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Jet-cooled diatomic PtSi, produced in a laser ablation supersonic expansion source, has been
spectroscopically investigated between 17 400 and 24 000 cm✷1 by resonant two-photon ionization
spectroscopy. Two vibrational progressions are observed and identified as the ❅15.7★❱✽✺1
➹X 1

❙
✶ and ❅18.5★❱✽✺1➹X 1

❙
✶ band systems. Three bands in the former system and six bands

in the latter system were rotationally resolved and analyzed, leading to bond lengths of re✽

✺2.1905(13) Å and re✽✺2.2354(3) Å for the �15.7✁❱✽✺1 and �18.5✁❱✽✺1 states, respectively. The
❱✾✺0 ground state of PtSi is assigned as a 1

❙
✶ state, in agreement with previous work and with the

assigned ground states of the isovalent NiC, PdC, PtC, and NiSi molecules. The ground state bond
length of PtSi is given by r0✾✺2.0629(2) Å. A Rydberg–Klein–Rees analysis of the ground and
excited state potential energy curves is presented, along with a discussion of the chemical bonding
and a comparison to the isoelectronic molecule, AlAu. Evidence is presented for a double bond in
PtSi, as opposed to a single bond in AlAu. © 2000 American Institute of Physics.

�S0021-9606⑦00✦00707-8✁

I. INTRODUCTION

Transition metal silicides have a wide range of actual
and potential applications in materials science because of
their relatively high melting points, moderate densities, hard-
ness, and resistance to chemical attack. They are used in
silicon devices as barrier layer components, as Schottky-
barrier rectifying contacts, low resistivity interconnecting
material, and multiple quantum well devices.1 The PtSi
Schottky infrared detector is one of the most promising IR
detectors for large focal plane array applications because of
its lattice compatibility with silicon, uniformity of response,
reliability, low cost, and high sensitivity.2

Despite their importance in materials chemistry, how-
ever, the fundamental nature of the transition metal–silicon
bond has remained almost totally unexplored, at least as far
as gas-phase spectroscopy is concerned. To our knowledge
the only transition metal silicides to have received published
spectroscopic scrutiny in the gas phase are CuSi,3 AgSi,4

AuSi,5–7 and PtSi.8 For all of these molecules cavity ring-
down laser absorption spectra ⑦CRLAS✦ have been recorded
and rotationally analyzed by Scherer and co-workers.3,4,7,8

For PtSi, nine vibronic bands in the 350 nm region were
observed and assigned to a single 1

❙✶– 1
❙✶ electronic band

system through this technique, giving a ground state vibra-
tional frequency of ✈e✾✺549.0 cm✷1 and a bond length of
r0✾✺2.069Å.8 In addition to this gas-phase work, the metal
silicides VSi and NbSi have been investigated by matrix-
isolation ESR spectroscopy and are found to have 2

❉r

ground states in which the orbital angular momentum is par-
tially quenched through interactions with the rare gas
matrix.9 Many of the bond energies of the transition metal

silicides have also been measured using Knudsen effusion
mass spectrometry.10–13

Apart from the work published by the Saykally group,
the only other experimental work available on molecular
PtSi is a Knudsen effusion mass spectrometric determination
of the dissociation energy.11 Values of the third-law disso-
ciation energies derived from the reactions

Pt⑦g✦✂Si2⑦g✦✺PtSi⑦g✦✂Si⑦g)

and

PtC⑦g✦✂Si2C⑦g✦✺PtSi⑦g✦✂SiC2⑦g)

give the bond energy as D0(PtSi✦✺5.15✻0.19 eV.11 To our
knowledge, there are no published ab initio predictions of
the properties of PtSi.

In this paper, we present the results of a study of jet-
cooled PtSi in the visible region using resonant two-photon
ionization ⑦R2PI✦ spectroscopy with mass spectrometric de-
tection. The earlier work of Paul et al.8 is confirmed regard-
ing the 1

❙
✶ ground state, the measurement of the ground

state bond length is refined, and two new ❱✽✺1 excited
states are examined in detail.

II. EXPERIMENT

The resonant two-photon ionization spectrometer em-
ployed in this study has been described previously in detail14

and has been extensively used for studies reported in other
publications from this laboratory. The PtSi molecules were
produced by the laser ablation of a Pt disk into a pulsed flow
of helium containing 1% SiH4 . Second-harmonic radiation
of a pulsed Nd:YAG laser ⑦532 nm, 9–12 mJ/pulse✦ was
used to generate the Pt metal plasma, which was entrained in
the He/SiH4 carrier gas and swept through a channel about 2
mm in diameter and 3 cm in length prior to supersonic ex-a✄Electronic mail: Michael.Morse@chemistry.utah.edu
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pansion into vacuum. To prevent the Pt disk from being
drilled through by the vaporization laser and to reduce shot-
to-shot fluctuations in the PtSi signal, the Pt disk was rotated
and translated by a rotating disk source similar to one that
has been previously described.15 Although the PtSi signal
was never very large, an adequate number of PtSi molecules
was generated by using a moderate vaporization laser fluence
and, more important, by reducing the backing pressure of the
carrier gas to 30 psi ⑦gauge✦.

The carrier gas of 1% SiH4 in helium was prepared by
carefully mixing electronic grade SiH4 and research grade
helium in the laboratory. To prevent accidental fires or ex-
plosions due to the pyrophoric nature of SiH4 , all gases ex-
hausted from the preparation manifold were deactivated by
bubbling them through a concentrated aqueous NaOH solu-
tion prior to their release into the atmosphere.

Following expansion into vacuum, the supersonically
cooled metal cluster beam was roughly collimated by pas-
sage through a 0.5-cm-diam skimmer, and admitted to the
ionization region of a reflectron time-of-flight mass spec-
trometer. There the PtSi molecules were first excited using a
tunable Nd:YAG-pumped dye laser and subsequently ion-
ized by a pulsed excimer laser operating on ArF ⑦193 nm,
6.42 eV✦. The molecular ions were then extracted at right
angles to the molecular beam using a Wiley–McLaren ex-
traction assembly.16 The molecular ions traveled up a flight
tube, entered a reflectron assembly, and were directed down
a second flight tube to a microchannel plate detector. The
resulting ion signal was preamplified, digitized, and pro-
cessed by a 386 PC clone, which also controlled all of the
time delays needed to successfully run the experiments.

The optical spectra of PtSi were collected by scanning
the dye laser frequency while monitoring the ion signal at
masses 222, 223, 224 and 226 amu, which correspond to
194Pt28Si, 195Pt28Si, 196Pt28Si, and 198Pt28Si ⑦with natural
abundances of 30.3%, 31.2%, 23.3%, and 6.6%, respec-
tively✦. High resolution ⑦0.04 cm✷1

✦ spectra were recorded
by insertion of an intracavity étalon into the dye laser cavity
and pressure scanning from 0 to 1 atm using Freon 12
⑦CCl2F2 , DuPont✦. By simultaneously recording the I2 fluo-
rescence or absorption spectrum ⑦or Te2 absorption spectrum
for regions above 20 000 cm✷1

✦ and then comparing to the I2
atlas of Gerstenkorn and Luc17,18 ⑦or to the Te2 atlas of
Cariou and Luc19✦, followed by a correction for the Doppler
shift due to the motion of the molecules toward the excita-
tion radiation source, absolute line positions of all of the
rotationally resolved bands were obtained. For unblended
lines these are thought to be accurate to 0.01 cm✷1 or better.

Excited state lifetimes were measured by recording the
ion signal as a function of the delay between the excitation
and ionization lasers and fitting the resulting decay curves to
an exponential function using a nonlinear least-squares
algorithm.20 Upper state lifetimes are reported as the 1/e de-
cay time, t.

Due to the reactivity of SiH4 with the hot filament, the
ion gauge for the molecular source chamber was turned off
after the pressure was stabilized at about 2✸10✷4 Torr.
Without this precaution the filaments were found to burn out
after only 1–2 days of use.

III. RESULTS

Over the range from 17 400 to 24 000 cm✷1 two elec-
tronic band systems were observed and identified as
❱✽✺1➹❱✾✺0 systems.

A. The ❺18.5❻ �✁➘1❪X 1❙➾ band system

Bands are observed for this system from 19 200 to
23 700 cm✷1 and are listed in Table I. These bands are char-
acterized by a head early in the R branch and by long upper
state lifetimes ⑦10–20 ♠s✦. Six of the bands were examined
in high resolution ⑦0.04 cm✷1

✦, allowing precise band origins
and isotope shifts to be measured. This was the key to estab-
lishing the vibrational numbering of the system.

Figure 1 displays the measured isotope shifts, defined as
♥0(

194Pt28Si✦–♥0⑦
196Pt28Si), as a function of band frequency,

♥0(
194Pt28Si). Also plotted in Fig. 1 are the theoretically pre-

dicted isotope shifts for the ✈✽–0 bands, for three different
vibrational numberings, as given by the standard
expression21

♥ i✂♥ j✺✄☎ i✽✂☎ i✾✆✄1✂r i j✆/2✶☎ i✽✄1✂r i j✆✈✽

✂☎ i✽x i✽✄1✂r i j
2
✆✄✈✽

2✶✈✽✆

✶✄☎ i✾x i✾✂☎ i✽x i✽✆✄1✂r i j
2
✆/4, ⑦3.1✦

where r i j✺❆♠ i /♠ j, ♠ i is the reduced mass of the ith isoto-
pic combination, and the values of ☎e✾ ⑦549.0 cm✷1

✦ and
☎e✾xe✾ (1.9 cm

✷1) are taken from the work of Paul et al.8 The
curve giving the best agreement between measured and pre-
dicted isotope shifts assigns the lowest energy band that was
rotationally resolved as the 3–0 band. The poor agreement of
the other two assignments, which change the numbering by
✻1, validates the proposed assignment.

The vibronic bands that were rotationally resolved and
analyzed were fit to extract the vibrational constants of the
upper state according to the standard expression21

♥✝✞–0✺T0✶☎e✽✈✽✂☎e✽xe✽✄✈✽
2✶✈✽✆, ⑦3.2✦

resulting in the excited state spectroscopic constants T0

✺18 456.472(45) cm✷1, ☎e✽✺394.873(27) cm✷1, ☎e✽xe✽

✺1.8120(38) cm✷1, and ☎e✽y e✽✺0.007 52(17) cm✷1 for
194Pt28Si. The vibrational constants for three other isotopic
modifications are also reported in Table II. Here and
throughout this paper 1s error limits are given in parenthe-
ses, in units of the last reported digits.

A rotationally resolved scan of the 6–0 band of 194Pt28Si
is displayed in Fig. 2. This is typical of the appearance of
bands in this system. The spectrum is red degraded and
forms a sharp bandhead toward the blue, indicating that the
moment of inertia of the PtSi molecule increases upon elec-
tronic excitation. Although the PtSi molecules were rotation-
ally somewhat warm, prohibiting observation of the first
lines in the branches for some of the bands, the expected
X 1✟✠ ground state,8 the observation of all three P, Q, and R

branches, and simulation of the branch intensities led to the
assignment of the band system as the ❅18.5★❱✽✺1
➹X 1✟✠ system. Here the number in brackets designates the
energy of the ✈✽✺0 level, in thousands of wave numbers.
Six bands were successfully rotationally resolved and ana-
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lyzed. A simultaneous fit of the measured rotational line po-
sitions of all six bands of this system and of three bands of
the ❅15.7★❱✽✺1➹X 1

❙
✶ system ⑦see the following✦ to the

formula21

♥✺♥✈�–0✁B✈✽J✽✂J✽✁1 ✄✷B0✾J✾✂J✾✁1 ✄, ⑦3.3✦

provided band origins ♥✈�–0 rotational constants B✈�
✽ for the

upper levels, and a single B0✾ value for the ground state, as
listed in Table I. The fitted value of B0✾

✺0.162 008(26) cm☎1 for 194Pt28Si is slightly larger than the
value 0.160 88⑦13✦ cm☎1 previously reported.8 The fitted
band origins for these bands were used for the isotope shift
determination of the above described absolute vibrational
numbering. Observed and fitted line positions for all of the
rotationally resolved bands of 194Pt28Si, 195Pt28Si, 196Pt28Si,
and 198Pt28Si are available through the Physics Auxiliary
Publication Service ⑦PAPS✦ of the American Institute of
Physics22 or from the author ⑦M.D.M.✦.

The values of B✈�
✽ for 194Pt28Si, 195Pt28Si, 196Pt28Si, and

198Pt28Si were fitted to the following expression,21

B✈✽✺Be✽✷❛e✽✂✆✁1/2✄, ⑦3.4✦

leading to the rotation–vibration constants listed in Table II.
Somewhat surprisingly, the ✝18.5✞❱✽✺1 state of PtSi appears
to be completely unperturbed over the range of vibrational
levels examined in this report. The lack of perturbations in
this system results in an excellent fit of the six measured
vibronic levels to Eq. ⑦3.2✦, superb agreement between iso-
topes of the predicted energy of the 0–0 band, which is
based on an extrapolation of nearly 800 cm☎1 from the ob-
served 2–0 band ⑦see Table II✦, and an excellent fit of the
measured B✈✽ values to Eq. ⑦3.4✦. Because of the lack of
perturbations in this ✝18.5✞❱✽✺1 state, the values of the

TABLE I. Vibronic band systems of 194Pt28Si.a

System Band
Band origin
✟cm✠1✡

☛0(obs✡☞☛0✟calc)
✟cm✠1✡

Isotope shiftc

✟cm✠1✡
B✌✍

✟cm✠1✡
B✌✍(obs)☞B✌✍(calc)

✟cm✠1✡

Lifetimed

✟♠s✡

✎18.5✏1✑X0✒ 2–0 19 238.70b

3–0 19 619.670✟2✡f 0.001 0.704✟2✡ 0.135 458✟29✡ ☞0.000 006 17.46✟15✡
4–0 20 000.407✟2✡f ☞0.002 0.941✟3✡ 0.134 714✟28✡ ☞0.000 031 16.28✟33✡
5–0 20 378.16b 14.23✟48✡
6–0 20 751.671✟2✡f 0.000 1.394✟3✡ 0.133 340✟24✡ 0.000 032 16.00✟7✡
7–0 21 125.45b 14.99✟10✡
8–0 21 489.614✟2✡f 0.004 1.850✟4✡ 0.131 900✟25✡ 0.000 030 11.12✟75✡
9–0 21 855.36b 11.19✟9✡
10–0c 22 214.583✟2✡f ☞0.005 2.280✟2✡ 0.130 454✟28✡ 0.000 021 10.80✟50✡
11–0 22 572.330✟2✡f 0.002 2.484✟3✡ 0.129 669✟28✡ ☞0.000 045 9.91✟14✡
12–0 22 930.31b

13–0 23 284.00b

14–0 23 629.66b

✎15.7✏1✑X0✒ 5–0 17 682.260✟1✡f 0.000 1.148✟2✡ 0.139 144✟27✡ 0.000 005
6–0 18 077.476✟2✡f 0.000 1.435✟3✡ 0.138 290✟30✡ ☞0.000 010 2.23✟2✡
7–0 18 471.914✟1✡f 0.000 1.707✟2✡ 0.137 466✟31✡ 0.000 005 2.46✟8✡
9–0 19 256.15b

10–0 19 641.85b

aFitted B0✓ for
194Pt28Si is B0✓✔0.162 008(26) cm✠1.

bMeasured in low resolution, with a probable error of ✻1 cm✠1; not included in the fit of Eq. ✟3.2✡.
cMeasured in high resolution as ☛0(

194Pt28Si✡☞☛0✟
196Pt28Si).

dErrors reported for lifetimes correspond to 1s in the nonlinear least-squares fit, which is probably an underestimate. A more realistic error estimate is ✻10%
of the reported value.

e▲-type doubling was included for the upper state in the fit of 10–0 band only, using ☛✔☛0✕B10✍ J✍(J✍✕1)✼q10✍ J✍(J✍✕1)/2☞B0✓J✓(J✓✕1), where the upper
sign corresponds to e levels and the lower to f levels, giving a fitted value of q10✍ ✔☞6.2(7)✸10✠5 for 194Pt28Si. This is the accepted convention for the ▲
doubling of 3P1 states ✟Ref. 41✡. If this state is subsequently shown to be primarily of 1P character, the sign of q10✍ should be reversed to conform to accepted
conventions ✟Ref. 41✡.
fMeasured in high resolution, with calibration based on either the I2 atlas or Te2 atlas. Following each fitted band origin, B✌✍ value, and isotope shift, the 1s
uncertainty in the fitted value is given in parentheses.

FIG. 1. Determination of the vibrational numbering of the ✎18.5✏✖✍✔1
✑X 1✗✒ band system. The isotope shift, defined as ☛0(

194Pt28Si)
–☛0(

196Pt28Si), is plotted vs the band frequency for three sequential vibra-
tional numberings, as labeled. There is best agreement between the mea-
sured and predicted isotope shifts when assigning the 19 619 cm✠1 band of
194Pt28Si as the 3–0 band.

4120 J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 Shao et al.



194Pt28Si, 195Pt28Si, and 196Pt28Si constants were used to per-
form a Rydberg–Klein–Rees ⑦RKR✦ calculation of the po-
tential using the RKR1 program of LeRoy,23 as described in
Sec. III C.

B. The ❺15.7❻❱✽➘1❪X 1❙➾ band system

To the red of the ❅18.5★�✁✺1➹X 1
✂
✶ system lies a

second band system which ranges from 17 400 to 19 200
cm✷1, and is also characterized by �✁✺1. The observed vi-
bronic band positions for this system are reported in Table I.
Three out of five observed bands in this system were rota-
tionally resolved and analyzed for 194Pt28Si, 195Pt28Si, and
196Pt28Si. The bands are quite similar in appearance to the
band system described above with R, Q, and P branches and
a bandhead early in the R branch. The facts that these bands

have rather shorter lifetimes ⑦✄2 ♠s✦ and larger upper state
rotational constants ⑦see Table I✦ demonstrate that the ex-
cited state is of a different origin than the ☎18.5✆�✁✺1 state.

The vibrational numbering of the bands corresponding to
the assignment given in Table I was established in the same
way as described for the ❅18.5★�✁✺1➹X 1

✂
✶ band system.

Although only three data points are available, Fig. 3 demon-
strates that the lowest wave number band that was rotation-
ally resolved corresponds to ✈✁✺5. At the time these data
were recorded we were unable to continue our rotationally
resolved studies on any of the remaining bands, and are
therefore unable to report error limits for the vibrational con-
stants T0 , ✝e✁ , and ✝e✁xe✁ listed in Table II. These were ob-

TABLE II. Fitted spectroscopic constants of PtSi.a

Electronic state Constant 194Pt28Si 195Pt28Si 196Pt28Si 198Pt28Si

✞18.5✟✠✡☛1 T0 18 456.472☞45✌ 18 456.566☞28✌ 18 456.444☞65✌ 18 456.538☞56✌
✍e✡ 394.873☞27✌ 394.694☞18✌ 394.656☞39✌ 394.365☞35✌
✍e✡xe✡ 1.8120☞38✌ 1.8027☞27✌ 1.8149☞55✌ 1.8062☞54✌
✍e✡y e✡ 0.007 52☞17✌ 0.007 11☞13✌ 0.007 73☞25✌ 0.007 40☞25✌
Be✡ 0.137 980☞43✌ 0.137 864☞25✌ 0.137 830☞45✌ 0.137 627☞51✌
❛e✡ 0.000 719☞15✌ 0.000 713☞9✌ 0.000 720☞15✌ 0.000 711☞19✌

re✡(Å) 2.235 37☞35✌ 2.235 58☞21✌ 2.235 14☞36✌ 2.235 38☞42✌

✞15.7✟✠✡☛1b T0 15 694.504 15 694.580 15 694.993
✍e✡ 399.89 399.76 399.52
✍e✡xe✡ 0.389 0.390 0.382
Be✡ 0.143 753☞61✌ 0.143 602☞164✌ 0.143 459☞79✌
❛e✡ 0.000 839☞24✌ 0.000 827☞64✌ 0.000 817☞31✌

re✡(Å) 2.190 02☞46✌ 2.190 46☞125✌ 2.190 85☞60✌

X✠✾☛0✎ B0✾ 0.162 008☞26✌ 0.161 911☞27✌ 0.161 814☞32✌ 0.161 617☞38✌
r0✾(Å) 2.062 95☞17✌ 2.062 90☞17✌ 2.062 85☞20✌ 2.062 81☞24✌

aAll spectroscopic constants are reported in cm✏1 unless specified. Values given in parentheses represent the 1s error limit of the fitted parameter, in units of
the last digit quoted.
bReported T0 , ✍ e✡ , ✍e✡xe✡ were extracted by fitting the rotationally resolved bands 5–0, 6–0, 7–0 to the formula ♥✑✒–0☛T0✓✍ e✡✔✡✕✍e✡xe✡(✔✡

2✓✔✡). Because
three parameters were extracted from three pieces of data, no error estimate was possible for these vibrational parameters.

FIG. 2. Rotationally resolved scan over the 6–0 band of 194Pt28Si with the
three observed branches labeled. The positions of the low-J lines R(0),
R(1), R(2), R(3), R(4), Q(1), P(2), P(3), and P(4) are not indicated
because of the small amount of space available. All except for P(2), Q(1),
and R(3) could be identified in the spectrum, however.

FIG. 3. Determination of the vibrational numbering of the ✖15.7✗✠✡☛1
✘X 1✙✎ band system. The best agreement between the measured and pre-
dicted isotope shifts is achieved when assigning the 17 682 cm✏1 band of
194Pt28Si as the 5–0 band.
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tained by fitting the band origins of the three rotationally
resolved bands to formula ⑦3.2✦. Since the number of fitted
parameters matched the number of data points, no error es-
timate was possible. The values of the rotation–vibration
constants Be✽ , ❛e✽ , and re✽ for 194Pt28Si, 195Pt28Si, and
196Pt28Si are also summarized in Table II for this band sys-
tem.

C. RKR analysis of the X 1❙➾, ❺15.7❻1, and ❺18.5❻1
states

Because of the excellent quality of the data for the
❅18.5★1 state, it was decided to perform a Rydberg–Klein–
Rees ⑦RKR✦ analysis of the potential energy curves for PtSi,
in the hope that these will be useful for comparisons to ab

initio calculations on this system. The calculations were per-
formed using the RKR1 program, written and freely distrib-
uted by LeRoy.23 The RKR calculations for the ❅15.7★1 and
❅18.5★1 states were performed separately on the 194Pt28Si,
195Pt28Si, and 196Pt28Si isotopic modifications, with excellent
agreement between the isotopes. The resulting potential en-
ergy curves are displayed in Fig. 4, which also displays the
vibrational levels that were rotationally resolved as solid
lines. Although curves obtained from the separate analyses
of the 194Pt28Si, 195Pt28Si, and 196Pt28Si isotopic modifica-
tions are displayed in Fig. 4, they cannot be discerned be-
cause they are coincident on the scale of this figure. Rota-
tionally unresolved levels lying below the resolved levels are
displayed as dotted lines. The potential energy curve of the
X 1

�✶ ground state is a RKR curve based on the vibrational
⑦✈e✾✺549.0 cm1, ✈e✾xe✾✺1.9 cm✷1

✦ and rotational (❛e✽

✺0.001 02 cm✷1) constants provided by Paul et al.,8 supple-
mented by our more accurate determination of B0✾ . Values of
the RKR turning points for the X 1

�✶, ❅15.7★1, and ❅18.5★1
states are available through the Physics Auxiliary Publication
Service ⑦PAPS✦ of the American Institute of Physics22 or
from the author ⑦M.D.M.✦.

IV. DISCUSSION

In this work and the work of Paul et al.,8 the bond length
of PtSi ✁r0✾✺2.0629(2) Å✂ is determined to be significantly
shorter than that of the isoelectronic molecule AlAu ✁re✾

✺2.3382Å✂ .24 Likewise, the bond energy estimated for PtSi
from Knudsen effusion mass spectrometry ✁D0(PtSi✦
✺5.15✻0.19 eV✂11 is much greater than that estimated for
AlAu ✁D0(AlAu✦✺3.34✻0.07 eV✂ using the same method.25

In agreement with this trend, the ground state vibrational
frequency of PtSi ⑦549.0 cm✷1

✦
8 is also much larger than that

of AlAu ⑦333.00 cm✷1
✦.24 These results suggest that the

chemical bonding in the two molecules is really quite differ-
ent, despite the fact that they are isoelectronic.

The electronic structure of the coinage metal aluminides
AlCu26 AlAg27 and AlAu24 is quite straightforward for the
ground electronic state. In a molecular orbital description,
the 3ps orbital of aluminum combines with the ns orbital of
the coinage metal atom to form a s bonding orbital which is
doubly occupied, giving a nominal bond order of 1. An al-
ternative possibility is that the ground state derives from the
Al✶, 1S✄M✷, 1S separated ion limit, implying substantial
Al✶M✷ character in the AlCu, AlAg and AlAu molecules.
Both descriptions result in 1

�
✶ ground states for the coinage

metal aluminides, and there is, of course, substantial mixing
between these covalent and ionic descriptions. The true char-
acter of the molecule lies between these pure descriptions of
the bond. In either case, however, the coinage metal alu-
minides are characterized by a single s bond. The possibility
of ♣ bonding is severely disfavored, since the only way in
which a ♣ bond can be formed is by d♣ electron pair dona-
tion from the more electronegative coinage metal atom to the
empty 3p♣ orbital of the electropositive aluminum atom.
Although some delocalization of the coinage metal d♣ elec-
trons in this way undoubtedly occurs, the process cannot be
very significant because the direction of electron transfer
runs counter to the atomic electronegativities.

The ground electronic state of the isoelectronic PtSi mol-
ecule is an ❱✺0 state, and this is almost certainly also a 1

�✶

state. The isovalent molecules NiC,28–30 PdC,31,32 PtC,33–37

and NiSi28,38–40 are all known to possess a 1
�✶ ground state,

and there is no reason to expect anything different for PtSi.
In this molecule the ground state may be considered to de-
rive from the Pt 5d96s1, 3D✄Si 3s23p2, 3P separated atom
limit. The s bond then results from the combination of the Pt
6s orbital with the Si 3ps orbital to form a bonding molecu-
lar orbital containing two electrons. The remaining 3p elec-
tron of silicon must then lie in an orthogonal 3p♣ orbital in
order to retain the favorable 3P angular momentum coupling.
If the hole in the 5d shell of Pt is in a 5d♣ orbital, the
opportunity then exists of spin-pairing these electrons to
form a ♣ bond in PtSi. Unlike AlAu, where such a possibility
would require both electrons in the ♣ bond to come from the
more electronegative Au atom, the ♣ bond in PtSi would be
of a more covalent nature, with one of the ♣ electrons origi-
nating from Pt, and one from Si. The highly disfavored do-
nation of two ♣ electrons from the more electronegative to
the more electropositive atom that is required in AlAu is
turned into a more equal sharing of the charge in PtSi. The
formation of this ♣ bond explains the dramatically shorter
bond length, greater bond strength, and higher vibrational
frequency of PtSi as compared to AlAu. In short, PtSi has a
double bond while AlAu has only a single bond.

FIG. 4. Potential energy curves for the PtSi molecule. The ground state
RKR curve is based on the values of ☎ e✆ , ☎ e✆xe✆ , and ✝e✆ reported by Paul
et al. ✞Ref. 8✟ along with our improved value of B0✆ .
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V. CONCLUSIONS

A resonant two-photon ionization study of jet-cooled
PtSi has led to the identification of two new band systems,
both of which have ❱✺1. Rotationally resolved spectros-
copy has permitted the rovibrational spectroscopic constants
for these states to be measured, and has led to an improved
value of B0✾ for the ground state. RKR potential curves for
the ground state and both ❱✺1 excited states are presented.
From this work a ground state bond length of r0✾

✺2.0629(2) Å is derived. A comparison of the bond lengths,
bond energies, and vibrational frequencies of the isoelec-
tronic molecules PtSi and AlAu demonstrates the importance
of ♣ bonding in PtSi, and the absence of ♣ bonding in AlAu.
This is rationalized on the basis of the electronegativity dif-
ference between Al and Au.
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