. Plots show the differences between IE 
solution and Born approximation for x-component of secondary electric field normalized by the 
value of corresponding component of the field at the point y = 40 (normalized error).

Table 1 shows the computation times needed for full IE solution and for QL ap­

proximation in the frequency domain. One can see from this table that the CPU time 

required for QL approximation grows much more slowly with the number of cells, than 

the CPU time required for the full IE solution.

4 Q L  in v e rs io n

For the inverse problem, we introduce a new tensor function,

m(r) =  A(r(r)[I + A(r)], (22)

which we call a modified material property tensor. Equation (20) then takes the form

F“(r;) *  j j j  G F(rj | r)m(r)E"(r)dv, , ^  (23)
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Quasi-linear approximation (full tensor)

70.4-,oiB
CC

o0.2-

Distance (m) Resistivity Contrast (Ri/Rb)
Frequency = 0.1 Hz

Figure 4. Numerical comparison of full IE solution and QL approximation computed for Model 1 
(Fig. 1) at the resistivity ratio of inclusive body to the background range from 0.(XX)01 to 0.01 (or 
—5 to —2 in log scale). Calculations were performed for the receivers located along profiles parallel 
to the y-axis on the surface. Plots show the differences between IE solution and QL approximation 
for x-component of the secondary electric field at the frequency 0.1 Hz normalized by the value 
of corresponding component of the field at the point y = 40 (normalized error).

which is linear with respect to m(r) (the original Eq. 20 is nonlinear with respect to Aa 

because the reflectivity tensor depends implicity on Act). It has the same structure as 

the Born approximation for the anomalous field, with the modified material property 

tensor m(r) replacing the anomalous conductivity Acf(r). We call Eq. (23) a quasi-Born 

approximation, and its solution (for m), a quasi-Born inversion.

The reflectivity tensor A can be computed from m, because

E"(r,) % J jJ  G £(rj | r)m(r)E"(r)du % A(r,)E"(r,). (24)

Once m and A are known, the anomalous conductivity Act follows from Eq. (22). This 

inversion scheme reduces the original nonlinear inverse problem to three linear steps:

• inversion of the quasi-Born equation (23) for m;

• computation of the integral (24) to obtain A; and

• (local) inversion of Eq. (22) to obtain the conductivity Act.

We call this procedure a QL inversion. As we explain further below, these three steps 

do not solve the full nonlinear inverse problem for Act (mainly because the inversion 

in the first step is intrinsically nonunique), but they do provide the basis for an effec­

tive iterative solution. This iterative scheme resembles the source-type IE method of 

Habashy et al. (1994) and the modified gradient method of Kleinman and van den Berg 

(1993).
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The first step of the three-step QL inversion— the solution of Eq. (23)— is nonunique. 

The equation has a null space, because there exist m distributions that produce a zero 

external field, similar to the nonradiating current distributions that generate zero field 

outside their domain of support (Habashy et al., 1994; Svetov and Gubatenko, 1985). 

Although the linear inverse (source) problem for m is nonunique, the nonlinear in­

verse problem for the conductivity can be unique in the class of piecewise-analytic 

functions (for certain experimental configurations), according to a theorem of Gusarov 

(1981).

To make our QL inversion unique, we therefore have to develop a unified (iterative) 

approach for simultaneously finding m, A, and Aor(r). We do this with a constrained 

inversion that generalizes a method developed by Zhdanov and Chernyak (1987) for 

two-dimensional (2-D) models. A similar approach to the 2-D inverse scattering prob­

lem was discussed by Kleinman and van den Berg (1993). We first discretize the 

equations by dividing the domain D into substructures (subdomains) D =  Ujt=i k Dk 

and assume that the material property tensor is constant in each substructure, so that 

Eq. (22) becomes

r ^ ) = E  f f f  £ f (r; I r)m*E"(r)du. (25)
k=\,N J  J  ->Dk

where depends only on k. We also assume that the reflectivity tensor is constant in 

each substructure so that the equation for determining A is

A*E"(r,-)« Y .  I l l  ^ E(rj I r)mtEn(r)dv, r,- e Dk. (26)
1=1, N D<

Finally,

in*: =  Aa*[!+ A*] (27)

gives the relationship between the conductivity and the material property and reflectivity 

tensors in each substructure.

To proceed further, we write these equations in matrix form, for the simplest case 

when the modified material property and reflectivity tensors are scalars (i.e., propor­

tional to the unit tensor). Let m =  m2, . . . ,  mN\T and Act =  [Actj, Act2, . . . ,  

A(t,v]7 be column vectors whose elements are the modified material properties and 

conductivities in the substructures; and let A  =  diag[/.j, X2, , /.,v] be a diagonal 

matrix of the reflectivities. Equation (25) becomes .

F =  G f m, ' ‘ (28)

where F is a column vector of data, and G F is a matrix representation of the linear 

operator defined by formula (25). Equation (27) becomes

m =  (I + A)A<t . , (29)

This equation is essentially Ohm’s law, =

4.1 Discrete QL equations

f  =  A aE  =  Aa(E" + E°) =  Act [I + A*(r)]E". (30)
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Equation (26) is overdetermined and can be inverted directly (in least-squares sense) by 

A.* =  tEn*(ry)-E"(r>) r lE"*(ry) .  £  f f f  Q £(ry | r)mtE"(r)dv, r7 6 Dk,
(—\,n

or, in matrix form.

A = (En*E "r lE"*G m.

(31)

(32)

where A is now a column vector of the reflectivities; E" is a block diagonal matrix 

whose diagonal blocks are the (3 x 1 complex) vectors E''(ry); and the asterisk indi­

cates conjugate transpose.

With multifrequency data, both m and A will depend on frequency. We assume, 

however, that Act =  Act — icoAe, where Act and Ae do not depend on frequency. In 

the absence of any constraints, the least-squares solution of Eq. (29) for the real and 

imaginary parts of A a  is

-■—I

and

Re(Aer) =  Re

Im( Arr) =  co Im

£ ( 1  + A)*(J + A)

|̂ £ > ( !  + A)*(I + A)

+ A)*m

-t

Y jli  + A rm

(33)

(34)

4.2 Regularized QL inversion

QL inversion requires the solution of Eq. (28) for m, computation of A.* by Eq. (31), 

and solution of Eq. (29) for Act,. To obtain a stable, regularized solution, we introduce 

the functional

Pu(m) =  0 (m )-I-a5'(m), (35)

where the misfit functional is specified as 

<p(m) =  ||G7 m - F||2 4- ||m - (I + A)Acr||2

=  ( G 'm - F)*(G' m -  F) + [m -  (I + A)Ao-l*[m -  (I 4- A)Acr]. (36) 

The misfit functional tracks the solution of both equations (28) and (29). The stabilizer is 

S(m) =  ||m - nip||2 =  (m — mp)’ (m - m,,). (37)

The prior model m;, is some reference model, selected on the basis of all available 

geological and geophysical information about the area under investigation. The scalar 

multiplier a is a regularization parameter.

The misfit functional provides the solution that best fits the observed data F. whereas 

the stabilizing functional ties the solution to the prior model m ;). The regularization 

parameter a  controls the trade-off between these two goals. Principles for determining 

the regularization parameter a  are discussed by Tikhonov and Arsenin (1977) and Zh­

danov and Keller (1994). We use a simple numerical method to determine the parameter 

or. Consider the progression of numbers

of* =  aQqk\ k — 0, 1 ,2 , . . . ,  n\ q >  0. (38)
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For any number ak, we can find an element m„; , minimizing Pak{m), and calculate the 

misfit || Gf m" — F||2. The optimal value of the parameter a is the number for which

HGFm““ — F||2 =  <5, (39)

where <5 is the level of noise in observed data. The equality (39) is called the misfit con­

dition. To avoid divergence, we begin an iteration from a big value of a (e.g. a0 =  100), 

then reduce a (a =  «n /10) on each subsequent iteration and continuously iterate until 

the misfit condition is reached.

The inversion thus is reduced to the solution of the minimization problem for the 

parametric functional,

P“(m) =  min! (40)

which we do by a regularized steepest-descent method (Appendix). The solution ma of 

the regularized problem (40) is a continuous function of the data (and so, it is stable) 

and uniformly tends to the actual solution of the original inverse problem when a —>• 0.

5 E xam p les  o f  Q L  in v e rs io n  

5.7 Plane-wave excitation model

To test the algorithm, we have computed an EM field for two conductive rectangular 

structures in a homogeneous half-space, excited by a plane wave (Fig. 5a). The observed 

data on the surface were simulated by forward modeling using a full IE code (Xiong, 

1992). Figures 6a and 6b show the comparison of the full IE solutions (solid line) and QL 

approximation (dashed line) for apparent resistivities computed for TM on (Transverse 

Magnetic) mode (pyx) at the frequencies (in Hz): 10, 1.0.5, and 0.2. Calculations 

are performed for the receivers at the surface located along profiles parallel to the y- 

axis. Figures 7a and 7b present the amplitude and the phase of the apparent resistivity 

distribution, calculated from the observed EM field on the surface of the Earth for the 

frequency equal to 1 Hz. The inversion used EM data collected along 15 profiles on the 

surface of the Earth at the four frequencies listed above. Displacement currents at these 

frequencies are negligibly smaller than the conductive currents, and so the inversion 

was applied only for the conductivity distribution. In the numerical test, we selected 144 

substructures for inversion, shown in Fig. 5b, and we used the additional simplification 

that the reflectivity tensor A is scalar and constant within every substructure. The results 

of inversion for the data with 5% random noise added are shown on the following figures.

Figure 8 presents a vertical slicc along the line x =  0 of the results of inversion of the 

noisy data. One can see clearly the cross-sections of conductive body on this picture; 

however, the upper part of the body is resolved slightly better than the deeper parts, 

which can be explained by the fact that EM field is less sensitive to the lower parts of 

anomalous structures. Figure 9 shows the vertical slice along the line x =  300 m that 

passes outside the body with anomalous conductivity. We can see now only background 

conductivity on this cross-section with a very weak variation, which corresponds very 

well to the original model. Figure 10 presents the volume image of the inverted model. 

The result clearly shows the anomalous body. The relationship between the misfit func­

tional and the number of iterations is shown in Fig. 11. One can see that the noise 

practically didn’t affect the result. This can be explained simply by using a regularized 

solution. t
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Z

(b)

1.5 km

1.5 km 1.5 km

Figure 5. (a) Three-dimensional model of two rectangular conductive structures in a homogeneous 
half-space, excited by a plane wave (Model 2); (b) division of model into substructures used for
inversion.



Distance <m> TM mode Distance (m) TM mode

Distance (m) TM mode Distance (m) TM mode
Figure 6. Numerical comparison of full IE solution (a), and QL approximation (b) computed for Model 2 (Fig. 5) at the 
frequencies 10, 1. 0.5, and 0.2 Hz. Calculations are performed for receivers located along profiles parallel to the y-axis on 
the surface. Plots present apparent resistivities computed for TM mode (pyx).

246 
Zhdanov 

and 
Fang



MT data at the surface (TM mode) MT data at the surfacc (TM mode)

15

=Fz
30

0 
X (m)

I 1
4 4  5 8  73  88 102 116  131 

Apparent resistivity (Ohm*m)
146 160

u>I
o
JC
CE

anB
W
2
3c&
IL
B*w
as-o.

-6 0 0  -4 0 0  -2 0 0  0  2 0 0  4 0 0  6 0 0
X (m)

- I ~ !
-1 4 0  -1 3 9  -1 3 8  -1 3 7  -1 3 6  -1 3 5  -1 3 4  -1 3 3  -1 3 2  -131 -1 3 0  

Phase (Degree)

Figure 1. (a) Apparent resistivity amplitude distribution for the model shown in Fig. 5, calculated on the surface of the Earth for a frequency 
of I Hz. (b) Impedance phase distribution for the model shown in Fig. 5, calculated for a frequency of I Hz.
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3 D  M T  I n v e r s io n  R e s u l t s  

3D Resistivity im a g e
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Figure 8. Vertical slice along the line x =  0 of 
the results of inversion of the data with 5% noise 
added for the model shown in Fig. 5.
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Figure9. Vertical sliceaiongthe line* =300m 
of the results of inversion of the data with 5% 
noise added for the model shown in Fig. 5.
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3D Resistivity image
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depth=200m
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Figure 10. The volume image of the inverted model com­
puted from EM data (with 5% noise added) collected along 15 
profiles on the surface of the Earth for four frequencies (10, 1, 
0.5. and 0.2 Hz) for the model shown in Fig. 5.

Figure 11. Plot of misfit functional as a function of the number of iterations, cal­
culated during inversion.
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x
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Figure 12. (a) Model of conducting body excited by the vertical dipole in the borehole (Model 3). 
(b) Inverse area is subdivided into 27 substructures; the size of the substructures is selected to be 
equal to the size of the actual conducting body.
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Figure 13. Plots of vertical anomalous magnetic field Wf'.freal and imaginary parts) calcu­
lated at the frequency 50 kHz along the borehole.

5 .2  C ro ss-b o reh o le  vertical m a g n etic  d ip o le  excitatio n  m o d el

Let us consider a model simulating an orebody (Bertrand and McGaughey, 1994). We 
present the orebody as a cube with side 20 m and resistivity 1 ohm-m embedded in a 
homogeneous media with resistivity 100 ohm-m. This model simulates typical massive- 
sulfide deposits. The orebody is located exactly in the middle o f  the two boreholes al 
a depth o f 40 m. The distance between the boreholes is 100 m (Fig. 12a). Cross­
borehole EM surveys can be conducted by the frequency-domain vertical magnetic 
dipole system. The transmitter (vertical magnetic dipole) is located at a depth o f 50 m 
in the first borehole, and 21 receivers, observing the vertical magnetic field, are in 
the second borehole, from a depth o f 0 to 100 m. The plots o f  the vertical anomalous 
magnetic field Hi' (real and imaginary parts) calculated for the frequency 50 kHz along 
the borehole are presented in Fig. 13.

The unknown region is subdivided into 27 substructures: The size o f  the substructures 
is selected to be equal to the size of the actual conducting body (Fig. 12b). The vertical 
slices o f  the geoelectrical model obtained as the result o f the inversion for borehole data 
are presented at Fig. 14. Comparison of these results with the original model (Fig. 12a) 
shows that QL inversion produces a reasonable model o f the target.

6 Conclusion

We have developed a fast algorithm for 3-D EM inversion based on the QL approxima­
tion of forward modeling. The method works for models with various sources o f exci­
tation, including plane waves for magnetotellurics, horizontal bipoles, vertical bipoles, 
horizontal rectangular loops, vertical magnetic dipoles, and the loop-loop system for 
surface (and airborne) electromagnetics.
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3 D  B o r e h o l e  I n v e r s i o n  R e s u l t s  

3D Resistivity image

i i ■——— ^
10 21 32 43 54 65 76 87 98 109 120

Ohm*m
Figure 14. The vertical slices of the geoelectrical model (at the x 
positions 2.5 m, 7.5 m, 12.5 m, 17.5 m) obtained as the result of the 
inversion for one borehole profile vertical magnetic data, presented 
at Fig. 13. The size of the substructures is selected to be equal to 
the size of the actual conducting body (Fig. 12(b)). , ,

The main advantage of the method is that it reduces the original nonlinear inverse 
problem to a set of linear inverse problems to obtain a rapid 3-D conductivity inversion. 
The QL inverse problem is solved by a regularized gradient-type method that ensures 
stability and rapid convergence.
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A ppendix: R egularized steep est-d escen t m eth od  for m in im izing  the  
param etric fu n ction al

To get a stable solution of Eqs. (28) and (31), we introduced the parametric functional:

P"(m) =  0(m) +  a  S(m),

where functionals 0(m) and S(m) were determined by Eqs. (36) and (37). To solve the 
minimization problem (40) we calculate the first variation of the parametric functional 
under the assumption that A a  and A. are, temporarily, constants:

<5P“(m) =  2 Re {8m *[G F*(G Fm  -  F) +  [m -  (I +  A) Act] +  a (m  -  mp)l}.

Let us select <5m as ' ,

5m =  - k a T(m ), 0 < ka <  oo, (Al)

where

i a(m) =  GF*(GFm — F) +  |m  — (I +  A)Act] +  a  (m — Dip). (A2)

This selection makes <5P“(m) =  —2 ka Re{£“*(m) £“(m)} < 0. That means that the 
parametric functional is reduced if we apply perturbation (A 1) to the model parameters. 
We construct an iteration process as follows:  ̂ 7

m“ +1 =  m“ +  Sm/v =  m“ -  k% i a(m N), ' J  (A3)

where ,

f “(m/v) — GF*(GFniAr — F) +  [m,v — (I +  Ajv) Activ-i] ol (mjv — m;,). (A4)



The reflectivity X N is determined from using Eq. (31):

E'A,v =  G £m v , (A5)

Note that the anomalous conductivity has to satisfy the condition (componentwise)

R e(A o-iv - i)  >  —cr„; Im(Acr^_|) <  cob,, (A6)

because the electrical conductivity and dielectric permittivity have to be positive. There­
fore, the conductivity A<7,v_ i can be found by using Eqs. (33) and (A6) with the 
following conditions (componentwise):

-i-i r

3-D  q u asi-lin ear  E M  m od elin g  and  inversion  255

Re(A<7/v_i) =  Re r . [ d  + ^ w -i)* (i+ ^ n -i)]  j ^ ( i + ^ n-\ Y '^ n- i

=  a N- ,  for a/v_i >  —<t„ (A7)

and

Re(Adfyv-i) =  — fora/v_i  < -< x„. (A8)

Similarly,

lm(Adf^_i) =  — (oIm { I > co( 1 +  A.jv- i )*( 1 +

for fojv-i < we,,
Im(AdAr-i) =  l;U}6„, for bp/-\ >  coe„.

The initial iteration should be done using the formula

=  m“ +  8m u =  m“ -  k* {G F*(G y m ,, -  F)], (A9)

where

m;, =  (I +  A p )A(t p

The second iteration is

m" =  ni“ -I- 6m | =  m“ — it" f ( m i ) ,  (A10)

where

r ( m 1) =  G F*(GFmi - F )  +  [m, - ( |  + A ,) A o > ] + a ( m ,  -  rap). ( A l l )

The coefficient k“ can be determined from the condition

P a (m“v+1) =  />»[m“ -  k% r (m ,v )] =  / ( * £ )  =  mini

Solution of this minimization problem gives the following best estimation for the length 
of the step:

. .  f w m i

Using Eqs. (A2), (A3), and (A12), we can obtain m iteratively.


