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Abstract. - Magnetic fields and magnetic impurities are each known to suppress super
conductivity. However, as the field quenches (i.e. polarizes) the impurities, rich consequences, 
including field-enhanced superconductivity, can emerge when both effects are present. For the 
case of superconducting wires and thin films, this field-spin interplay is investigated via the 
Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on the field (and 
therefore field-enhanced superconductivity) is found to be possible, even in parameter regimes 
in which the critical temperature decreases monotonically with increasing field. The present 
work complements that of Kharitonov and Feigel'man, which predicts non-monotonic behavior 
of the critical temperature. 

Introduction. - In their classic work, Abrikosov and Gor'kov [1] predicted that unpolar
ized, uncorrelated magnetic impurities suppress of superconductivity, due to the de-pairing ef
fects associated with the spin-exchange scattering of electrons by magnetic impurities. Among 
their results is the reduction, with increasing magnetic impurity concentration, of the super
conducting critical temperature Tc , along with the possibility of "gapless" superconductivity 
in an intermediate regime of magnetic-impurity concentrations. The latter regime is realized 
when the concentration of the impurities is large enough to eliminate the gap but not large 
enough to destroy superconductivity altogether. Not long after the work of Abrikosov and 
Gor'kov, it was recognized that other de-pairing mechanisms, such as those involving the cou
pling of the orbital and spin degrees of freedom of the electrons to a magnetic field, can lead 
to equivalent suppressions of superconductivity, including gapless regimes [2- 5] . 

Conventional wisdom holds that magnetic fields and magnetic moments each tend to sup
press superconductivity (see, e.g., Ref. [6]). Therefore, it seems natural to suspect that any 
increase in a magnetic field, applied to a superconductor containing magnetic impurities, would 
lead to additional suppression of the superconductivity. However, very recently, Kharitonov 
and Feigel'man [7] have predicted the existence of a regime in which, by contrast, an increase 
in the magnetic field applied to a superconductor containing magnetic impurities leads to 
a critical temperature that first increases with magnetic field, but eventually behaves more 
conventionally, decreasing with the magnetic field and ultimately vanishing at a critical value 
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of the field . Even more strikingly, they have predicted that, over a certain range of concen
trations of magnetic impurities, a magnetic field can actually induce superconductivity out of 
the normal state. 

The Kharitonov-Feigel'man treatment focuses on determining the critical temperature by 
determining the linear instability of the normal state. The purpose of the present Letter is 
to address properties of the superconducting state itself, most notably the critical current 
and its dependence on temperature and the externally applied magnetic field . The approach 
that we shall take is to derive the (transport-like) Eilenberger-Usadel equations [9,10]' by 
starting from the Gor'kov equations. We account for the following effects: potential and spin
orbit scattering of electrons from non-magnetic impurities, and spin-exchange scattering from 
magnetic impurities, along with orbital and Zeeman effects of the magnetic field. In addition 
to obtaining the critical current, we shall recover the Kharitonov-Feigel'man prediction for the 
critical temperature, as well as the dependence of the order parameter on temperature and 
applied field. In particular, we shall show that not only are there reasonable parameter regimes 
in which both the critical current and the transition temperature vary non-monotonically 
with increasing magnetic field, but also there are reasonable parameter regimes in which only 
the low-temperature critical current is non-monotonic even though the critical temperature 
behaves monotonically with field. The present theory can be used to explain certain recent 
experiments on superconducting wires [8] . 

Before describing the technical development , we pause to give a physical picture of the 
relevant de-pairing mechanisms. First, consider the effects of magnetic impurities. These 
cause spin-exchange scattering of the electrons (including both spin-flip and non-spin-flip 
terms, relative to a given spin quantization axis) , and therefore lead to the breaking of Cooper 
pairs [1]. Now consider the effects of magnetic fields. The vector potential (due to the 
applied field) scrambles the relative phases of the partners of a Cooper pair, as they move 
diffusively in the presence of impurity scattering (viz. the orbital effect), which suppresses 
superconductivity [2,3]. On the other hand, the field polarizes the magnetic impurity spins, 
which decreases the rate of exchange scattering (because the spin-flip term is suppressed more 
strongly than the non-spin-flip term is enhanced), thus diminishing this contribution to de
pairing [7]. In addition, the Zeeman effect associated with the effective field (coming from the 
applied field and the impurity spins) splits the energy of the up and down spins in the Cooper 
pair, thus tending to suppress superconductivity [6]. We note that strong spin-orbit scattering 
tends to weaken the de-pairing caused by the Zeeman effect [5]. Thus we see that the magnetic 
field produces competing tendencies: it causes de-pairing via the orbital and Zeeman effects, 
but it mollifies the de-pairing caused by magnetic impurities. This competition can manifest 
itself through the non-monotonic behavior of observables such as the critical temperature and 
critical current. In order for the manifestation to be observable, the magnetic field needs to be 
present throughout the samples, the scenario being readily accessible in wires and thin films . 

The model. - We take for the impurity-free part of the Hamiltonian the BCS mean-field 
form [6,11]: 

Ho = - J dr 2~ 1f;1 (\7 - i; A) 21f;a + ~o J dr ((1f;11f;1)1f;(31f;a + 1f;11f;1 (1f;(31f;a) ) - p, J dr1f;l1f;a, 

(1) 
where 1f;l(r) creates an electron having mass m,charge e, position r and spin projection a, 
A is the vector potential, c is the speed of light, p, is the chemical potential, and Vo is the 
pairing interaction. Throughout this Letter we shall put 11 = 1 and kB = 1. Assuming the 
superconducting pairing is spin-singlet, we may introduce the complex order parameter ~, 
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(2) 

where (J~t ,Z are the Pauli matrices. We assume that the electrons undergo potential and 
spin-exchange scattering from the magnetic impurities located at a set of random positions 
{xd, in addition to undergoing spin-orbit scattering from an independent set of impurities 
or defects located at an independent set of random positions {y j }, as well as being Zeeman 
coupled to the applied field: 

(3a) 

with Va,B being given by 

where Si is the spin of the i-th magnetic impurity and where , for simplicity, we have attributed 
the potential scattering solely to the magnetic impurities. We could have included potential 
scattering from the spin-orbit scattering centers, as well as potential scattering from a third, 
independent set of impurities. However, to do so would not change our conclusions , save for 
the simple rescaling of the mean-free time. We note that cross terms, i.e. those involving 
distinct interactions, can be ignored when evaluating self-energy [5 ,7]. Furthermore, we shall 
assume that the Kondo temperature is much lower than the temperature we are interested in. 

The impurity spins interact with the applied magnetic field through their own Zeeman 
term: 

(4) 

where Ws = gs/-lBB, and gs is the impurity-spin g-factor. Thus, the impurity spins are not 
treated as static but rather have their own dynamics, induced by the applied magnetic field . 
We shall approximate the dynamics of the impurity spins as being governed solely by the 
applied field, ignoring any influence on them of the electrons. Then, as the impurity spins are 
in thermal equilibrium, we may take the Matsubara correlators for a single spin to be 

(TTS+( T1)S- (T2)) TL D+-e-iw'(TI - T2) 
w' w' , (5a) 

(TTS- (T1)S+ (T2)) TL D - +e- iw'(TI - T2) 
w' w' , (5b) 

(TTSZ(T1)SZ(T2)) dZ = (s z)2, (5c) 

where w' (= 27rnT) is a bosonic Matsubara frequency, :-:-:- denotes a thermal average, and 

D+- - 2Sz/( . I ) w' = -zw +ws , D - + - 2Sz/( . I ) w' = +zw +ws . (6) 

We shall ignore correlations between distinct impurity spins, as their effects are of the second 
order in the impurity concentration. 

To facilitate the forthcoming analysis, we define the Nambu-Gor'kov four-component 
spinor (see, e.g. , Refs. [5 ,12]) via 

wt(x) = (1j;~(r' T) ,1j;I (r' T),1j;r (r ' T) , 1h (r' T)) . (7) 

Then, the electron-sector Green functions are defined in the standard way via 

F(l : 2) ) 
at (1 : 2) , 

(8) 
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where a, at, P, and pt are each two-by-two matrices (as indicated by the A symbol), being 
the normal and anomalous Green functions, respectively. As the pairing is assumed to be 
singlet , P is off-diagonal whereas a is diagonal. 

Eilenberger- Usadel equations. - The critical temperature and critical current are two 
of the most readily observable quantities. As they can be readily obtained from the Eilen
berger and Usadel equations , we shall focus on these formalisms. A detailed derivation will 
be presented elsewhere. The procedure is first to derive Eilenberger equations [9] , and then, 
assuming the dirty limit , to obtain the Usadel equations. The self-consistency equation be
tween the anomalous Green function and the order parameter naturally leads, in the small 
order-parameter limit, to an equation determining the critical temperature. Moreover , solv
ing the resulting transport-like equations, together with the self-consistency equation, gives 
the transport current, and this, when maximized over superfluid velocity, yields the critical 
current. 

To implement this procedure, one first derives the equations of motion for 9 (viz. the 
Gor 'kovequations) . By suitably subtracting these equations from one another one arrives at 
a form amenable to a semiclassical analysis , for which the rapidly and slowly varying parts 
in the Green function (corresponding to the dependence on the relative and center-of-mass 
coordinates of a Cooper pair, respectively) can be separated. Next, one treats the interaction 
Hamiltonian as an insertion in the self-energy, which leads to a new set of semi-classical 
Gor 'kovequations. These equations are still too complicated to use effectively, but they can 
be simplified to the so-called Eilenberger equations [9 ,13-15] (at the expense of losing detailed 
information about excitations) by introducing the energy-integrated Green functions , 

i J A g(w, k, R) = -; d~k G(w, k, R), A 1 J A f(w, k, R) = -; d~k F(w, k, R), (9) 

and similarly for gt(w, k, R) and jt(w, k, R). Here, w is the fermionic frequency Fourier con
jugate to the relative time, k is the relative momentum conjugate to the relative coordinate, 
and R is the center-of-mass coordinate. (We shall consider stationary processes, so we have 
dropped any dependence on the center-of-mass time.) However, the resulting equations do not 
determine g's and 1's uniquely, and they need to be supplemented by additional normalization 
conditions [9 ,13-15]' 

g2 + jjt = gt2 + jt j = 1, (10) 

as well as the self-consistency equation, 

(11) 

In the dirty limit (i.e. WTtr « G and ~Ttr « F), where Ttr is the transport relaxation time 
(which we do not distinguish from the elastic mean-free time) , the Eilenberger equations can 
be simplified further , because, in this limit , the energy-integrated Green functions are almost 
isotropic in k. This allows one to retain only the two lowest spherical harmonics (I = 0, 1) , 
and to regard the I = 1 term as a small correction (i.e. Ik· FI « IFI) so that we may write 

g(w, k, R) = G(w, R) + k . G(w, R), f(w, k, R) = F(w, R) + k . F(w, R), (12) 

where k is the unit vector along k . In this nearly-isotropic setting, the normalization conditions 
simplify to 

(13) 

and the Eilenberger equations reduce to the celebrated Usadel equations [10] for F 12 (W, R), 
F21 (W,R), FI2(w ,R), and Fl1(w,R). 
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Application to thin wires and films. - Let us consider a wire (or film) not much thicker 
than the effective coherence length. In this regime, we may assume that the order parameter 
has the form .6.(R) = is.eiuRx , where Rx is the coordinate measured along the direction of the 
current (e.g. for a wire this is along its length) and u is a parameter encoding the velocity 
of the superflow Tiu/2m. Similarly, we may assume that the semiclassical anomalous Green 
functions have a similar form: 

(14a) 

(14b) 

Together with the symmetry amongst F's (i.e. F~{3 = -Fl{3 and Fex{3 = -FJex) we can reduce 

the four Usadel equations for F12 , F21 , F12' and FJl to one single equation: 

G ( ) - G ( ) T ,,""",(D- + F!2(W-W
I

)) 1 G ( )F!2(W) - llW -- llW-~ , - +-- llW----, 
27B w .6. * 37so .6. * 

w' 

(15) 

in which bE = MEB + niu2(0)Sz, iJ = D(((u - 2eA/c)2)) with the London gauge chosen 
and ((- .. )) defining a spatial average over the sample thickness, D = V~7tr/3 is the diffusion 
constant. The spin-exchange and spin-orbit scattering times, 7B and 7so , are defined via the 
Fermi surface averages 

(16) 

Here, No is the (single-spin) density of electronic states at the Fermi surface, ni is the concen
tration of magnetic impurities, nso is the concentration of spin-orbit scatterers, and p F = mv F 

is the Fermi momentum. The normalization condition then becomes 

(17) 

Furthermore, the self-consistency condition (11) becomes 

(18) 

in which we have exchanged the coupling constant 9 for Teo, i.e., the critical temperature of 
the superconductor in the absence of magnetic impurities and fields. 

In the limit of strong spin-orbit scattering (i.e. 7so « l/w and 7B), the imaginary part of 
Eq. (15) is simplified to 

[bE + ~ImL D:;,+ G(w-w')]ReG + -2-Im(GG) = 0, 
27B w' 37so 

(19a) 

and the real part is rewritten as 

w ReG + 2~BRe L w' [D - +(w' ) G(w-w' ) G(w) + G*(w) D - +(w' ) G*(w - WI)] 

- [bE + 2!'s ImLw' D:;,+ G(w-w')]ImG + (~ + ~) Re(GG) = ReG, (19b) 
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where C == F12/ ii, G == G11 , and the argument w is implied for all Green function, except 
where stated otherwise. Next , we take the advantage of the simplification that follows by 
restricting our attention to the weak-coupling limit, in which F12(W) « 1. Then, eliminating 
G in Eq. (19) using Eqs. (17), and expanding to third order in powers of F, one arrives at 
an equation for F that is readily amenable to numerical treatment. The quantitative results 
that we now draw are based on this strategy. e) 

Results for the critical temperature. - These can be obtained in the standard way, i.e., 
by (i) setting u = 0 and expanding Eqs. (19) to linear order in F (at fixed ii), and (ii) setting 
ii -----+ 0 and applying the self-consistency condition. Step (i) yields 

[ 
- D~~(2eA)2~~ 3Tso I 2] T L wsSz I Iwl+rw +- - +-JE(w) ReC(w)~l-- 2 2 ReC(w-w), (20a) 

2 c 2 TB w' + Ws w' 

where 
T 2lw/IS z 

J~(w) == JE - - ~ 2 ' 
TB 6 w' +w2 

wC> lw/ I> lwl s 

(20b) 

in which a cutoff We has been imposed on w', and 

(21) 

This is essentially the Cooperon equation in the strong spin-orbit scattering limit , first derived 
by Kharitonov and Feigel'man [7] , up to an inconsequential renormalization of J E. 

Step (ii) involves solving the implicit equation 

Teo ~ [1 1 ( * ) ] In T = 7rT 6 ~ -"2 C(w) + C (w) , 
w 

(22) 

the solution of which is T = Te. 
Figure 1 shows the dependence of the critical temperature of wires or thin films on the 

(parallel) magnetic field for several values of magnetic impurity concentration. Note the quali
tative features first obtained by Kharitonov and Feigel 'man [7]: starting at low concentrations 
of magnetic impurities, the critical temperature decreases monotonically with the applied mag
netic field . For larger concentrations, a marked non-monotonicity develops , and for yet larger 
concentrations, a regime is found in which the magnetic field first induces superconductivity 
but ultimately destroys it. The physical picture behind this is the competition mentioned in 
the Introduction: first, by polarizing the magnetic impurities the magnetic field suppresses 
their pair-breaking effect. At yet larger fields , this enhancing tendency saturates, and is then 
overwhelmed by the pair-breaking tendency of the orbital coupling to the magnetic field. 

Results for the critical current density. - To obtain the critical current density je, we 
first determine the current density (average over the sample thickness) from the solution of 
the U sadel equation via 

(23) 

e )We note that, simplifications associated with the strong spin-orbit scattering assumption and the power 
series expansion in F are only necessary to ease the numerical calculations. Our conclusions are not sensitive 
to these simplifications in the parameter regimes considered in Figs. 1 and 2. 



c c 
H 

~ 
:> c 
rt 
:::J o 
H 

~ 
~ 

University of Utah Institutional Repository 
Author Manuscript 

T .-C. WEI ET AL. : ENHANCING SUPERCONDUCTIVITY 

1 0.03 
u=O.l 

u=0.3 --- 0.025 TITco= 0.1 ---0.8 --~: -0-; - - - - - --
, , , , , , TIT = 0.2 .................. , , > ..... 0.02 , , , , , 

0 BO.6 u=0.7 
, , , , z , , TIT 

~ 
, , , ----------- , , , , ..0 0.015 , , 

<I) E-< u=0.9 " , 
, , , , 

0.4 , , , , , :2 --------------- , , , , , 0.01 " 
, , , , u , , , , , . ...., 

u = IJ_------ , , , , , , , , 
\ 0.2 , , , \ 

~ -- , , , , \ \ 0.005 
~ 

, , , , \ \ \ 
\ / , \ \ 

I U= 1.3 , \ \ \ \ 
I \ \ 

\ 
\ \ 

0' 00 0 0.5 1 1.5 0.5 1 
f..lBBlkBTCO f..lBBlkBTCO 

Fig. 1 Fig. 2 

7 

2 

§ Fig. 1 - Critical temperature vs. (parallel) magnetic field for a range of exchange scattering strengths 
(fJ characterized by the dimensionless parameter a == h/(kBTcOTB). The strength for potential scattering 
n 
H is characterized by parameter h/(kBTCOTtr) = 10000.0, and that for the spin-orbit scattering is by 
~. h/(kBTcOTso ) = 1000.0; the sample thickness is d = 90.0 h/PF, where PF is the Fermi momentum; 

the impurity gyromagnetic ratio is chosen to be g8 = 2.0; and the typical scale of the exchange energy 
U2 in Eq. (3b) is taken to be EF /7.5, where EF is the Fermi energy. 

Fig. 2 - Critical current vs. (parallel) magnetic field at several values of temperature, with the 
strength of the exchange scattering set to be a = 0.5 (corresponding to the solid line in Fig. 1), and 
all other parameters being the same as used in Fig. 1. 

and then maximize j(u) with respect to u. In the previous section, we have seen that, over 
a certain range of magnetic impurity concentrations, Tc displays an upturn with field at 
small fields, but eventually decreases. Not surprisingly, our calculations show that such non
monotonic behavior is also reflected in the critical current. 

Perhaps more interestingly, however, we have also found that for small concentrations of 
magnetic impurities, although the critical temperature displays no non-monotonicity with the 
field, the critical current does exhibit non-monotonicity, at least for lower temperatures. This 
phenomenon, which is exemplified in Fig. 2, sets magnetic impurities apart from other de
pairing mechanisms. The reason why the critical current shows non-monotonicity more readily 
than the critical temperature does is that the former can be measured at lower temperatures, 
at which the impurities are more strongly polarized by the field. 

C Conclusion and outlook. - We address the issue of superconductivity, allowing for the 
C simultaneous effects of magnetic fields and magnetic impurity scattering, as well as spin-orbit 
H 
~ impurity scattering. In particular, we investigate the outcome of the two competing roles 
:> that the magnetic field plays: first as a quencher of magnetic impurity pair-breaking, and 
g second as pair-breaker in its own right. Thus, although sufficiently strong magnetic fields 
5 inevitably destroy superconductivity, the interplay between its two effects can, at lower field-
H strengths, lead to the enhancement of superconductivity, as first predicted by Kharitonov 
~ and Feigel'man via an analysis of the superconducting transition temperature. In the present 
b Letter, we adopt the Eilenberger-Usadel semiclassical approach, and are thus able to recover 
~ the results of Kharitonov and Feigel 'man, which concern the temperature at which the normal 
R state becomes unstable with respect to the formation of superconductivity; but we are also 
~. able to address the properties of the superconducting state itself. In particular, our approach 
rt 

allows us to compute the critical current and specifically, its dependence on magnetic field 
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and temperature. 
We have found that any non-monotonicity in the field-dependence of the critical temper

ature is always accompanied by the non-monotonicity of the field-dependence of the critical 
current. However, we have also found that for a wide range of physically reasonable values 
of the parameters the critical current exhibits non-monotonic behavior with field at lower 
temperatures, even though there is no such behavior in the critical temperature. 

Especially for small samples, for which thermal fluctuations can smear the transition to 
the superconducting state over a rather broad range of temperatures, the critical current is 
expected to provide a more robust signature of the enhancement of superconductivity, as 
it can be measured at arbitrarily low temperatures. In addition, the critical currents can be 
measured over a range of temperatures, and can thus provide rather stringent tests of any the
oretical models. Recent experiments measuring the critical temperatures and critical currents 
of superconducting MoGe and Nb nan ow ires show behavior consistent with the predictions of 
the present Letter, inasmuch as they display monotonically varying critical temperatures but 
non-monotonically varying critical currents [8]. 
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