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In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating

biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is

controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great

potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a

well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and

thus provide directly health-related data and procedures.
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Complex motor behavior emerges from the interactions

between a nervous system and peripheral effectors systems

✄1☎. This interplay is clearly illustrated in birdsong produc-

tion, where a highly nonlinear device is capable of generat-

ing a variety of acoustically different sounds, even when

driven by relatively simple physiological instructions ✄2,3☎.

Recently, the modeling of the avian vocal organ has helped

to understand the relationships between different acoustic

features, which are not under direct neural control but are

determined by the biomechanics of the peripheral system

✄2,3☎. In this work, we implement an electronic device which

continuously reads physiological instructions driving the syr-

inx and integrates the model equations ruling its dynamics in

the time lapse between readings.

The most widely studied songbird species is the zebra

finch ✆Taeniopygia guttata✂, whose song consists of three to

eight distinct song syllables with a variety of acoustic char-

acteristics. Whereas many songbird species produce sounds

with low upper harmonic content ✆tonal✂, zebra finch song is

composed of both spectrally rich and tonal syllables. In a

previous work, we found that there is a relationship between

the spectral content of a vocalization and its fundamental

frequency ✄2☎. Moreover, this relationship can be explained

in terms of the different dynamical mechanisms by which

labial oscillations are started when the air sac pressure

reaches a threshold value ✄Hopf mechanism versus a saddle

node in a limit cycle ✆SNILC✂ bifurcation; e.g., ✄4☎☎. These

different mechanisms were found in a physical model for

birdsong production ✄2,3☎, which illustrates that some acous-

tic features of the song are not under direct control of the

nervous system but emerge from the interactions with the

biomechanical device.

One of the first low-dimensional models for the dynamics

of a membrane in an airflow was proposed by Titze and

Martin ✄5☎ and has been used to describe the source in bird-

song ✄6☎. The model assumes that for high-enough values of

the airflow, soft pieces of tissue ✆labia, in the case of birds✂

start to oscillate. The modulations of the airflow are the re-

sponsible for the sound. The motion of the oscillating tissues,

in this model, is represented as a surface wave propagating in

the direction of the airflow. In order to describe this wave,

Titze assumed two basic modes: a lateral displacement of the

tissues and a flappinglike motion responsible for an out-of-

phase oscillation of the top and bottom parts of the mem-

branes.

It is possible to coordinate these modes in such a way that

the system gains energy in each cycle. It suffices that the

labia present a convergent profile when they move away

from each other and a divergent ✆or less convergent✂ one

when they approach. In this way, there will be higher inter-

labial pressure when the labia are moving apart than when

they are approaching, since a convergent profile guarantees

an interlabial pressure similar to the ✆high✂ subglottal pres-

sure.

A kinematic description of this scenario ✆in which the

movement is ultimately an upward propagating wave on a

labium✂ can be carried out in terms of a1 and a2, the half

separation between the lower and upper edges of the labia.

Under the hypothesis of a wavelike motion, these half sepa-

rations can be written in terms of the midpoint position of a

membrane, x, and its velocity, y. If the time that it takes the

wave to propagate half the vertical size of the labia is ✝, the

half separations between the edges of the membranes will

satisfy

a1 = a01 + x + ✝y ,

a2 = a02 + x − ✝y ,

where a01 and a02 are the half separations at the rest state.

The average pressure pa✈ between the labia ✄5☎ is then

pa✈ = ps 1 −
a2

a1
,

where ps stands for the sublabial pressure. With these ele-

ments, we can write the dynamical equations for x, taking

into account dissipation, elastic restitution, and nonlinear dis-

sipation

dx

dt
= y ,

dy

dt
= ✆1✴m✂ − k✆x✂x − b✆y✂y − cx2y + alabps

✞a + 2✝✝

a01 + x + ✝y
.

The first term corresponds to a nonlinear restitution force,

where k✆x✂=k1+k2x
2. The second term accounts for dissipa-
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tion, with ✄✁y✂=✄1+✄2y
2. The third term is also a nonlinear

dissipation that becomes relevant as x takes large values,
corresponding to large departures from the rest position. In
this way, this position-dependent nonlinear dissipation serves
to model collisions between labia or with containing walls,
either one bounding their motions. Finally, the last term de-
scribes the effect of the interlabial pressure and �a=a01
−a02

It is interesting to notice that the existence of nonlinear

components in the restitution forces for the labia was re-

cently found to play an important role in the generation of

low-frequency oscillations of rich spectral content. In previ-

ous work ☎3✆, it was shown that both Hopf and SNILC bifur-

cations could occur. In the first case, harmonic oscillations

are born with finite frequency and zero amplitude. In the

latter, a saddle and a node collide, in a way such that the

unstable manifold of the saddle belongs to the stable mani-

fold of the node. In this way, an oscillation is born with zero

frequency and nonzero amplitude. These oscillations were

found to be consistent with spectrally rich sounds in the ze-

bra finch ☎2,3✆.
The bifurcation diagram, in terms of ps, k1, is displayed in

Fig. 1✁a✂ ✁adapted from ☎3✆✂. In the shaded region, three fixed

points exist. The curves that define its border correspond to

saddle-node bifurcations, where a pair of fixed points, one

stable and one unstable, collides. The solid, thick lines rep-

resent Hopf bifurcation curves, where fixed points lose sta-

bility against periodic solutions. The point at which a Hopf

curve meets tangentially a saddle-node curve is a Takens-

Bogdanov bifurcation point: a linear singularity with two

zero eigenvalues. The complete set of qualitatively different

solutions found in its vicinity is displayed in the figure.

A thorough analysis of the solutions of the physical model

that we proposed for the production of zebra finch song ☎2✆
can be found in ☎3✆.The generation of syllables with different

spectral contents occurs, according to the model, when the

bird modulates the physiological instructions in order to fol-

low paths as the ones indicated in the figure. The path for

high values of k1 ✁regions 1 and 2✂ generates tonal sounds,

whereas the path for low k1 values gives rise to harmonic

stacks ✁regions 2–5✂.
Since we are interested in carrying out an integration of

our model in real time with a digital signal processor ✁DSP✂,
we found it convenient to find an equivalent set of equations

which would imply computationally less expensive opera-

tions. By equivalent we mean a set of equations that is ca-

pable of displaying topologically equivalent sets of solutions

as the parameters are varied. In particular, it was desirable to

find a system of equations not involving a ratio of polyno-

mial functions of the variables.

This is a standard problem in dynamical systems: to find

the simplest vector field presenting topologically equivalent

solutions as those of a given problem. This procedure is al-

gorithmic: at a linear singularity, it is possible to find non-

linear changes of variables eliminating the nonresonant terms

in a power-series expansion of the vector field.

Let us start our simplifying procedure where the system

presents a Takens-Bogdanov singularity. Then, the vector

field, at third order, can be written in its normal form as ☎7✆
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FIG. 1. ❃Color online❄ Bifurcation diagram for ❃a❄ the physical and ❃b❄ the normal form models. For the physical model, the diagram is

displayed in the air sac pressure and the tension parameter space ❃ps ,k1❄ and for the normal form model in the ❃❅ ,❇❄ parameter space. The

existence of neighboring regions as 1 and 2, and regions 5 and 2 is the mathematical condition for a model to be capable of displaying both

tonal and spectrally rich sounds with well-defined fundamental frequencies. Typical portraits of the ❃x ,y❄ phase spaces for each region are

shown in the corresponding lower insets. In both upper panels, continuous thick line represents the Hopf bifurcation, dashed line the

homoclinic bifurcation, and dotted blue lines the saddle-node bifurcations. Paths A and H represent the different ways to start oscillation of

the labia by crossing the Hopf ❃H❄ and the SNILC ❃A❄ bifurcation lines, thus generating respectably either tonal or spectrally rich sounds.
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dx

dt
= y ,

dy

dt
= c11x

2 + c12xy + c21x
3 + c22x

2y .

By performing a normal form reduction, we can find a non-

linear change of coordinates to eliminate the nonresonant

terms. The fixed point then reads

x = −
k1

3k2a01
−

k1

3k2a01

2

−
k1

3k2a01
.

Performing a Taylor expansion around the fixed point at the

parameters ps
✁ and k1

✁
�chosen numerically in such a way that

both the saddle node and the Hopf conditions are satisfied✂,

we get

d✆x

dt
= ✆y ,

d✆y

dt
= − 3k2x +

p
s
*✄a

�a01 + x✂3
✆x

− 2☎2x +
2✝✝s✄a

�a01 + x✂3
+

2✝✝s

�a01 + x✂3
✆x✆y + ➥ ,

where ✆y=y and ✆y=x−x
✁. Evaluating these coefficients at

the chosen parameter values, we find that c11✞0; c12✟0. As

it is the standard procedure in the reduction to the standard

form of the Takens-Bogdanov bifurcation, a nonlinear

change of variables allows us to get rid of the term in ✆y
2.

This change of variables will affect the cubic coefficients

obtained in the expansion. Yet, we chose cubic phenomeno-

logical saturation terms �and therefore, after the normal form

reduction, present components in x3 and x2y✂ and therefore

c21 and c22 will be negative. In this way, after scaling the

variables, at the parameters of the Takens-Bogdanov bifurca-

tion, our system will be equivalent to

dx

dt
= y ,

dy

dt
= x2 − xy − x3 − x2y .

We performed an unfolding of our vector field as the one

proposed by Takens and the resulting bifurcation diagram is

shown in Fig. 1�b✂. It presents the same set of dynamical

scenarios, but the vector field only involves polynomial non-

linear terms, making it suitable for a digital implementation

by a DSP. In other words, we obtained the simplest math-

ematical model �i.e., with the smallest number of nonlinear

terms✂ that satisfies the conditions required for the generation

of both tonal and spectrally rich sounds with well-defined

fundamental frequencies, i.e., which presents an equivalent

bifurcation diagram as our physical model ✠see Fig. 1�b✂✡.

Since this reduced model contains a minimal number of

nonlinear terms, it saves computational time without losing

the required dynamical properties, keeping the parameters

within a physiologically meaningful range. We introduced a

☛ time scaling factor in order to match the velocity of the

oscillations in the model variables and the measured sound

pressure fluctuations, which are assumed to be caused by

labial modulation of the airflow; i.e., with this change of

variables �t☞ t ✴☛, y☞☛y✂, the final model reads

dx

dt
= y ,

dy

dt
= ☛2

✌ + ☛2☎x + ☛2x2 − ☛xy − ☛x3 − ☛x2y ,

where x represents the departure of the midpoint position of

the oscillating labia in the syrinx �which are the tissues

modulating airflow to produce sound✂, ☛ is a time scaling

factor, and the parameters ✌ and ☎ are functions of the air

sac pressure and the activity of the ventral syringeal muscle,

respectively. These functions are defined by the transforma-

tion of variables taking the physical model to the normal

form as described before. Synthetic sound can be generated

with this model if the sound pressure at the input of the tract

is computed as Pi�t✂=x�t✂−rPi�t−2L ✴✈✂ ✠8,9✡, where L

stands for the length of a tube representing the tract, ✈ is the

sound velocity, and r the reflection coefficient of the sound

wave. The output pressure of the vocal tract, which reads

Pt�t✂= �1−r✂Pi�t−2L ✴✈✂, is computed as the output sound.

This expression reflects that the output pressure is the trans-

mitted sound wave at the end of the tract.

In order to fit the parameters in our model, we chose two

segments of the song whose sonogram is displayed in Fig. 2

�upper panel✂. One segment corresponds to a high-frequency,

tonal sound, while the other to a low-frequency, spectrally

rich sound. We computed fundamental frequencies and spec-
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FIG. 2. ❀Upper panel❁ Natural song. ❀Middle panel❁ Synthetic

song generated by the computational model with ad hoc parameters.

❀Bottom panel❁ Physiologically driven electronic syrinx imple-

mented in a DSP. L=1.9 cm, r=−0.9. Arrows indicate the segments

used to fit.
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tral contents of those two time series segments. We defined
pitch ✁ f0✂ as fundamental frequency and spectral content in-
dex ✁SCI✂ as described in ✄2☎: an index ✁S✂ quantifying how
much energy is distributed in the multiples of the fundamen-
tal frequency. In order to fit ✟, we computed these values for
the first segment ✁f0=715 Hz, S=6.6✂. Then, we integrated
the equations for different values of ✟ and �. For each ✟, we
looked for the value of � to give rise to the same oscillation
frequency as our experimental segment and the synthetic SCI
was computed. The distance d1 between the recorded and

synthetic values, d1= ✁
S1,s−S1,r

S1,s
✂2, where S1,s represents the SCI

for the synthetic sound and S1,r for the recorded one, was
calculated as a function of ✟. The same procedure was fol-
lowed for the second segment ✁f0=5468 Hz, S=1.0245✂ to
compute distance d2. The quantity dtotal✡d1+d2 was then
calculated as a function of ✟. We found a minimum for ✟
=23 500.

In order to produce parameter paths capable of driving the
model to generate synthetic sound similar to the recorded
one, we defined two regimes. High-frequency sounds
✁sounds with fundamental frequencies above 1.8 kHz✂ were
assumed to be produced when labial oscillations were turned
on in Hopf bifurcations; a dynamical scenario compatible
with tonal oscillations ✄2☎. Low-frequency sounds ✁funda-
mental frequencies smaller than 1.2 kHz✂ were assumed to be
uttered when labial oscillations were born in SNILC bifurca-
tions ✄2☎. In the cases where no spectral discontinuities were
observed in the low-frequency syllables, both sources were
assumed to be active simultaneously and operating at the
same dynamical regime. We built two time series
�numeric1,2✁t✂, each corresponding to either of the mentioned
regimes. Each time series �numeric1,2✁t✂ was built in such way
that the fundamental frequency of the synthesized song
matches the fundamental frequency of the uttered song at
that time. Each �numeric1,2✁t✂ was used to drive the model,
independently, to produce two series of pressure fluctuations
that were added to emulate the pressure at the input of the
vocal tract in order to produce synthetic song. The parameter
✆ was chosen so that the variable x would oscillate when
phonation was detected. We chose ✆ to take either ✆off

=0.05 or ✆on=−0.15 depending on whether the oscillations

are off or on, respectively. Notice that a low-frequency har-

monic down sweep in the syllable and a brief down sweep

around t=0.66 s are not modeled. Published results ✄11☎
suggest that those sounds might have their dynamical origin

in nonlinear effects due to source-source interactions, not

included in the modeling here presented.

In order to quantify the similarity between the natural and

the synthesized songs, we measured pitch and spectral con-

tent in each of the recordings. Pitch was extracted using fixed

10 ms time steps, obtaining pitch time series for each of the

recordings. Mean pitch distance was defined as

☛dpitch☞ =

✌
i=1

n

✍ f01✁i✂ − f02✁i✂✍

✌
i=1

n

f01✁i✂

,

with f01 corresponding to the pitch of the experimental re-

cordings and f02 the pitch of synthesized song. Mean dis-

tance between experimental and synthetic series was ☛dpitch☞
=0.152 with STD=0.262. We calculated SCI in a time frame

of 2.7 ms surrounding each of the time steps where pitch was

measured. The mean spectral content distance dSCI is defined

as

☛dSCI☞ =

✌
i=1

n

✍S1✁i✂ − S2✁i✂✍

✌
i=1

n

S1✁i✂

,

where S1 is the natural song SCI series and S2 the synthetic

one. Mean distance between natural and synthetic series was

☛dSCI☞=0.263 with STD=0.262. The resulting synthetic song

generated by driving the equations with �numeric1,2✁t✂ is dis-

played in the middle panel of Fig. 2.

Once identified the range of time-dependent parameters

that lead to synthetic song with similar fundamental fre-

quency and spectral content behavior, we proceeded to ✁1✂
find a transformation capable of mapping actual electromyo-

graphic ✁EMG✂ data from a singing bird to parameters within

the range computed above and ✁2✂ implement this model into

a DSP.

Properly scaling EMG signals from syringeal muscles

within the range of the previously computed time-dependent

parameters allows synthesizing realistic song. In order to

record muscle activities, wire electrodes were implanted into

syringeal muscles. The electrodes were prepared from insu-

lated stainless-steel wire and secured to the tissue with a

microdrop of tissue adhesive. Before closing the air sac, all

the wires were led out and routed to the back. Simultaneous

recordings of sound, pressure, right ✈S EMG activity, and

left ✈S EMG activity are shown on Fig. 3. The rectified,

smoothed envelope of the EMG provided a relative measure

of the muscle activity ✄9☎. This was used to understand how

muscles contribute to the movements responsible for the

slow evolution of the fundamental frequency within song

syllables ✄10☎. This preprocessing of the EMG data was per-
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FIG. 3. Simultaneous experimental recordings while the bird

was singing of ❀a❁ sound pressure, ❀b❁ air sac pressure, ❀c❁ right ❂S
EMG, and ❀d❁ left ❂S EMG.
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formed with a circuit that rectifies the activity and smoothes

it by low-pass filtering it. The circuit integrates the following

equation:

d✈S

dt
= − ✁✈S + ✍✈S✍ ,

with ✁=10 ms and ✍✈S✍ the rectified value of the activity of

the ventral muscle. The output of the circuit is shown in

panels a and c of Fig. 4. In order to select the optimal set of

physiological signals to drive the model, we plotted the

smoothed ✈S signal �from now on ✈S activity✂ as a function

of pitch. It is natural to select the activity of the right ✈S

muscle in order to generate part of the plot since it has been

established that only the right side is responsible for high-

frequency sounds ✄12☎. Therefore, for vocalizations of fun-

damental frequencies above 1.8 kHz, we plotted the right ✈S

activity as a function of pitch. The way of treating low-

frequency sounds is more subtle, since both sides are active

during at least part of them. We selected left ✈S activity to

drive the model when synthesizing low-frequency sounds.

This choice was made after an inspection of the plots of left

and right activities as functions of the pitch. In the left panel

of Fig. 5, we display, for the high-frequency sounds, the right

activity as a function of the pitch and for the low-frequency

sounds, the left activity as a function of the pitch. In the right

panel of Fig. 5, we plotted the right activity as a function of

the pitch for all syllables. Notice that in the right panel, there

are levels of the activity leading to two plausible pitches.

This ambiguity suggests additional phenomena might be tak-

ing place, such as the activity of muscles not yet measured or

a nonlinear effect introduced by a coupling between the

sources. The only combination that defines a bijective rela-

tionship is when left activity is used for low-frequency

sounds and right activity for high-frequency sounds, thus

making it the optimal choice in order to drive the model.

In order to synthesize song by driving the model with

physiological recordings, we need to find a transformation

from the recorded EMG activities to the model parameters

�✆ ,✝✂ that were previously computed. As before, ✆ is taken

as one of two values that place the model out or in an oscil-

latory regime. We measured air sac pressure by inserting a

cannula into a thoracic air sac, with the other end connected

to a pressure transducer �see ✄11☎✂. Air sac pressure larger

than a threshold value and sound level above average ambi-

ent noise were the conditions for setting ✆=✆on. The param-

eters ✝proposed are responsible for the frequency modulation

and spectral content of the synthesized sounds. We proposed

✝i
proposed = a0,i + a1,i✈Si�t✂ + a2,i✈Si

2
�t✂

for relating ventral muscle activity with the parameters

✝proposed in the model. We chose a j,i in order to minimize

✠2=✠2�✝i
proposed−✝i

numeric
✂, with i=1,2 corresponding to

high-frequency or low-frequency regimes for ✝ and to right

or left for ✈S recordings, respectively. The time parameters

✝i
numeric refer to the time-dependent parameters computed

above. In our example, the values obtained are

�a0,1 ,a1,1 ,a2,1✂= �−6697,152.65,0.0848✂ and �a0,2 ,a1,2 ,a2,2✂

= �0,−17.79,0.0016✂. These parameters where fit using only

three ✝i
proposed and ✝i

numeric values at times surrounding seg-

ment II in Fig. 2 for high frequency and for low frequency

using two values at times surrounding segment I. Notice that

since we used only a few points within two segments of the

data to fit the parameters and then reproduced the whole

song, our fitted model has predictive power. ✝i
proposed at times

where ✆=✆on are shown in panels b and d of Fig. 4. With this

fit, we are capable of physiologically driving a device inte-

grating the equations of the model.

We implemented our model on a DSP mounted on a Texas

Instruments TMS320C6713 DSK board. It consists of a set

of analog input-output channels and a DSP operating at 225

MHz. A program was written in C that makes use of the

sampling capabilities of the board to digitize data corre-

sponding to the physiological activity recordings, perform a

numerical integration of the model, and convert the output to

an analog signal �the synthesized song✂.

In order to perform a real-time integration of the model of
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FIG. 4. ✿Color online❀ Extraction of the driving parameters of

the model from the smoothed EMG activities of the ❁S muscles.

Rectification of the EMG signal and smoothing by low-pass filter-

ing of the ✿a❀ right and ✿c❀ left ❁S activities. In both panels, phona-

tion time and ❂=❂on are indicated with a black line; also no-

phonation and ❂=❂off are indicated with a green ✿light gray❀ line.

The driving parameter ❃i
proposed is shown at times where ❂=❂on in

panels ✿b❀ and ✿d❀.

FIG. 5. ✿Color online❀ Activity as a function of the pitch, f0. In

the left panel ✿a❀, the pitch of the low-frequency syllables ✿ f0
❄1.8 kHz❀ was plotted as a function of the left-side ventral muscle

activity. In ✿b❀, the pitch of those syllables was plotted as a function

of the right ventral activity. In both panels, the pitch of the high-

frequency syllables was plotted as a function of the right ventral

activity.
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the vocal organ, we used these transformations to define the
parameters to feed the DSP. The board digitized the data at a
48 kHz sampling rate. Within each sampling step, the pro-
cessor integrated the equations accounting for the labial mo-
tion. Forward Euler’s method was chosen due to its low
computational cost, which allowed for 18 iterations to be
carried out between samples. Two independent integrations
of the model were performed. Each numerically solved vari-
able, x1,2, was converted to an analog signal by the DSP at
the same rate the input was digitized. The solutions were
used to generate a sound signal, whose spectrogram is dis-
played in Fig. 2 ✁bottom✂. Beyond the qualitative similarity,

we quantified the agreement between the natural song and

the one synthesized with the DSP using the same procedure

as the one described above. For the pitch, the mean distance

was ☛dpitch☞=0.223, STD=0.296, while for the SCI ☛dSCI☞

=0.281, STD=0.252.

In this work, we built an electronic device which is ca-

pable of translating physiological instructions into song in

real time. We did it by programming a DSP so that the device

can read the experimental data, integrate the dynamical equa-

tions of a physical model for the problem, and use these

solutions to synthesize song.

The real-time generation of high-frequency sounds with

specific spectral contents presents a challenge. We show that

the state of technology can overcome it. The use of digital

technology is a qualitative improvement on previous biomi-

metic vocal solutions ✄12☎: the control of the system’s param-

eters either for improving the model or as a source of altered

feedback is flexible and precise.

DSP technology is being implemented in a variety of bio-

logically inspired problems and is likely to become a stan-

dard solution for a variety of biomimetic applications

✄13,14☎. In particular, brain machine interfaces ✁BMIs✂ typi-

cally read data and perform statistical analysis leading to the

reconstruction of the parameters that can be used to drive

peripheral devices. In this work, we use DSP technology to

build a biomimetic solution by asking the device to integrate

the equations modeling the physics behind the problem. We

propose that this strategy severely reduces the computational

demand, thus enhancing the capabilities of current technol-

ogy for biomimetical applications.

In particular, a well-functioning subject-controlled vocal

prosthesis can lay the foundation for similar devices in hu-

mans and thus provide directly health-related data and pro-

cedures. In this framework, the DSP technology can incre-

mentally improve the quality of synthesized vocal production

by incorporating progressive understanding of the physical

processes and relevant physiological details involved.
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