
T a k i n g I / O S e r i o u s l y :

R e s o l u t i o n R e c o n s i d e r e d f o r D i s k

Ju lian a Freire, T errance S w ift and D avid S. W arren
Department of Computer Science
State University of New York at Stony Brook
{j u l i a n a , t s w i f t , w arren}@ cs. s u n y s b . edu

Abstract
Modern compilation techniques can give Prolog programs, in the best cases, a speed
comparable to C. However, Prolog has proven to be unacceptable for data-oriented
queries for two major reasons: its poor termination and complexity properties for
Datalog, and its tuple-at-a-time strategy. A number of tabling frameworks and
systems have addressed the first problem, including the XSB system which has
achieved Prolog speeds for tabled programs. Yet tabling systems such as XSB
continue to use the tuple-at-a-time paradigm. As a result, these systems are not
amenable to a tight interconnection with disk-resident data.
However, in a tabling framework the difference between tuple-at-a-time behavior
and set-at-a-time can be viewed as one of scheduling. Accordingly, we define a
breadth-first set-at-a-time tabling strategy and prove it iteration equivalent to a
form of semi-naive magic evaluation. That is, we extend the well-known asymptotic
results of Seki [10] by proving that each iteration of the tabling strategy produces
the same information as semi-naive magic. Further, this set-at-a-time scheduling is
amenable to implementation in an engine that uses Prolog compilation. We describe
both the engine and its performance, which is comparable with the tuple-at-a-time
strategy even for in-memory Datalog queries. Because of its performance and its
fine level of integration of Prolog with a database-style search, the set-at-a-time
engine appears as an important key to linking logic programming and deductive
databases.

1 Introduction
It is often necessary to leave the relational model to reason about the contents
of a database, a problem which deductive databases seek to remedy. Deductive
databases choose as their data model first-order logic or a restriction such as Dat
alog. First-order logic has proven expressive as a data query language, and many
evaluation strategies, most notably magic evaluation, have been developed to em
bed recursive goal-orientation in the framework of database evaluation. While magic
adds goal-orientation to database evaluation, tabling methods have added features
of database evaluation to logic programming languages.

Magic evaluation closely resembles tabling. Both magic and tabling combine
top-down goal orientation with bottom-up redundancy checking. Indeed, for range-
restricted programs, they have been proven to be asymptotically equivalent [10, 8]
under certain assumptions. Despite these well-known equivalences, magic-style sys
tems have traditionally differed from tabling systems. Magic-style systems, such
as Aditi [15], CORAL [7], and LDL [3], are built upon set-at-a-time semi-naive

198

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

199

engines, while tabling systems, such as XSB [9], use a tuple-at-a-time strategy that
reflects their genesis in the logic programming community. Each class of systems
has its advantages and disadvantages. Presently for in-memory Datalog queries,
the fastest tabling systems show an order of magnitude speedup over magic-style
systems due to the tabling systems’ use of Prolog compilation technology [9]. How
ever, the tuple-at-a-time strategy of tabling systems is not efficiently extendible to
disk.

A close look at tabling indicates that there is no reason why a set-at-a-time
strategy cannot be closely integrated into a tabling engine. Doing so offers tremen
dous advantages. In-memory predicates can be evaluated at the best in-memory
speeds, while queries to disk have the same access patterns as the best set-at-a-time
methods. Furthermore, both of these approaches can be integrated fully into the
well-known Prolog environment. This paper presents both theoretical and practical
results on using Prolog compilation technology to efficiently implement a set-at-
a-time tabling system for definite programs. The major results of this paper are:

• Derivation of a Tight Equivalence between Tabling and the Semi-Naive Evaluation
of a Magic-Transformed Program (SNMT). Broad equivalences between tabling and
magic-style methods have long been known. In [10] Seki obtained an asymptotic
equivalence between a naive evaluation of a program rewritten using Alexander
Templates and a version of a tabling method. After specifying a breadth-first search
strategy for tabling, we extend the equivalence of Seki in two ways. First, we
use a semi-naive evaluation rather than naive evaluation for both the tabling and
the rewrite method. Second and more importantly, we define a natural measure
of iteration equivalence between set-at-a-time tabling and SNMT. Using iteration
equivalence, we demonstrate that every answer of each iteration of our tabling
strategy is produced a t the corresponding iteration of SNMT.
• Design and Implementation of an Engine to Evaluate Breadth-First Tabling.
Other tabling methods with set-at-a-time properties have been developed, most
notably the SLD-AL strategy of [16]. In addition to iteration equivalence to magic,
the engine described here has the advantage of using the low-level data structures
and compilation techniques of Prolog technology. As presented in [13], this tech
nology, as implemented in the SLG-WAM, leads to an extremely fast, robust, and
flexible implementation of a deductive database engine. The resulting implementa
tion of the Breadth-First XSB is available upon request. Other versions of XSB are
currently installed at nearly 1000 registered commercial, academic and governmen
tal sites.
• Performance Analysis of the Set-at-a-time Engine. Surprisingly, the resulting set-
at-a-time engine is only marginally slower than previously published SLG-WAM
times for Datalog programs with in-memory data on a representative set of pro
grams, and can be much faster for queries involving external relations. An analysis
of the performance of different engines is presented.

2 Prelim inaries
hi this section we give a brief description of magic templates and introduce the
basic ideas of tabling.

200

The well-known semi-naive evaluation algorithm [14] is an incremental iterative
fixpoint algorithm. It is iterative in that it repeatedly generates facts by applying
program rules. It is incremental in the sense that a given rule uses a given fact in
a given position only once for further derivation. To support this incrementality, a
form of timestamp denoting the iteration number is explicitly represented in both
answers and rules. Notationally, we can denote the set of all answers added at
iteration t or earlier as A nst , and the set of answers added at iteration t itself as
a delta set of answers, SAnst . If answers for a particular predicate P are desired,
they may be denoted as A n s f or S A n s[.

A central difficulty of pure bottom-up evaluation, such as semi-naive, is that
it is not goal-oriented: to answer a query, the entire model of a program must
be constructed. Magic templates rewriting (see e.g. [6]) avoids this problem by
means of a program transformation. Magic is well-discussed in the literature; here
we present only the magic templates transformation along with an example of its
use. Note that this transformation requires a statically-determined computation
rule. We assume without loss of generality that all such computation rules have a
left-to-riglit order.
D efin ition 2.1 (M agic T em pla tes R e w ritin g [11]) Let P be a program and
let Q be a query to P. The magic rewrite of P for Q, or M (P ,Q) is constructed as
follows.

1. Add a seed fact magic(Q).
2. For each rule R in P add the modified version of the rule to M(P). For each

R ’ in M(P), if R ’ has head p(X) add the literal magic(p(X)) to the body of
R as the first goal.

3. For each rule R with head p(X) and each occurrence of a derived literal g(Y)
in its body, add a query rule, whose head is magic(q(Y)) and whose body
contains the literals preceding q(Y) in R.

E x am p le 2.1 Consider the same generation program
sg(X ,Y): - X=Y.
sg(X ,Y)p a r(X ,X p) ,sg (X p ,Y p) ,p a r(Y ,Y p) .

The magic templates rewrite of this program for query :- sg (l ,Y) is written as
q u e r y (Y) s g (l , Y) .
m a g ic (s g (l,Y)) .
s g (X ,Y)m a g ic (s g (X ,Y)) , X=Y.
sg (X ,Y)m ag ic (sg (X ,Y)),p a r(X ,X p),sg (X p ,Y p),p a r(Y ,Y p).
m agic(sg(Xp,Yp)) m agic(sg(X ,Y)),par(X ,X p).

Clearly optimizations can be made to the above program. For instance, the magic
rewrite could take advantage of the instantiation pattern of the original query, and
of the left-to-right order of rule evaluation to infer that all calls to sg /2 would
have the first argument instantiated and the second free, ln this case, the second
argument of sg /2 would not need to be used by the magic facts. However, such an
optimization would not affect the complexity of the ensuing program.
Given the simple EDB:

p a r (l ,3) . p a r (l ,4) . p a r (2 ,3) . p a r (2 ,4) .
The semi-naive evaluation of the rewritten same generation program would proceed
as follows.

• Iteration 0: m a g ic (sg (l,Y)) added.

Semi-Naive Evaluation and Magic Rewriting

201

• Iteration 1
• Iteration 2
• Iteration 3
• Iteration 4

s g (l , l) , m agic(sg(3 ,Y)), m agic(sg(4 ,Y)) added.
sg (3 ,3) , sg (4 ,4) added.
s g (l , 2), s g (l , l) each derived twice, s g (l , 2) added.
Fixpoint.

T abled E valuations

Like SNMT evaluations, tabled evaluations can also be seen as incremental iterative
fixpoint computations. In a tabled evaluation, it is a resolution-style search tree
tha t ensures goal-orientation rather than a rewrite of the program. In fact, tabled
evaluations are conveniently modeled as forests of trees as in Figure 1, which rep
resents the same generation program and database in Example 2.1 a t the end of its
evaluation. Consider the operations performed by a tabled evaluation. Analogously
to the generation of magic facts in an SNMT evaluation, the first time a subgoal S
is encountered during a tabled evaluation, S is registered in the table, and a new
tree created with root S: Figure 1 contains trees whose roots are labeled sg (l,Y) ,
sg(2 ,Y), and sg(3,Y) (we will also refer to these roots as subgoal or generator
nodes). Program clause resolution is then used to obtain the immediate children
for each root node. In addition, the node calling S becomes a consuming node, so
named because it will consume answers produced by S's tree. Alternatively, if S is
not new to the evaluation (S is contained in the table), no new tree is required for S.
However, a consuming node is still created for 5 as in the previous case. Processing
of answers is analogous: the first time an answer to a subgoal is derived during an
evaluation it is added to the table and returned to relevant consuming subgoals; any
subsequent derivations of the answer are failed. In this manner, redundant subcom
putations (including loops) are prevented by tabling. Of course, tabled resolution
can be mixed with the program clause resolution of SLD. In this case, we refer to
tabled predicates and non-tabled predicates depending on the form of resolution
used for each. Nodes whose selected literal is non-tabled are called interior nodes.
In Figure 1, consuming nodes are represented by bold italics, and interior nodes
(that use SLD resolution) are represented by non-bold italics. Note that each node
is labeled with the corresponding iteration.

In a tabled evaluation, groups of mutually dependent subgoals are called strongly
connected components or SCCs. When all program and answer clause resolution
has been performed for the subgoals in an SCC, the subgoals are termed completely
evaluated or completed. At completion, all trees for subgoals in the SCC can be
disposed since at this point the table contains all pertinent information for the
subgoals. The notion of completion is necessary for evaluation of programs with
negation, as well as being useful for space reclamation.

To summarize, tabled resolution in general has five types of operation:

1. S u b g o a l C a l l : creates a consuming node, along with a new tree for the
subgoal if it is not present in the evaluation.

2. P rogram C lause R esolution: used for all non-tabled (SLD) subgoals,
and for immediate children of the root of each tree.

3. N ew A nsw er: adds a new answer to the table.
4. A n sw er R e so lu tio n : resolves the selected literal of a consuming node

against an answer from a table.
5. C o m p le tio n : determines when a set of subgoals is completely evaluated, and

disposes of their trees. •

202

0. sg(l,Y):gen:sg(l,Y)<-[sg(l,Y)]

1. sg(l,Y):ans:
sg(l,!)<-[]

1. sg(I,Y):int:sg(l,Y)<-
lpar(l,Xp),sg(Xp, Yp),par(Y, Yp)]

1. sg(l,Y):cons:sg(l,Y)<-
[sg(3, Yp),par(Y, Yp)]

1. sg(l,Y):cons:sg(l,Y)<-
[sg(4, Yp),par(Y,Yp)]

3. sg(l,Y):int:sg(l,Y)<-[par(Y,3)] 3. sg(l,Y):int:sg(l,Y)<-[par(Y,4)]

3. sg(l,Y):ans: 3. sg(l,Y):ans: 3. sg(l,Y):ans: 3. sg(l,Y):ans:
sg(l,2)<-[] sg(l, !)<-[] sg(l,2)<-[] *8(1,!)<-[]

2. sg(3,Y):gen:sg(3,Y)<-[sg(3,Y)] 2. sg(4,Y):gen:sg(4,Y)<-[sg(4,Y)]

2. sg<3,Y):ans: 2. sg(3,Y):int:sg(3,Y)<-
sg(3,3)<-[] lpar(3,Xp),sg(Xp,Yp)

par(Y,Yp)l

2. sg(4,Y):aiis: 2. sg(4,Y):int:sg(4,Y)<-
sg(4,4)<-[] Ipar(4,Xp),sg(Xp, Yp)

par(Y,Yp)l

Figure 1: SLG forest
In describing search strategies, it is often convenient to represent a particular

node within a tree. To do this, the information in each node can be prepended by
the label of the root of its tree (or root goal) and the node’s status. The statuses
consuming, answer, interior and generator have been introduced (see Figure 1); we
also use the status new for leaf nodes for which program clause resolution may be
applicable, but has yet to be done.

3 Tabling and Magic: Iteration Equivalences
Note from the description of tabling that no assumptions are made about the linkage
of the production of answers by trees in the forest, and their return to consuming
nodes. There is an intrinsic asynchrony between these two operations and this
asynchrony may be exploited to construct a search strategy that resembles tha t of
semi-naive. Consider the following strategy.

Breadth-First Search: Resolution proceeds iteratively, in the following manner.
Conceptually, all consuming nodes in all trees are visited in each iteration,
although answer resolution may only use answers derived during previous iter
ations. In addition, when a tabled subgoal S is called in iteration t, and S is
new to the evaluation, the evaluation must wait until iteration t+1 to create a
new tree with S as root. .

Some notation will be useful to describe the Breadth-First Search in detail.

• 5 Subgoal St is the set of non-completed tabled subgoals added during an iter
ation t;

• &Cnsf is the set of consuming nodes in tree S added during iteration t (i.e.,
S : consuming : S 'i—Body might be in &Cnsf for some f);

203

• 6 A n sf is the set of answers that have been added to tree S during iteration t
(or equivalently, the set of all answers that have been added to the table for
S during iteration t).

The sets of all answers, consuming nodes and subgoals for S a t t can be taken by
unioning the deltas for S over all times less than or equal to t. We denote these sets
as X nsf, C n s f and Subgoalst , respectively.

Breadth-First Search is specified by Algorithms 3.1, 3.2 and 3.3. The iterations
of Breadth-First Search are captured by the repeat loop of Breadth-First Main,
which is executed until a fixpoint condition is satisfied — when no operations of
the five types listed in Section 2 are left to perform. In Breadth-First Search, this
condition occurs when at some iteration t, SAnst, SCnst, and SSubgoalst are empty
for all subgoals. (This is represented by the check Fixpoint Condition(t) in line 18
of Algorithm 3.1, Breadth-First Main). Breadth-First Main starts at time (= 0 by
placing the initial goal in the set 6Subgoalso. Its iterations then work as follows.
First, program clauses are resolved against any subgoals created in the previous
iteration (or against the initial goal). This occurs in line 5 of Algorithm Breadth-
First Main, where these resolutions create new nodes for the tree S, which are
kept temporarily in ClauseCachesFM during each iteration. Next, in lines 7-15,
resolutions are performed for the new nodes created within the present iteration.
If the node has an empty goal list, the status of the node becomes answer and it
is added to <5.4n.sf (line 9-10). If the body is not empty and the selected literal is
tabled, the status becomes consuming, and the selected literal added to 6Subgoalst ,
if necessary (lines 11-13). Finally, in order to intermix tabling with SLD, if the
selected literal is not tabled, the subtree rooted in the node is expanded using
program clause resolution via Algorithm Get Program Clause Closure (lines 14-15).
As can be seen from Algorithms 3.1-3.3, Get Program Clause Closure has its own
fixpoint operation, so that the search is breadth-first only if all derived predicates
are tabled. The following statements in lines 16-17 perform answer resolution as
necessary. The routine Perform Answer Resolution is called twice, once to resolve old
answers against new consuming nodes and again to resolve new answers against old
consuming nodes. In the course of its evaluation, specified in Algorithm Perform
Answer Resolution, Get Program Clause Closure will again be called.

Algorithm Perform Answer Resolution visits all consuming nodes in a particular
input set. In the second call to Perform Answer Resolution in line 17 of Breadth-First
Main, the routine is called with 6C nsf as its consuming set. However in line 10 of
Perform Answer Resolution, new consuming nodes are added to this same consuming
set. The pseudo-code should be read as executing using call-by-reference so that
all consuming nodes created at time t have returned to them any answer created
before t.

The strategy described in Algorithms 3.1-3.3 is in fact breadth-first according
to a distance metric presented in the full version of this paper1, and the following
theorems show that this metric is a natural one for tabling. Theorem 3.1 shows that
Breadth-First Search explores a derivation tree in a manner closely akin to SNMT
evaluation. As a notational device, for a given program, P, let T(P) be a program
in which each intensional predicate is declared as tabled: we may refer to T(P) as
a fully tabled program.
T h eo rem 3.1 Let P be a definite program and let M(P,Q) be its magic rewrite
for a query Q and T(P) be the fully tabled program, and assume Q is an element

1 The expanded version is available a t h ttp ://w w w .cs.sunysb .edu / ‘ sbprolog.

http://www.cs.sunysb.edu/%e2%80%98

204

1 Initialize all sets to 0; 6Subgoalso = {initial goal}; t = 0;
Repeat

increment t\ ClauseCacheb f m = 0
For each subgoal S in SSubgoalst-1

5 Resolve S against each unifying program clause and add the result
' to ClauseCacheBFM;

For each subgoal S in Subgoalst-1
For each 5 : new : S’4—Body £ ClauseCacheBFM

If Body is empty
10 If & is not redundant in Ansf add 5 : ans : S' to SAnsf

Else if the selected literal L of Body is tabled
Add 5 : consuming : S'i—Body to SCnsf
If L is not in Subgoalst add L to SSubgoalst

Else if the selected literal L of Body is non-tabled
15 Get Program Clause Closurc(5 : new : 5/+-Body)

Perform Answer Resolution(Cn5f_1 ,<5.Anst_i)
Perform Answer Resolution(<5Cn.sf ,Anst-i)

Until (Fixpoint Condition (t))
Algorithm 3.2 Get Program Clause Closure(NewClause)
1 ClauseCachepcc = NewClause;

Repeat
Choose from ClauseCachepcc a clause Clause = S : new : S' +-Body
For each program clause C unifying with the selected literal L of Body

5 Produce Cnew — S : new : NewBody)9),
where 6 is the mgu of C and L
and Newbody is the resolvent of C and Body on L

If NewBody is empty
If S'9 is not redundant in Ansf add 5 : ans : (S*0) to 6Ansf

10 Else if the selected literal V of NewBody is tabled
Add Cnew to SCnsf
If L’ is not in Subgoalst add L' to SSubgoalst;

Else if the selected literal L' of NeuiBody is non-tabled
Add Cnew to ClauseCachepcc

15 Until (ClauseCache is empty)
Algorithm 3.3 Perform Answer Resolution(ConsumingSet,AnswerSet)
1 While there exists an unvisited node in ConsuTningSet

Choose a node Cns in Consuming Set, and let S be the root goal for Cns
Mark all answers in AnswerSet as unvisited;
While there exists an unvisited answer in AnswerSet

5 - Choose an unvisited answer Ans from AnswerSet;
Let NewCns represent the Resolvent of Cns with Ans
If the body of NewCns is empty

If NewCns is not in Ansf add it to SAnsf;
Else if the selected literal L of NewCns is tabled

10 Add NewCns to SCnsf, marked as unvisited
If L is not redundant in Subgoalst add L to SSubgoalst]

Else if the selected literal L of NewCns is non-tabled
Get Program Clause C\osme(NewCns)

Mark Ans as visited; '
15 Mark Cns as visited

Algorithm 3.1 Breadth-First Main

205

1. An SNMT evaluation of P for Q derives a non-magic fact A if Breadth-First
Search derives an answer A.

2. An SNMT evaluation of P for Q produces a fact magic(S) if Breadth-First
Search adds S to Subgoalst.

P roof: The details of the proof are given in the full version of this paper. □

Soundness of Breadth-first Search follows immediately from Theorem 3.1 and
correctness of SNMT evaluation. Completeness of Breadth-First Search is proven
separately by the following theorem.
T h eo rem 3.2 Let P be a fully tabled definite program evaluated by Breadth-first
Search, and Mp be the least model of P and G be an element of Mp. Then, at some
iteration t there is a subgoal S such that G is subsumed by an element of .4nsf.
P roo f: The details of the proof are given in the full version of this paper. □

Taken together, Theorems 3.2 and 3.1 indicate that any fact derived by Breadth-
First Search will also be derived by SNMT in the same iteration1. While it has
long been known that logic is an expressive data query language, these results
now indicate that compilation techniques of logic programming can have a direct
practical impact on implementing database queries.

4 The Breadth-First SLG-WAM
In this section we describe the changes to make the search procedure of the SLG-
WAM [12] breadth-first. Because of space limitations, some implementation details
have been omitted; more details on scheduling in the SLG-WAM can be found in
[4], and in the full version of this paper.

We begin by briefly presenting some data structures used by the SLG-WAM
engine. The table maintains information about all (tabled) subgoals encountered
by the evaluation as well as answers for each subgoal. These answers are main
tained in a trie-like structure whose leaves are chained together in an answer list,
which represents the sequence in which answers are derived by the evaluation and,
by extension, delta sets. A table entry is created when a new tabled subgoal S
is called during the Subgoal C all operation. At this time a generator choice
point and a completion frame are created for S. The choice point frame contains
a superset of the information present in a regular WAM [1] choice point, and is
used to schedule program clause resolution for S. One important difference is that
the trust instruction sets a completion instruction onto the instruction field of the
generator choice point, rather than disposing of the choice point as in the WAM. A
completion instruction is thus not invoked until after all program clause resolution
is performed for a subgoal. The completion frame for S resides on the SLG-WAM
completion stack and, among other functions, provides an entry point to a chain of
consuming nodes for S, as well as to the generator choice point for S. If S is not
new, a consuming choice point is created, which will be used to schedule Answer
Resolution; information in the consuming choice point will be used to reconstitute

2Tin- theorems also indicate that, for non range-restricted programs Breadth-First Search may
be more efficient than SNMT. Differences between the two methods arise in non-ground programs,
but we believe that these these differences can be obviated by the use of alternate magic rewriting
techniques developed to reduce the complexity of magic with respect to Prolog [11].

of Subgoalso■ Then, at each iteration t

206

the environment in which the subgoal was called, so that answers can be returned
to this environment as they are derived.

The original strategy used by the SLG-WAM is tuple-at-a-time, both because
it schedules A n sw er R e so lu tio n as answers are derived and because it evaluates
subgoals as soon as they are called. For Breadth-First SLG, however, answers and
subgoals have to be batched so that they are resolved in the appropriate iteration, as
defined in Section 3. The following example provides a high-level illustration of the
actions of the breadth-first engine on the same-generation program of Example 2.1.
E xam ple 4.1 Consider how the same generation program from Example 2.1 might
be executed by a WAM-style breadth-first tabling engine (see Figure 1). Iteration 1
begins when the query s g (l ,Y) is called. Initial bookkeeping is done for the tabled
subgoal: a table entry created, a frame placed on the completion stack and a choice
point is set up. Then program clause resolution is used to derive the first answer
s g (l , 1). Execution then backtracks to the second program clause for sg /2 which
eventually selects the subgoal sg(3,Y p). The engine creates a choice point and ta
ble entry for sg(3 ,Y), but will not use program clause resolution for sg(3,Y) until
iteration 2. Rather, the engine suspends this subgoal and fails, causing it to execute
the next available clause on the choice point stack, producing the selected subgoal
sg(4,Y p). Eventually, there will be no available clauses on the choice point stack
and the engine will perform a fixpoint check (during the completion instruction),
and then start iteration 2. The engine uses the completion stack to scan for either
suspended subgoals to resolve using program clause resolution, or for consuming
nodes with unresolved answers. For our example, iteration 2 begins by perform
ing program clause resolution for sg(3,Y). This produces, among other clauses,
the answer sg (3 ,3) . This answer will be returned in iteration 3 to the consuming
node s g (l ,Y) : cons : s g (l ,Y) <- [sg(3,Yp) ,par(Y ,Y p)]. During iteration 2, pro
gram clause resolution is also performed for sg(4 ,Y), and its actions parallel those
of sg(3 ,Y). The process continues, with the engine scanning nodes via the com
pletion stack at each completion instruction, and then either performing program
clause resolution for the delta set of subgoals or performing answer resolution for
the delta set of answers and consuming nodes. The engine terminates when neither
new answers nor new subgoals exist.

We describe the scheduling steps for breadth-first search performed by the basic
tabling operations presented in Section 2 3.

Subgoal C all: In order to preserve search equivalence with magic, tabled sub
goals may need to be batched until the next iteration (e.g. when Algorithm 3.1 it
erates through SSubgoalst-1) 4. Any subsequent tabled subgoal is suspended when
it is called, after its choice point, table entry, and completion stack frame are cre
ated. These suspended subgoals are reinvoked at the next iteration (through the
completion instruction) when the engine exhausts all program and answer clauses
from the previous iteration.

N ew A nsw er: In the strategy of the original SLG-WAM [12] bindings are
shared between the calling environment of a subgoal and the root node of the tree
for that subgoal (e.g., under tuple-at-a-time, in Figure 1, the variable Y p in node 1
would be the same as the variable Y in node 2). In breadth-first scheduling however,
this optimization is no longer applicable as it would violate magic equivalence by
allowing answers to be returned in the same iteration they are created. So, in the

3We omit Program Clause Resolution since no scheduling takes place during this operation.
4An exception is the first tabled subgoal encountered in a breadth-first evaluation, called a

leader or root node. Note that, in principle, the leader can be embedded in a larger evaluation.

207

breadth-first engine when a new answer is created, instead of executing the success
continuation of the corresponding tabled subgoal (which would effectively return
the answer to the calling environment), the engine simply adds the answer to the
table and fails, executing the failure continuation at the top of the choice point
stack.

A nsw er R eso lu tion : Actual resolution of answers is done by the AnswerRe
turn instruction, which is invoked in one of two ways. AnswerReturn is executed
whenever a new consuming node is created to return all answers from previous it
erations (this case reflects line 16 of Algorithm 3.1 and line 10 of Algorithm 3.3).
It is also invoked by the completion instruction to return the delta set of answers
to consuming nodes present at the beginning of the iteration (reflecting line 15 of
Algorithm 3.1). The Breadth-First SLG-WAM uses pointers into the answer list
to maintain the delta answer set for each consuming node. For in memory queries,
AnswerReturn backtracks through all the answers in the table and returns them
one at a time to the proper consuming node. For queries to disk-resident data, an
alternative mechanism is provided in the set-at-a-time database interface — this
mechanism is described in the full version of the paper.

C om pletion : For the tuple-at-a-time SLG-WAM, the completion operation sim
ply marks completely evaluated subgoals as completed and reclaims heap and stack
space for these subgoals. In the breadth-first engine completion still marks subgoals
as completed, but it also schedules resolution steps necessary for a new iteration.
First, the engine has to perform program clause resolution for suspended subgoals
(reflecting the actions on SSubgoalst-i in Algorithm 3.1). It must also schedule any
unresolved answers as explained above. In fact, it is the completion check for the
leader that controls the iterations for the breadth-first scheduling through the use
of WAM-style failure continuations. The completion instruction for the leader will
continue failing back to itself until a fixpoint is reached and the query is completely
evaluated.

5 Performance Analysis
In previous papers [13, 9] the WAM-style tabling implementation of XSB v. 1.4 was
shown to be about an order of magnitude faster than other deductive database sys
tems for a variety of in-memory queries. Since many deductive databases, including
XSB, are under continual development, the difference in speed may change over
time; nevertheless the comparisons of [13] indicate the importance of compilation
technology and of low-level engine optimizations.

Due to space limitations, we do not compare our new tabling strategies to other
deductive databases; rather, we compare the new engine of Section 4 to the previous
tuple-at-a-time engine of XSB, and for terminating queries, to Prolog itself. All
benchmark programs were run on a SPARC 2 with 64MB of memory, and the
engines considered in this section are:

• X SB v. 1.4: uses Single Stack Scheduling [4], the original depth-first (tuple-
at-a-time) strategy for the SLG-WAM.

• B re a d th -F irs t: breadth-first (set-at-a-time) strategy described in Section 3.

It is worth pointing out that these two emulators differ only in the scheduling
strategy. As will be shown, the set-at-a-time strategy has an advantage for eval
uations which use disk, or for those involving aggregates or constraints in which

208

pruning can be useful. In this section we turn first to in-memory queries that do
not benefit from pruning, since these may be regarded as a worst-case cost of a
set-at-a-time evaluation.

T ests for In -m em ory D ata log Q ueries
For programs in which the complexity of Prolog’s SLD strategy is the same as a
bottom-up strategy (magic or tabling) it is generally found that Prolog is faster
than the bottom-up method. However, for transitive closure, Example 5.1 derives
times in which both tabling engines are almost as fast as SLD (run under XSB).
E xam ple 5.1 To compare the efficiency of the right-recursive

path(X,Y) edge(X,Y).
path(X,Y) edge(X ,Z),path (Z ,Y).

using Prolog (SLD), against the left-recursive
ta b le p a th /2 . .

path(X,Y) edge(X,Y).
path(X,Y) pa th (X ,Z),edge(Z ,Y).

the query path (X , Y) was run on chains of varying lengths, as well as on complete
binary trees of varying heights.

Table 1: Normalized times for left-recursive transitive closure on linear chains and
complete binary trees___

Emulator/Chain Length lk 2k 4k 8k 16k
Breadth-First 1 1 1 1 1
XSB v. 1.4 0.891 0.9 0.846 0.88 0.88
SLD 0.718 0.63 0.64 0.66 0.657
Emulator/Tree Height 9 10 11 12 13
Breadth-First 1 1 1 1 1
XSB v. 1.4 1.154 1.073 1.041 1.096 1.122
SLD 0.891 0.81 0.807 0.877 0.947

Two points are worthy of note from Table 1. The first is that the breadth-
first strategy is usually as fast as (and sometimes faster than) previously published
XSB v. 1.4 times (for binary trees, where more answers are returned at each iter
ation, breadth-first is 10% faster on average than XSB v. 1.4, whereas for chains
it is around 13% slower). The second is that the breadth-first strategy is roughly
comparable to Prolog execution, indicating that at least for these examples, a disk-
oriented set-at-a-time method is attainable at Prolog speeds.

For left-recursion on chains the breadth-first strategy has shown a consistent
slowdown compared to XSB v. 1.4, and for trees, a slight speed up, what is expected
given the well-defined structure of these graphs. Next we examine some different
and ostensibly more realistic graphs. Words and subsets of it with fewer vertices and
edges, and Roget were generated with Knuth’s Stanford Graph Base [5], Genome
is a piece of a DNA sequence, while Cylinder is a 24x24 (2-connected) cylinder.

In these graphs, which can be considered as having a structure between chains
and trees, the times to compute transitive closure for the breadth-first engine are
about the same as for XSB v. 1.4, as shown in Table 2. Similar results are borne out

Table 2: Normalized times for left-recursive transitive closure
Engine/Graph Words Words3000 Roget Genome Same Gen.
Breadth-First 1 1 1 1 1
XSB v. 1.4 0.99 0.99 0.99 1.04 0.97

209

Table 3: Normalized times for left-recursive transitive closure on linear chains and
binary trees using the breadth-first engine and a variation using the consuming node
optimization

Emulator/Chains-length Ik 2k 4k 8k 16k
Breadth-First 1 1 1 1 1
Breadth-First with optimization 0.72 0.78 0.78 0.73 0.75
Emulator/Trees-height 9 10 11 12 13
Breadth-First 1 1 1 1 1
Breadth-First with optimization 0.79 0.81 0.83 0.77 0.79

in the same-generation program of Example 2.1, in which a bottom-up evaluation
such as tabling can show an arbitrary speedup over Prolog. Run on a 24x24 cylinder,
the times for the different engines are comparable, as can be seen in Table 2.

A source of overhead for Breadth-First comes from the fact that the tuple-at-a-
time engine makes use of an optimization not available to the breadth-first strategy.
Recall tha t when calling a new subgoal S, a consuming node is created with selected
literal 5 and a new tree is also created with root S. The tuple-at-a-tiine emulator
shares variable bindings between the generator node for S and its parent, but in
a breadth-first engine this optimization would allow the return of answers through
the generator node before the proper iteration. In order to measure the cost of this
extra consuming node, we created a variant of the breadth-first engine that uses
the tuple-at-a-time consuming node optimization. (Such an engine is not breadth-
first and is used only for performance analysis). Notice in Table 3 that the added
overhead for the extra consuming node on linear chains is between 30% and 40%,
whereas for binary trees this overhead varies from 20% to 30%. These tables indicate
that the absence of the tuple-at-a-time consuming node optimization accounts for
most of the overhead of Breadth-First for chains.

An important aspect to take into account is memory usage, since it is well-
known that high space utilization is a drawback of breadth-first strategies. For
programs that do not have subgoal suspensions (e.g., left-recursive transitive clo
sure), Breadth-First shows an improvement over XSB v. 1.4. This improvement is
derived from the fact that, by batching answers (and not returning them eagerly
as XSB v. 1.4), the breadth-first engine reduces the amount of movement in the
search space, consequently decreasing the need to freeze branches and decreasing
the number of trapped nodes in the stacks (more details can be found in [4]). How
ever, if there are suspensions (e.g., right-recursive transitive closure), Breadth-First
can use a much larger amount of memory, since suspended subgoads usually lead
to a bigger number of consuming nodes. In the tuple-at-a-time engine, subgoals
are evaluated at the time they are called, therefore, if later a variant of it is called,
there is a better chance tha t this subgoal is completed, in which case the creation
of a new consuming node can be avoided, sis answers can be used as facts. Table 4
shows the sum of the maximum stack sizes (in bytes) for left and right-recursive
transitive closure on different graphs: a 1024-long chain, a complete binary tree of
height 9 and on a piece of a DNA sequence. Notice that the space utilization for
Breadth-First is significantly lower than for XSB v. 1.4 for left recursion, whereas
for right recursion it is considerably higher.

C om parisons for O p tim ization Tasks
In the previous discussion we considered problems that can be regarded as worst
cases for a breadth-first search. Now we turn to some examples where breadth-

210

T able 4: M e m o ry u tiliza tio n f o r le ft and righ t-recu rsive tra n s itiv e closure
Engine Left-Recursion Right-Recursion
Graph Breadth-First XSB v. 1.4 Breadth-First XSB v. 1.4
Chain lk 2416 18,821,404 202,072 116,280
Tree 9 2416 473,728 566,020 13,188
Genome 2500 218,486 521,364 17,704

first is expected to perform well. Finding the shortest path of a graph is one such
example, and we make use of the shortest path program described in Example 5.2,
where bagMin/2 is an aggregate predicate5 that maintains the length of the shortest-
path between two nodes (all non-minimal answers are deleted).
Exam ple 5.2 Our shortest-path program is defined as follows:

sp(X,Y)(D) arc(X ,Y ,D).
sp(X,Y)(D) bagM in(sp(X ,Z),D 1), arc(Z ,Y ,D 2), D i s D1+D2.

We considered subsets of the Stanford Graph Base Words graph, containing
common 5-letter words6. Figure 2(a) shows the times for 500 runs of the query
sp (words ,X) (D), to find the shortest path between “words” and all the other words
reachable from it. Note that for the small graphs, with up to around 500 edges, the
two engines spend about the same time. For larger graphs however, Breadth-First
is considerably faster then XSB v. 1.4.

Figure 2(b) shows the times for 1000 runs of the query, sp (th e re .w h ite) (D),
where the distance between the two words is fixed (D=7) for all graphs under con
sideration. For this case, Breadth-First also has better performance, even though
the differences in times are not as striking. For example, to find the shortest-path
(of length 24) between “words” and “spots” in WordslOOO, XSB v. 1.4 takes 15.67
seconds, whereas Breadth-First takes just 0.34 seconds.

Number of edges Number of edges

(a) (b)

Figure 2: (a) shows the CPU time to compute sp(words,X) (D) 500 times, and (b)
shows the CPU time to compute sp (th e re ,w h ite) (D) 1000 times

5lt is worth pointing out that XSB provides an efficient implementation aggregates using HiLog
[2] syntax. For more information on these aggregate predicates, consult the XSB Manual (available
at http://www.es.sunysb.edu/~ sbprolog/manual/manual.htmt).

6It was not possible to run this program with XSB v. 1.4 for bigger graphs (with more than
1000 words), due to memory limitations.

http://www.es.sunysb.edu/~

211

The main goal of the Breadth-first engine is to efficiently access relations stored
in an external database, and in this section, we compare the performance of the
breadth-first engine using a set-at-a time interface7 against the XSB v. 1.4 engine
using a tuple-at-a-time interface currently distributed with the XSB engine.

In order to compare the evaluations for left-recursive transitive closure, subsets
of the Words graph were stored in Oracle as tables indexed on the first column.

Accessing External Relations

0 5000 10000 15000 20000 25000 30000 Number of edges

(a) Elapsed time
3: Times to find all words

(b) XSB CPU time

reachable from “words” in WordslOOO,Figure
WordsZOOO, Words3000 and Words indexed on the first argument of the tables

The times to evaluate the query reach (words, X) are shown in Figure 3. We
considered both the XSB CPU time, the time spent by the XSB engine, and the
elapsed time, the total time used to evaluate the query (including I/O). As expected,
the graphs in Figure 3 show that the set-at-a-time processing of Breadth-First is
considerably faster than the tuple-at-a-time processing of XSB v. 1.4. It is worth
pointing out that at the present time the set-at-a-time database interface is in
an initial stage of its development, and many optimizations have not yet been
implemented (e.g., reducing the number of times dynamic SQL queries are parsed).

6 Conclusion and Future Work
The equivalence results of Section 3 indicate that, on an iteration by iteration basis,
breadth-first tabling and Semi-Naive Magic Template evaluation are the same. The
performance results of Section 5 amply bear this out: the tabling engine gives
excellent times for disk-resident data without sacrificing in-memory performance.
The disk access times also indicate that the internal data representation of the
engine meshes well with that needed by an SQL database such as Oracle.

Thus, serious database interaction, such as that needed in data mining, decision
support, or in a variety of other applications, can be done within the structure of
first-order logic and the programming environment of Prolog. Of course for practical
database systems, queries can be restricted to a decidable subset of first-order logic
such as Datalog, or query forms can be restricted to those provably terminating.
Such a system can be created by fully integrating the breadth-first engine into the
programming environment of XSB. This involves such issues as: (1) The extension

'For more details about the implementation of the set-at-a-time database interface the reader
is referred to the full version of this paper.

212

of the breadth-first formalism and engine to evaluate negation according to the well-
founded semantics as is done by the tuple-at-a-time tabling in XSB; (2) Refinement
of the engine to integrate different search strategies within the same evaluation;
(3) Investigating automatic abolishing of tables after an evaluation is finished with
them.

When these issues are resolved, our framework will contain an efficient procedu
ral component and an efficient data retrieval component, both using the language
of first-order logic and tightly integrated in the SLG-WAM. We believe this frame
work will form a computational basis to combine the fields of logic programming
and deductive databases.

Acknowledgements: Prasad Rao implemented the low level tabling predicates
to suppot aggregate computation and Hasan Davulcu implemented the tuple-at-
a-time XSB-Oracle interface. We would like to thank Raghu Ramakrishnan for
originally suggesting the idea to us. This work was supported in part-by CAPES-
Brazil, and NSF grants CDA-9303181 and CCR-9404921.

References
[1] H. Ait-Kaci. WAM: A Tutorial Reconstruction. MIT Press, 1991.
[2] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic

programming. Journal of Logic Programming, 15(3):187-230, 1993.
[3] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The

LDL system prototype. IEEE Trans, on Knowledge and Data Eng., 2:76-90, 1990.
[4] J. Freire, T. Swift, and D.S. Warren. Beyond depth-first: Improving tabled logic

programs through alternative scheduling strategies. In 8th International Symposium
PLILP, pages 243-258. Springer-Verlag, 1996.

[5] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison Wesley, 1993.

[6] R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs.
Journal of Logic Programming, 11:189-216, 1991.

[7] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL: Control, relations, and
logic. In Proceedings ofthe 18th VLDB, pages 238-250, 1992.

[8] K.A. Ross. Modular stratification and magic sets for datalog programs with negation.
JA CM, 41 (6) :1216—1266, 1994.

[9] K. Sagonas, T. Swift, and D.S. Warren. XSB as an efficient deductive database engine.
In Proceedings of SIGMOD, pages 442-453, 1994.

[10] H. Seki. On the power of Alexander templates. In Proceedings of PODS, pages
150-159, 1989.

[11] S. Sudarshan. Optimizing Bottom-up Query Evaluation for Deductive Databases. PhD
thesis, University of Wisconsin, 1992.

[12] T. Swift and D. S. Warren. An Abstract Machine for SLG Resolution: Definite
Programs. In Proceedings ILPS, pages 633-654, 1994.

[13] T. Swift and D. S. Warren. Analysis of sequential SLG evaluation. In Proceedings of
ILPS, pages 219-238, 1994. '

[14] J. Ullrnan. Principles of Data and Knowledge-base Systems Vol I. Computer Science
Press, 1989.

[15] J. Vaghani, K. Ramamohanarao, D.B. Kemp, Z. Somogyi, P.J. Stuckey, T.S. Leask,
and J. Harland. The Aditi deductive database system. The VLDB Journal, 3(2):245-
288, 1994.

[16] L. Vieillc. Recursive query processing: The power of logic. Theoretical Computer
Science, 69:1- 53, 1989.

