
2009 15th IEEE Symposium on Asynchronous Circuits and Systems

C h a ra c te riz a tio n o f A sy n c h ro n o u s T em p la tes
fo r In te g ra tio n in to C lo ck ed C A D F lo w s

Kenneth S. Stevens, Yang Xu, and Vikas Vij
Electrical and Com puter Engineering

U niversity o f Utah

Abstract—Asynchronous circuit design can result in substantial
benefits of reduced power, improved performance, and high
modularity. However, asynchronous design styles are largely
incompatible with clocked CAD, which has prevented wide-scale
adoption. The key incompatibility is timing. Thus most commer
cial work relies on custom CAD or untimed delay-insensitive
design methodologies. This paper proposes a new methodology,
based on formal verification and relative timing, to create and
prove correct necessary constraints to support asynchronous
design with traditional clocked CAD. These constraints support
timing driven synthesis, place and route, and behavior and timing
validation of fully asynchronous designs using traditional clocked
CAD flows. This flow is demonstrated through a simple example
pipeline in IBM’s 65nm process showing the ability to retarget
the design for improved power and performance.

I. I n t r o d u c t io n

Two factors have driven a m ajor shift in the sem iconductor
industry as a result o f the ever decreasing feature size o f deep
subm icron technology. First, pow er has em erged as a prim ary
m etric for all designs, w hether they are are hand held devices
or desktop machines. Second, the exponential increase in the
num ber and perform ance of transistors on our chips has grown
to the point w here m odularity and design reuse is mandatory,
and efficient global synchronous clocking throughout the chip
is expensive in term s pow er and design time.

M odular design blocks are easier to integrate, and can
be m ore pow er efficient if they operate at variable or
local optim um s using independent frequencies. C urrent trends
clearly favor asynchronous design: netw orks o f heterogeneous
cores that are locally optim ized for pow er and cycle time.
D ue to these factors the International Technology Roadm ap
for Sem iconductors predicts that 20% o f designs w ill be
driven by h a n d sh a ke c lo ck in g in 2012, rising to 40% by 2020
[16]. Exam ple designs that em ploy such methods have shown
substantial im provem ents in power, perform ance, and latency
[23], [18].

H andshake clocking relies on asynchronous controllers to
sequence a traditional “clocked” data pipeline. The formal
handshake protocols provide the requisite flexibility in fre
quency and sim plicity o f m odular interfacing. Unfortunately,
integrating handshake clocking w ith traditional clocked data
pipelines has proven problem atic [10], [21]. In practice, the
radical and disruptive paradigm shift to fully asynchronous
design has been unsuccessfully attem pted for years. General
adoption as predicted in the ITRS w ill be unlikely to occur
w ithout a new approach that supports traditional CA D flows

and can be used by designers trained in clocked m ethodolo
gies. W e view the difference in tim ing m ethodologies as the
prim ary im pedim ent to exploiting traditional clocked CA D and
im plem enting handshake clocked designs.

This paper reports on a m ethodology, based on formal
verification and relative tim ing, that supports tim ing driven
synthesis, physical design, and pre- and post-layout tim ing
validation o f handshake clocked designs using traditional
clocked CAD. This approach enables the general adoption of
asynchronous or “handshake clocked” circuits in the traditional
clocked flow. This new flow consists o f fully characterizing the
asynchronous handshake clocking circuits as desig n tem pla tes
that replace the clock tree in a traditional clock design.

II. B a c k g r o u n d

A. R e la ted W ork

The path to general adoption o f a disruptive technology
such as asynchronous circuit design is fraught w ith difficulty
and challenge. o n e o f the prim ary roadblocks is the CAD
flow [21], [10]. This poses three problem s for asynchronous
design. First, clocked C A D flows are in general incom patible
w ith seq u en tia l asynchronous design. Second, clocked CAD
tools are in general m ore capable than their asynchronous
cousins. Third, there is a general level o f distrust in the ability
to correctly and robustly design com m ercial asynchronous
circuits. The ability to adapt clocked CAD and design flows
to asynchronous design, and to base asynchronous designs on
form al proofs o f correctness, are enabling approaches that can
greatly m itigate the adoption o f asynchronous circuits by the
general design community.

R ecent research in the asynchronous com m unity has begun
to achieve m ore industrial acceptance and broader use of
asynchronous designs by focusing on addressing the CAD
challenge. This has been achieved by integrating and adopting
clocked CAD w here advantageous. The goals o f this w ork are
no different. However, this w ork stands out from the rest on
two prim ary fronts. First, the m ethods used in this approach are
com pletely general to any asynchronous design, and applies
to bundled data as well as delay-insensitive designs; to any
protocol, be it two or four phase, dual rail, or single track; and
to any design flow, including a desynchronization approach or
full custom asynchronous design. Second, this approach is not
beholden to a program m ing language; we assum e adoption of
today 's de facto standard o f Verilog.

1522-8681/09 $25.00 © 2009 IEEE
DOI 10.1109/ASYNC.2009.26

151 @ computer ^

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

R elated w ork that is probably the m ost technologically
advanced and com m ercially successful comes from Handshake
Solutions [12]. A com plete synthesis, layout, and sign-off
solution for both C adence and Synopsys based design flows
has been developed [6], and includes support for autom atic
test generation [22]. Constraints and scripts from a higher
level language are generated that are supported by the clocked
CAD. U nfortunately there is little public docum entation on
the algorithm s or design m ethodology used to generate the
constraints and im plem ent this flow. The flow is also tightly
coupled w ith their proprietary program m ing language. A nother
com m ercial tool flow based on clocked C A D is from Theseus
Logic [5], [9]. This flow supports Verilog design descriptions
and translates the design to quasi delay-insensitive null con
vention logic [8]. The Theseus flow does not directly support
bundled-data or other asynchronous methodologies.

D esynchronization is another design approach that uses
clocked CA D (as well as starting w ith a clocked design) to
produce asynchronous circuits [4], [1]. There are a num ber
of current research and industrial efforts focusing on this
prom ising flow. D esynchronization supports Verilog and uses a
tem plate based approach, and algorithm s have been developed
for test generation [14]. However, this flow does not support
general asynchronous design, largely due to the low num ber
of asynchronous tem plates and custom tools.

There are several other related research efforts to utilize
clocked CAD. In one example, an autom ated m ethod was
developed for interconnect network, but it does not support
matching delays and bundled data [13].

B. G en era lly A p p lic a b ility

A key difference betw een the approach presented here and
other w ork is the generality o f the solutions. This work
supports designs from clocked, to standard asynchronous
protocols, to pulse based [15], to wave pipelining designs [24].
This technology enables asynchronous designs to be specified
in industry standard representations such as Verilog, supports
synthesis w ith ASIC tools such as D esign Compiler, uses
tim ing driven place and route tools such as IC Com piler or
M agm a, and can be validated for correctness using Calibre and
PrimeTim e. This new m ethod w hen m ature w ill not require
deep expertise in asynchronous theory or circuits design skills.
D esynchronization is an exam ple o f an approach to develop
handshake clocked designs [4], [1]. The m ethod presented in
this paper supports desynchronization but is not lim ited to such
a m ethodology; indeed it can be applied to any asynchronous
design.

The key to the generality is the form al approach. Form al
verification (FV) is orthogonal to any particular synthesis
engine or design style. Thus all tim ing methodologies, from
clocked to delay insensitive (D I), are supported. H ence this
m ethodology frees designers from the constraints o f any asyn
chronous design style (e.g. D I) or custom design tool flows.
The verification utilizes relative tim ing (RT), w hich also sup
ports all classes o f tim ing, from clocked to fully DI [20]. This
is im plem ented as follows. Each sequential tem plate (clocked

elk* ^ d a ta -< c lk i+ 1 + m

timing
assumptions

absolute
margins

spec.
design

RT *
RT-FV constr. ' STA----- ►

+ signoff

initial
conditions

Fig. 1. Formal Relative Timing Generation and Mapping to static timing
analysis (STA) Tools

or asynchronous) starts w ith a form al specification. The timing
constraints that m ust hold, be they quasi delay-insensitive forks
or m atched bundled data delays, are all form ally derived as
relative tim ing constraints. These RT constraints are proven
correct for the system behavior by the specification. The RT
constraints are then m apped to constraints that the clocked
CAD can use for tim ing driven design optim izations (typically
sd c constraints). This results in a design that is com pletely
general and provably correct if all the constraints hold.

The proposed asynchronous design flow is sim ilar to the
traditional clocked design flow. C locked design has focused its
design m ethodology around a single characterized sequential
circuit: the flip-flop. This w ork extends design to directly
support any sequential or asynchronous module in the design
flow. The asynchronous design modules, such as the flop,
w ill be em bodied in c ircu it tem p la te s that have been fully
characterized w ith FV and relative tim ing, and can support
handshake clocking protocols as well as global clocking. These
tem plates are then used in the design.

W hile relative tim ing is the foundation of this approach
giving it form al robustness and flexibility, other algorithms
are necessary to com pletely autom ate this flow. A lgorithm s to
support the tem plates in ASIC CAD include cycle breaking
to apply tim ing graphs that are DAGs, synthesis directives
to ensure the hazard properties o f the tem plates are not
modified, and conversion o f the tem plate tim ing constraints
into sd c form at for support by ASIC tools. Templates w ill be
designed that support the conversion o f clocked design into
asynchronous “handshake clocking” . This full flow w ill be
presented through the sim ple exam ple design.

C. F orm al T im ing a n d Verification

Relative tim ing can accurately capture, model, and validate
the relationship betw een heterogeneous tim ing and behavior
in protocols and general circuit structures, including sequen
tial asynchronous designs. First, tim ing constraints are m ade
exp lic it in designs, rather than use the traditional im plicit rep
resentations such as a clock frequency. This allows designers
and tools to specify, understand im plications, and m anipulate
the tim ing of far m ore general circuit structures and advanced
clocking techniques. Secondly, tim ing constraints that affect

►
►

152

A binary relation LC C P x P over agents is a logic con
formation between implementation I and specification S if
(I, S) £ LC then V a £ Act and V fi £ A U { t} (outputs
and t) and V 7 £ A (inputs)
(i) Whenever S -^S ' then

3 I ' such that I ==I ' and (I ', S ') £LC
(ii) Whenever I i I ' then

3 S ' such that S = S ' and (I ', S') £ LC
(iii) Whenever I i I ' and S = then

3 S ' such that S==S' and (I ', S') £ LC____________

Fig. 2. Bisimilar Logic Conformance Relationship

the perform ance and correctness o f a circuit are transform ed
into log ica l constraints, rather than into real-valued variables
or delay ranges. A com pact representation has been devel
oped using point-of-divergence (PO D) to point-of-convergence
(POD) constraints. The PO D/POC (pod ^ poc 0 ^ poci)
representation enables m ore efficient search and verification
algorithm s to be developed w hich greatly enhances the ability
to com bine tim ing w ith optim ization, physical placem ent, and
validation design tools [17]. This approach alters the way
in w hich tim ing is represented by designers and CAD tools,
and has been shown to provide significant pow er-perform ance
advantages in som e circuit designs [18], [2 0].

Form al verification and relative tim ing is the key technology
that perm its tem plates to be characterized in a w ay that is
com patible w ith clocked CAD. The form al verification uses
m odel checking. The representation and m ethod o f generating
RT constraints is shown in Fig. 1. This w ork applies a
conform ance relation betw een the sp ec ifica tio n (spec.) and
im p lem en ta tion (design) based on the bisim ulation confor
m ance relation shown in Fig. 2. The form al verification tool
(RT-FV) proves correctness o f an im plem entation against a
specification. Timing constraints are represented as logical
expressions that m ake error states unreachable. A set of
constraints can be autom atically generated that restrict the
tim ing o f the im plem entation such that it conform s to the
specification [7]. Now tim ing is fully represented in the logical
and behavioral domain. The constraints are then m apped
to a form at acceptable by a static tim ing analysis (STA)
engine, synthesis engine, or place and route engine, such as
PrimeTim e, D esign Compiler, or SoC encounter.

D. Tem plate B a se d M eth o d o lo g y

R ather than com pete in the CAD dom ain and develop fully
independent flows, one can apply com m ercial clocked CAD
and its associated algorithm s as broadly as possible, and
restrict custom tools to the necessary asynchronous circuit
and verification problem s. This approach, unlike purely asyn
chronous design, is able to leverage the significant industrial
investm ent in synchronous design tools. Such a flow is sup
ported in this paper based on “design tem plates” w hich are
the asynchronous sequential com ponents o f a design. I f this
approach is successful and adopted by industry, designers w ill
be able to build asynchronous system s based on the m erits of

the architecture, such as perform ance and power.
This approach to asynchronous design w ith clocked tools

thus has two facets: (a) the design and characterization of the
asynchronous tem plates, and (b) traditional system design that
employs the asynchronous tem plates. The key to making this
happen is to develop ch a ra c te rized tem pla tes that can be m a
nipulated and optim ized w hen inserted into the clocked CAD
flows. The design and characterization o f the asynchronous
tem plates requires substantial expertise in asynchronous design
and verification. However, once the tem plates have been
com pleted, they can be inserted into a design flow by clocked
designers w ith little expertise in asynchronous design. Thus
a bulk o f the asynchronous circuit and CAD are restricted to
off-line library design and characterization.

III. F o r m a l C h a r a c t e r iz a t io n F l o w

The characterization o f an asynchronous tem plate is som e
w hat com plicated, and w ill be dem onstrated on the design
o f a linear pipeline controller LC. This tem plate is part o f a
simple design exam ple shown in Fig. 3 that w ill be used in
the rem ainder o f this paper. There are only two asynchronous
tem plates in this design, the linear controller (LC) and the Fork
Join tem plate (F/J). The rest o f the design is synthesized using
norm al clocked tool flows. We have designed a sm all m icro
processor using this flow, and this exam ple is a conceptual
piece o f such a design that calculates the function x 2 + 3x.

A. B u n d le d D a ta w ith C lo cked D a ta p a th

B undled data asynchronous designs are partitioned into two
signal classes: the datapath and control. The datapath in Fig. 3
consist o f the registers (R) and oval boxes im plem enting
arithm etic functions. The registers are im plem ented as either
latches or flip-flops. This datapath is synthesized using D esign
Com piler based on frequency param eters provided by the
user. The rest o f the design is the control logic - w hich is
im plem ented by the clock distribution logic in clocked design.
To create a “handshake clocked” design, the global clock is
replaced w ith the control logic. In this case there are four
instantiations o f the linear controller (LC) and two o f the fork
jo in (F/J) module.

The responsibility o f the handshake clocking is to m aintain
the tim ing and functional relationship betw een data in adjacent
pipeline stages, im plem enting stalls when necessary. This is
achieved by im plem enting a handshake protocol in the LC
blocks. Extra delay m ay be needed betw een the control blocks
so that the clock signal does not arrive at the flop before the
input data is valid. H ence a m atched delay will be im plem ented
betw een the data banks i and i + 1 on the control path. For
example, the delay from r 0 to r 00 m ust m atch the x 2 datapath
from R 0_q to the input o f R 10.

B. A syn ch ro n o u s Tem plate D esign

N um erous handshake protocols and asynchronous circuit
designs are feasible realizations for linear pipelines. The
protocol and circuit design for each tem plate w ill have a large
im pact on the design in three ways. First, the tem plates directly

153

Fig. 3. Example design: a simple ASIC mathematical pipeline segment computing dout = x 2 + 3x

la

ck

LEFT = l r . c 1 . l a . c 2 . l r . l a . L E F T
R IG HT = c 1 . r r . c 2 . r a . r r . r a .R I G H T
SPEC = (LEFT | RIGHT) \{ c1, c2 }

Fig. 5. CCS specification of linear controller

Fig. 4. LC circuit implementation

im pact the perform ance and pow er based on the com plexity
o f the design and the concurrency o f the protocol. Second,
the characterization o f the tem plate critically depends on the
protocol and im plem entation. Finally, the correctness o f the
system , particularly w ith cyclic pipelines, w ill depend on
the protocols and storage elem ents em ployed [2]. H ence our
m ethod supports all tem plates.

The design used for the linear controller in this exam ple
is shown in Fig. 4. This im plem ents the four-cycle return to
zero handshake protocol shown in Fig. 5 and 6 as CCS and
Petri-N et specifications [11], [3]. Our CAD tools support both
representations. N ote that this is a tim ed protocol (the dashed
arcs in Fig. 6 constrain inputs), sim ilar to a burst-m ode spec
ification. Such a protocol is chosen for this exam ple because
it illustrates the requirem ent o f additional fundam ental mode
tim ing constraints to guarantee correct im plem entation in a
design, as com pared to delay-insensitive or speed-independent
designs. The result o f m apping this design to a Verilog module
in the Artisan 65nm IBM 10sf library is shown in Fig. 7.

C. C lo cked C A D Tool C onstra in ts

Following are the sd c constraints supported by com m ercial
tools that are used in this asynchronous tem plate characteriza
tion. All o f these com m ands affect the tim ing and pow er of
the design.

1) set_size_only
2) set_dont_touch
3) set_data_check
4) set_max_delay
5) set_m in_delay
6) set_disable_tim ing

Structural m odifications to a design m ay occur during
synthesis and place and route flows. These changes result
in optim izations such as rem oving back-to-back inverters,
com bining simple gates into a single com plex gate, or breaking

154

module linear_control (lr, la, rr, ra, ck, rst);
input lr, ra, rst;
output la, rr, ck;
INVX1A12TH lc0 (.A(ra), .Y(ra_));
AOI32X1A12TH lc1 (.A0(lr), .A1(ra), .A2(y), .B0(lr), .B1(la), .Y(laJ);
INVX1A12TH lc2 (.A(la_), .Y(la));
AOI32X1A12TH lc3 (.A0(ra_), .A1(lr), .A2(y), .B0(ra), .B1(rr), .Y(rr));
NOR2X1A12TH lc4 (.A(rr), .B(rst), .Y(rr));
c element lc5 (.A(la), .B(rr), .Y(y_));
INVX1A12TH lc6 (.A(la_), .Y(ck));

endmodule // linear_control

set_size_only -all_instances { */lc1 }
set_size_only -all_instances { */lc3 }
set_size_only -all_instances { */lc4 }
set_size_only -all_instances { */lc5 }

Fig. 8. Size only constraints for the circuit
of Fig. 7

Fig. 7. Verilog implementation in the 65nm Artisan library

a com plex gate into a set o f sim pler gates. Constraints are used
to prevent this from occurring in the asynchronous blocks,
because it could result in hazards or substantially m odify
necessary delay properties o f the circuit. The set_size_only
constraint prevents the tool from structurally m odifying the
cell but allows the tools to optim ize the drive strength of
the cell for pow er and delay optimization. The set_dont_touch
constraint disallows the tool from modifying the cell in any
manner. These com m ands take as argum ents the cell instance
names. The following com m and disallows structural modifica
tion o f all lc3 instances (the AOI gate) in the exam ple design.

set_size_only -a ll_ in stan ces { */lc3 }

Traditionally the tools use clock dom ains to optim ize cir
cuits for pow er and perform ance. They understand setup and
hold constraints into flops and latches. W hen the sequentials
are driven from a sim ple clock dom ain the tools can optim ize
the com binational logic for the desired frequency. All o f
these tools operate on directed acyclic graphs, or DAGs. If
the tim ing graphs have cycles, algorithm s in the CAD tools
are called to break the cycles. A user can m anually define
how to break the tim ing graphs w ith the set_disable_tim ing
constraint. This w ill rem ove tim ing arc from a prim itive gate
(such as a NAND gate) from the specified input to the specified
output. By rem oving the tim ing arcs in the prim itive gates
a m anual instance o f the tim ing graph, and how signals
propagate through the circuit, can be defined. This is essential
for sequential circuits that use handshaking since they always
consist o f cyclical tim ing paths. This com m and takes a -from
pin nam e, a -to pin nam e and a list o f cells. The following sdc
com m and disables the tim ing arc from y_ to rr_ through one
of the AOI gates in all instantiations o f the linear controller
in the exam ple design.

X constrained
“to” signal

set_disable_tim ing -from A2 -to Y \
f in d -h ie r c e ll *lc3]

setupN hold
related

“from” signal

Fig. 9. The set_data_check command

set_m in_delay comm and. This com m and has the side effect
o f breaking the tim ing graph at the two end points o f the
constraint (sim ilar to the set_disable_tim ing constraint). This
com m and has several options, but basically takes a -from set
o f path start points, a -through set o f points the path m ust pass
through, and a -to set o f path end points, and the target delay
value. Relative tim ing constraints can be checked using a pair
o f com m ands as follows.

set_max_delay 1.7

set_min_delay 1.7

-from [get_pins R0_reg_latch*/Q] \
-to [get_pins R10_reg_latch*/D]
-rise_from [get_clocks tk 0 /lr] \
-rise_ to [get_pins tk10_lc1/A0]

By default, the m axim um and m inim um path delays are
calculated by considering the clock edge times. Extensions
to this flow have been im plem ented in the tools to override
tim ing values, support asynchronous signaling, and tim ing
dom ains that are not part o f a fixed clock domain. These
are the set_max_delay, set_min_delay, and set_data_check
commands.

One can override the tim ing constraints in a clocked dom ain
w ith a specific tim e value by using the set_m ax_delay or

The first constraint w ill m ake all the paths from the output of
register R0 to the input o f register R10 have a m axim um delay
of 1.7ns in our exam ple design. The second will constrain the
m inim um delay path on the control path to also be 1 .7 ns.
This path is from the lr input o f the controller associated w ith
register R0 to the input o f the linear controller that clocks
register R10.

The set_data_check com m and is used to check setup or hold
constraints betw een two unclocked data signals. The -from
signal is considered to be the “clock” signal (called related)
and the -to signal is considered to be data signal (called the
constrained signal). This perform s a the setup check and can
be given a margin. This is clarified in Fig. 9. Given a relative
tim ing constraint, the relative ordering o f two signals can be
m apped into -from and -to constraints w ith a slack tim e. The
com m on point o f divergence can be given w ith the -clock
com m and, as shown:

set_data_check -clock [get_clocks tk 0 /lr] \
-fa ll_ from [get_pins tk0_lc3/A2] \

- r ise _ to [get_pins tk0_lc3/B1] -setup 0.05

This exam ple im plem ents the constraint lr j ^ rr j ^ lr j
where lr j is the POD specified by -clock, rr j is the -rise_to
signal, and lr j is the -fall_from signal. This com m and correctly

155

checks the m axim um delay for the constrained -rise_to signal
against the m inim um delay for the related -fall_from signal,
w ith a m argin of 50ps.

The com bination o f constraints allow us to utilize the
synthesis, p lace and route, and tim ing tools to optim ize and
validate the tim ing o f asynchronous designs

D. Tem plate C hara c ter iza tio n

This section describes the detailed flow required to
characterized the LC pipeline tem plate.

1) M o d e l G enera tion: The first step in tem plate character
ization is converting the Verilog m odule (Fig. 7) into an
equivalent form al representation for verification by m odel
checking. This transform ation is autom ated to aid in correct
ness and productivity. The CAD tool takes three inputs: (i)
the Verilog design o f the tem plate, (ii) a m apping o f Verilog
gates to form al sem i-m odular description of each gate in CCS,
and (iii) a functional description o f the gates in the target
technology (Fig. 10). This code assigns the inputs o f the
module to boolean values (0 for lr and ra, 1 for rst) and
simulates the design to calculate the initial voltages for each
node in the design. The node values are used to select the
correct initial state for each form al CCS module. CCS has
been selected for verification because it form ally supports
verification of nondeterm inism (arbiters and synchronizers)
through the sem antics o f the internal t transitions, giving
additional applicability o f the flows.

The designer m ust then create a com plete form al specifi
cation o f the behavior o f the module. This is usually done
during the design and synthesis procedure. Fig. 5 and 6 show
two equivalent specifications for LC that our tools currently
support. This w ork does not use an assum es-guarantees model,
but rather one that fully specifies the input and output signal
behavior as can be seen w ith these specifications.

2) V erification a n d C o n stra in t G enera tion: The im plem en
tation is then verified against the specification using m odel
checking. The verification flow is also used to generate the
tim ing constraints for this design. A n untim ed sem i-m odular
m odel checking engine using the bisim ulation based confor
m ance relation o f Fig. 2 is em ployed [19]. The initial verifica
tion em ploys speed independence semantics. This traditionally
w ill result in num erous violations, since alm ost every circuit
requires some tim ing assum ptions, many due to technology
m apping. For LC seven errors occur. These violations m ust
be rem oved through relative tim ing constraints that reduce the
reachability graph of the im plem entation. Four local tim ing
constraints are sufficient to m ake the im plem entation conform
to the specification, including: l r j ^ y _ j ^ r r j and
l r j ^ y_ j ^ la j . The first constraint requires that the cycle
in Fig. 4 from l r j to y _ j is faster than the cycle from lr j
to l a | to la j to la j . U pon applying these RT constraints the
design verifies as conform ant to the specification. This first
speed-independent verification run produces the key tim ing
constraints for tim ing driven sizing and place and route.

A second verification run is required to ensure that tim ing
constraints o f the protocol are correctly generated. The pro

tocol in this exam ple is a tim ed protocol. This protocol has
burst-m ode properties w here the outputs la and rr m ust both
occur before either o f their related causal inputs lr and ra. A
pipeline of three controllers in series are verified to generate
the protocol constraints betw een modules. This results in
two additional fundam ental m ode RT constraints, such as the
constraint l r j ^ r r j ^ lr j . This requires that the rr signal be
driven high before the l r j to la j to l r j cycle occurs. These are
also key constraints that m ust be enforced during the timing
driven sizing and place and route o f the design.

A th ird hierarchical verification is run on tem plate speci
fications and the datapath to generate any tim ing constraints
betw een the handshake clocking and the datapath logic. W hen
synthesizing bundled data designs, these runs will create the
m atched delay constraints betw een datapath and control. This
produces a num ber o f constraints such as l r j ^ din ^ la j.
This ensures that the m inim um relative delay through the
control path is larger than the m axim um delay in the datapath.
These constraints are necessary to autom atically synthesize the
matching delays necessary in the pipeline.

The design is finally verified under delay-insensitive con
ditions where every w ire segm ent outside o f a native library
gate is given an unbounded delay. The DI m odel norm ally
generates a copious num ber o f constraints. The fully DI LC
design adds 2,920,701 violations w ith 967,777 states. A set of
eleven m ore tim ing constraints rem ove 1,877 transitions and
reduce the design to 2,292 states w hich are conform ant to the
original specification. This concludes the verification aspect of
tem plate characterization.

3) R T C onversion to sd c C onstra in ts: The RT constraints
from verification are then converted into two classes o f sd c
constraints: set_data_check constraints and set_max_delay,
set_m in_delay constraints. These constraints control tim ing
driven sizing, synthesis, and place and route o f the design.
C locked CAD tools do a m arvelous job o f tim ing driven design
w hen using the m ax and m in delay constraints. However, these
constraints break the tim ing graphs at the end points o f the
paths, and are som ewhat particular about w hat can be used as
an end point. The data check constraints don’t cut the tim ing
graphs and are not nearly as particular about the end points,
but can not be relied upon to perform tim ing driven synthesis
(such as generating delay elem ents for m in-delay constraints).
As such a hybrid set o f constraints are used to im prove the
quality and run-tim e of the tools.

The verification runs betw een the specification and different
im plem entation models result in three sets o f data check
constraints as shown in Fig. 12. The s d c constraints are
assum ed to lie inside clock domains. The clock path m ust be
defined to be on the point-of-divergence in the RT constraints.
In this design the clock dom ains are propagated from lr signal.
The sd c constraints are then m apped to paths that converge
on two pins o f a single gate instance. For example, the first
sd c constraint o f Fig. 12 cam e from l r j ^ y _ j ^ la j . This
constraint thus ensures the A2 and B1 pins on the AOI gate
instance lc1 in Fig. 7 (that map to the signals y_ and la) occur
in the correct order.

156

CCS specification functional descriptions:
function NAND0001 4 d not(a * b * c)
function NOR001 3 c not (a + b)
function A2B1O2I0001 7 d not((not(a)*b) + c)
function O12A2I0001 6 d not(a * (b + c))

Gate library to CCS specification mapping:
module artisan65nm2ccs ();

NAND3X2A12TR NAND0001 (.A(a), .B(b), .C(c), .Y(d));
NOR2X2A12TR NOR001 (.A(a), .B(b), .Y(c));
AOI2XB1X2A12TR A2B1O2I0001 (.A0(b), .A1N(a), .B0(c), .Y(d));
OAI21X2A12TR O12A2I0001 (.A0(b), .A1(c), .B0(a), .Y(d));

endmodule // artisan6 5nm2ccs

Fig. 10. Snippets of the functional cell representation and Verilog to CCS specification mapping. The second and third columns in the functional description
define the start of signal voltage state section of gate name, and the name of the output. The cell to spec mapping is a Verilog module that maps the design
(artisan cell) to an instance (the CCS specification).

agent NAND0 01 = a.NANDa01 + b.NAND0b1 ;
agent NANDaOl = a.NAND001 + b.NANDabl ;
agent NAND0b1 = a.NANDabl + b.NAND0 01 ;
agent NANDabl = 'c.NANDab0;
agent NANDab0 = a.NAND0b0 + b.NANDa0 0 ;
agent NAND0b0 = b.NAND0 0 0 + 'c.NAND0b1;
agent NANDa0 0 = a.NAND000 + 'c.NANDa01;
agent NAND0 0 0 = a.NANDa0 0 + b.NAND0b0 + 'c.NAND001;

Fig. 11. The semi-modular specification of a 2-input NAND gate. Inputs
that would disable an output are not permitted. This creates semi-modular
computation interference errors in the verification. The state mapped to the
logic level of the inputs as 0 or name of the pin (e.g. {0,a}). The output is
specified as its logic level.

The speed-independent verification constraints are key con
straints that m ust be optim ized through the CAD tools for
tim ing driven place and route to ensure correct tim ing in
the design. For LC these constraints ensure that the tim ing
o f the feedback for the local state variable through the C-
elem ent holds. The next set relates to the verification o f three
p ipelined protocols that exposed the constraints due to the
tim ed protocol. These constraints do not need to be included
in the synthesis and place and route flows because o f the
m agnitude o f the slack betw een the two race paths. The late
arriving path for these delays goes through m ultiple LC cells
and potentially delay elem ents w hereas the fast path is an
internal feedback in the LC cell. The final set o f constraints
w ere generated from the verification betw een the specification
and the delay-insensitive im plem entation model. These w ire
forks constraints are not norm ally used for synthesis, but are
validated post-layout.

The final set o f constraints use m ax and m in delay con
straints, as illustrated in Fig. 14. These are derived from the
verification o f the pipelined protocol w ith datapath models.
Each POD constraint is broken into a set o f constraints - one
for the fast path and a pair o f constraints for the slow path.
The m inim um delay o f the fast path through the datapath logic
is constrained w ith a m ax delay constraint equaling the cycle
tim e m inus setup and hold tim es o f the logic ($clk_period).
The slow clock path is constrained w ith a m in-delay constraint,
w hich creates the delay elem ent if necessary ($req_del_m in).
To ensure a tight bound for this constraint, a m ax delay that
is slightly larger than the min delay ($req_del_m ax) is also
applied to this path. The constraint shown in this exam ple

ensures that the data through the x 2 logic arrives before the
clock. D elay elem ents w ill be added in the control path.

W hile only a portion o f the constraints are used in the
synthesis flow, all are used for post-layout validation, including
the D I constraints. The correct application o f the data check
constraints m ust be checked w ith report_tim ing com m ands as
shown in Fig. 13.

4) D A G T im ing g ra p h genera tion : The tim ing driven syn
thesis and optim ization algorithm s in clocked CAD all work
on directed acyclic graphs (DAGs). Further, m any o f these
algorithm s are restricted to paths defined as “clocks” . M ost
asynchronous tem plates are sequential designs w ith feedback,
w hich can be seen by exam ining Fig. 4. The handshake
protocols them selves produce cycles (Fig. 3). Im portant paths
through these cycles m ust be defined as clocks and broken
into DAGs w ithout breaking essential tim ing paths.

Loop breaking algorithm s exist in the clocked CAD. How
ever, the com m ercial software cuts the cycles in such a way
that many o f the necessary tim ing paths are broken. This
results in constraints that cannot be applied to the design,
poor sizing and power, and potential failures in the design.
Integrating the generation of co rrec t DAGs through cycle
cutting in the im plem entation is therefore an essential part o f
the library characterization. To ensure that all o f the constraints
are correctly applied to the design, a report_tim ing com m and
should be added for every constraint as shown in Fig. 13.
These loop cutting constraints for LC are shown in Fig. 15.

New graph cutting algorithm s need to be developed to
autom atically define “clock” paths the algorithm s can trace,
and ensure that all the constraints can are applied in the
synthesis and validation runs. This approach w ould ensure the
point-of-divergence o f the RT constraints and all subsequent
paths to the points-of-convergence are not broken. Even w ith
optim al algorithm s a single set o f cuts m ight not be possible,
and m ultiple tool runs m ay be necessary.

5) P ro tec tin g D esig n F idelity: A final set o f constraints are
necessary to ensure that the characterization process rem ains
valid through the tool flows. M any parts o f the flow, including
the synthesis and place and route tools, can optim ize the logic
by rem apping gates. W hile this in general can im prove the
design, m odifications to sequential asynchronous controllers

157

speed-independent design constraints:
set_data_check -fall_from */lc1/A2 -fall_to */lc1/B1 -setup $race_margin
set_data_check -fall_from */lc3/A2 -falLto */lc3/B1 -setup $race_margin

external protocol constraints:
set_data_check -fall_from */lc1/A1 -rise_to */lc1/B1 -setup 0
set_data_check -fall_from */lc3/A1 -rise_to */lc3/B1 -setup 0
set_data_check -fall_from */lc5/A -rise_to */lc5/Y -setup 0
set_data_check -fall_from */lc5/B -rise_to */lc5/Y -setup 0

wire fork constraints:
set_data_check -rise_from */lc3/A2 -falLto */lc3/A1 -setup 0
set_data_check -rise_from */lc1/A2 -falLto */lc1/A1 -setup 0
set_data_check -fall_from */lc4/A -falLto */lc4/Y -setup 0

report
report
report
report
report
report

timing
timing
timing
timing
timing
timing

-delay max
-delay max
-delay max
-delay max
-delay max
-delay max

-rise_to */lc1/B1
-rise_to */lc3/B1
-rise_to */lc5/Y
■fall_to */lc3/A0
■fall_to */lc1/A1
fall to */lc4/Y

Fig. 13. Report statements to validate the timing
constraints in Fig. 12

Fig. 12. Timing constraints of implementation of Fig. 7

Latch timing constraints:
set_max_delay $clk_period -from R0_reg/q -to R1_reg/d
set_min_delay $req_del_min -rise_from tk0/lr -rise_to tk10/lr
set_max_delay $req_del_max -rise_from tk0/lr -rise_to tk10/rr

Fig. 14. Protocol level constraints for the linear control template

breaking local cycles:
set_disable_timing -from A2 -to Y [find -hier cell *lc1]
set_disable_timing -from B1 -to Y [find -hier cell *lc1]
set_disable_timing -from A2 -to Y [find -hier cell *lc3]
set_disable_timing -from B1 -to Y [find -hier cell *lc3]

breaking handshake protocol cycles:
set_disable_timing -from A1 -to Y [find -hier cell *lc1]
set_disable_timing -from A1 -to Y [find -hier cell *lc3]
set_disable_timing -from B0 -to Y [find -hier cell *lc3]produce results that at best don’t m atch the verification results,

and at w orst produce non-functional logic due to hazards.
Applying the size_only property (Fig. 8) to all logic gates
ensures that they will not be logically modified through the
tool flows. This constraint allows the gates to be optim ally
sized in the tim ing driven pow er and perform ance optim ization
algorithms.

IV. D e s ig n E x a m p l e s

Fig. 3 shows a datapath used to illustrate synthesis, place
and route, and post-layout validation. The Verilog used to
synthesize this pipeline is shown in Fig. 16. In general, our
approach im poses the following requirem ents on an im ple
mentation:

1) Only fully characterized tem plates can be used in the
control path.

2) All paths in the handshake clocking m ust be point-to-
point betw een characterized tem plate modules.

3) N etw ork liveness requires com plem entary tem plate pairs
that im plem ent dual data steering fan-out and fan-in
operations.

M any tem plates im plem ent the com plem entary or dual op
eration through a sim ple structural m irroring o f the design. For
example, the Fork/Join tem plate in Fig. 17 will im plem ent a
fork operation; but when m irrored horizontally it im plem ents a
jo in operation o f two handshake paths. Thus a single tem plate
is used for either datapath forking or jo in ing operations.

The datapath in the exam ple contains branches and forks.
These m ust all be broken in the control path by correctly
inserting the handshake tem plates to ensure a point-to-point
netw ork connection. These elem ents m ust also be inserted in
a w ay that im plem ents com plem entary operations; every fork
in the datapath m ust be associated w ith a jo in , and so forth.

Fig. 15. Loop breaking constraints

V. R e su l t s

Twelve different versions o f the Verilog exam ple were
synthesized, sim ulated and evaluated in order to dem onstrate
the flexibility and advantages of this tool flow. The different
versions include (i) m apping the design to latches or flops,
(ii) using an incom plete set o f constraints, (iii) having various
frequencies for each pipeline stage, and (iv) applying tim e
borrowing to the latch design. A ll designs started w ith the
sam e behavioral m odule o f Fig. 16 w ith one exception - the
flop based designs required replacing the latch_active_high
m odule w ith a structural flop bank. A ll designs w ere syn
thesized, physically placed and routed, and sim ulated using
post-layout parasitics to generate delay and pow er results.

The reported results used the Artisan library for the IBM
65nm 10sf process using full layout and parasitic extraction.
D esign com piler was used for synthesis, M odelsim was used
for simulation, and SoC Encounter was used for place, route,
and parasitic extraction. The pow er and delay num bers used
sdf parasitic back annotation into the M odelsim . The pow er
num bers w ere generated using parasitic extraction and activity
factors from a sim ulation run by im porting a vcd file from
M odelsim into SoC Encounter. The sim ulation run exhaus
tively executing all input values from zero to 256 w hile also
validating functionality. Post layout tim ing was validated using
the full set o f constraints, including the D I w ire constraints,
using Prim eTim e w ith extracted parasitics.

Two delays are critical in these designs for tim ing driven
synthesis and place and route: the delay of the com binational
logic and the delay o f the control logic to ensure proper
storing o f the data. Each o f these delays can be independently

158

module toy (din, dout, lr, la, rr, ra, rst);
input lr, ra, rst; output la, rr; input [15:0] din; output [31:0] dout;
reg [31:0] R0, R10, R11, R2;

assign dout = R2_q;

always @(*) R0 = din;
linear_control tk0 (.ck(ck0), .lr(lr), .la(la), .rr(r0), .ra(a0), .rst(rst));
latch_active_high R0_reg (.d(R0), .clk(ck0), .q(R0_q));
bcast_fork bcf0 (.bi(r0),.bo0 (r00),.bo1(r0 1),.ji0 (a00),.ji1(a0 1),.jo(a0));
always @(*) R10 = R0_q * R0_q;
linear_control tk 10 (.ck(ck10), .lr(r00),.la(a00),.rr(r10),.ra(a10),.rst(rst));
latch_active_high R 10_reg (.d(R10), .clk(ck10), .q(R10_q));
always @(*) R11 = R0_q * 3;
linear_control tk 11 (.ck(ck1 1), .lr(r0 1),.la(a0 1),.rr(r1 1),.ra(a1 1),.rst(rst));
latch_active_high R 11_reg (.d(R1 1), .clk(ck11), .q(R11_q));
bcast_fork bcm0 (.bi(a1),.bo0 (a10),.bo1(a1 1),.ji0 (r10),.ji1(r1 1),.jo(r1));
always @(*) R2 = R 10_q + R 11_q;
linear_control tk2 (.ck(ck2), .lr(r1), .la(a1), .rr(rr), .ra(ra), .rst(rst));
latch_active_high R2_reg (.d(R2), .clk(ck2), .q(R2_q));

endmodule // toy

Fig. 16. The synthesized arithmetic Verilog for the example.

r0

a0

r 1

a 1

Fig. 17. Fork/Join Template

Flip-Flops Latches
ICS FCS ICS FCS

Avg. energy (nJ) 0.762 0.493 0.673 0.406
Avg. sw. energy 0.673 0.158 0.305 0.169
Avg. intrnl energy 0.440 0.308 0.343 0.212
Avg. leakge enrgy 0.031 0.028 0.025 0.025
Area (m m 2) 12,724 12,294 11,215 10,770
Datapath clk per. 2.0 2.0 2.0 2.0
Control delay 2.5 2.0 2.0 2.0

set for each pipeline stage. For all com parable designs, the
com binational logic betw een flops or latches had the same
target delay. However, the delay elem ent betw een control
logic m ay be sized differently based on the efficiency of
synthesizing the control logic as w ill be shown.

D ata m ust be valid before the rising edge of Ir into the
control logic for the LC protocol employed. N ote that for
efficient operation, a un id irec tio n a l delay betw een rr and Ir in
the pipeline is desired, w here the rising delay is large and the
falling delay is as small as possible. However, the scripts result
in the clocked CAD autom atically generating bidirectional
delays. Unfortunately, bidirectional delays result in over a
1 0 0 % delay overhead for protocols w here data is valid on
the rising edge of Ir. Efficient designs m ust em ploy different
protocols or unidirectional delays. However, this protocol
w orks w ell for our exam ple pipeline because it provides an
am ple tim e borrowing window. Tim e borrowing in the design
occurs in two forms. F irst, for the sim ple design exam ple (see
Fig. 3) the delay through the 16-bit m ultipliers o f the second
pipeline stage are m uch larger than the 32-bit adder delay in
the final stage. This allows the stages previous to the adder
stage to borrow some o f its cycle time. Second, variation
in a design can be m itigated by tim e borrowing. Latches
are operated in a norm ally closed m ode in the design. This
allows tim e borrowing to occur based on the delay betw een

TABLE I
Example comparing flop and latch based design with identical

PIPELINE FREQUENCY. THE ICS COLUMN USES AN INCOMPLETE
CONSTRAINT SET. ENERGY REPORTED IN PJ PER TOKEN, CLOCK PERIOD

IN NSEC.

Ia asserting and deasserting because new data w ill not be
propagated forw ard until Ia lowers (see Fig. 5 and 6).

O ne o f the prim ary exam ples o f this tool flow is to evaluate
the effectiveness o f tim ing driven synthesis and place and
route o f the asynchronous tem plates. This is dem onstrated by
utilizing an incom plete constraint set (ICS) from the tem plate
characterization, as well as the full constraint set (FCS) for
each version o f the design. The incom plete constraint set util
izes all o f the relative-tim ing generated constraints, but allows
the clocked CAD tools to utilize their internal cycle cutting
algorithm s to generate the tim ing DAGs. Thus, the incom plete
constraint set leaves out the loop breaking constraints in the
flow shown in Fig. 15.

Table I shows four designs synthesized to com pare the
pipeline using flops versus latches in the datapath. Com paring
the flopped pipeline versus a latch pipeline gives the expected
results: the latch design is m ore energy efficient (1 2 % &
18% respectively for ICS and FCS) and sm aller (^ 12%
for both). The full constraint set designs (FCS) show a large
im provem ent in pow er and m inor area reduction. The tim ing

159

Flip-Flops Latches
ICS FCS ICS FCS

Avg. energy (nJ) 0.752 0.492 0.677 0.398
Avg. sw. energy 0.285 0.159 0.308 0.167
Avg. intrnl energy 0.439 0.306 0.349 0.206
Avg. leakge enrgy 0.028 0.027 0.021 0.025
Area (m m 2) 12,878 12,258 11,516 10,887
Datapath clk per.
multipliers 2.0 2.0 2.0 2.0
adder 1.4 1.4 1.4 1.4
Control delay
multipliers 3.2 2.0 2.0 2.0
adder 1.5 1.4 1.4 1.4

ICS FCS ICS FCS
Avg. energy (nJ) 0.670 0.378 0.670 0.377
Avg. sw. energy 0.309 0.160 0.309 0.158
Avg. intrnl energy 0.343 0.201 0.343 0.203
Avg. leakge enrgy 0.017 0.016 0.017 0.017
Area (m m 2) 11,264 10,739 11,258 10,937
Datapath clk per.
multiplier 2.0 2.0 2.0 2.0
adder 2.0 2.0 1.1 1.1
Control delay
multiplier 1.2 1.1 1.2 1.1
adder 1.2 1.1 1.1 1.1

TABLE II
Version with variable pipeline frequencies.

TABLE III
Latch based time borrowing versions with and without

variable pipeline frequencies using incomplete and complete
TIMING PATH CONSTRAINTS.

optim ized design resulted in a 35% and 40% reduction in
energy for the flop and latch designs respectively. For the flop
design, there is also a significant im provem ent in perform ance,
as the im properly constrained design requires control delay
25% slower than the datapath to operate properly. Inspecting
the post-layout netlist reveals that the ICS design substantially
oversized many gates. For example, the tools sized an AOI32
gate o f Fig. 7 six tim es larger in the ICS versions as com pared
to the FCS versions o f the design. This larger gate is energy
inefficient and creates skew in the delay paths that ultim ately
result in a 25% slower circuit. However, for the latch design,
the sam e control target frequency as the FCS version can be
used due to tim e borrowing that occurs.

Table II shows four new designs w here the pipeline stages
are independently assigned delays to optim ize the pow er-delay
product for each pipeline function. The 16-bit m ultipliers were
given a target cycle tim e o f 2.0ns, and the 32-bit adder a cycle
tim e o f 1.4ns. This exam ple shows that even w ith traditional
clocked tools, this characterization flow is able to directly
synthesize and validate m ulti-frequency pipelined designs.
Like the case w ith a single frequency, the full constraint set
results in lower area and pow er than the unconstrained set, as
well as a faster design (ignoring tim e borrowing that occurs
for the latched ICS version).

The final four designs show how this flow can be used
to actively exploit tim e borrowing betw een pipeline stages
in the clocked CAD. This is achieved w ithout changing the
synthesis scripts. The only change is in assigning different
delay values to the control path. The first two versions o f the
design, shown in Fig. III, use a fixed frequency for all datapath
pipeline stages. The last two versions use different frequencies
for the m ultiplier and adder stages. The prim ary difference
betw een the fixed and m ulti-frequency designs is that the
m ulti-frequency design slightly constrains the w orst case adder
path, w hich results in a very sm all reduction in cycle tim e and
energy. The m ost significant observation from these designs is
the ability for tim e borrowing to m itigate variations in the
design, w hether the source is from poor frequency or design
optim ization (as can be seen by the energy difference of 44%).

RT Constraints Setup (ns) Slack (ns)
lrf ^ rrf ^ y _ | 0.05 0.16
lrf ^ laf ^ y _ | 0.05 0 .12
lrf ^ laf ^ ra_J. 0.00 0.92
lrf ^ rrf ^ lrj. 0.00 0.80

TABLE IV
Data check timing report summary some RT constraints. Listed

SLACKS ARE ALL WORST CASE.

All relative-tim ing constraints, including the delay-
insensitive constraints, are used to validate post-layout tim ing
(using extracted layout parasitics im ported as standard delay
file) in PrimeTime. The tim ing report validated that all the
constraints used for tim ing driven synthesis and place and
route are correct w ith positive slack. In latch based pipeline
im plem entation the m ultiplication latch stages can use tim e
borrowing from the next stage. Tables IV and V show a brief
sum m ary o f the tim ing reports.

V I. C o n c l u s io n s

This paper shows how asynchronous Verilog behavioral
designs can be characterized in a w ay that allows them to be
synthesized, optim ized, and validated using traditional clocked
tool flows. This m ethodology requires the asynchronous blocks
to be designed as precharacterized tem plates that are struc-

PathType From To Constr. LSup MxTB TB/Slk
DataPath R0 R10 max 1.70 0.20 0.65 0.25
DataPath R10 R2 max 1.08 0.17 0.68 0.20
DataPath R0 R11 max 1.70 0.17 0.68 0.01
DataPath R11 R2 max 1.08 0.20 0.65 0.20
CtrlPath tk0/lr tk10/lr min 1.19 N/A N/A 0.12
CtrlPath tk10/lr tk2/lr min 1.08 N/A N/A 0.13
CtrlPath tk0/lr tk11/lr min 1.19 N/A N/A 0.12
CtrlPath tk11/lr tk2/lr min 1.08 N/A N/A 0.11

TABLE V
Timing report summary for constraints between pipeline

stages. The latches in datapath borrow time from the next
STAGES WITH LSUP (LIBRARY SETUP TIME), MxTB (MAXIMUM TIME

BORROWING) AND TB (REAL TIME BORROWING) LISTED. ALL THE
NUMBERS ARE IN NANOSECONDS.

160

turally inserted into the behavioral design at each pipeline
stage. The characterization m ethodology is based on for
m al verification and relative tim ing to generate several sets
o f constraints ranging from from key tim ing driven speed-
independent constraints, to a com plete set o f delay-insensitive
constraints. The full constraint generation flow was dem on
strated for a linear pipeline controller cell.

A sim ple design was used to dem onstrate the functionality
o f the design flow and show how different versions can
easily be generated by m odifying tim ing constraints. Twelve
different versions o f the behavioral design w ere synthesized
and evaluated in IB M ’s 65nm 10sf process. These designs
dem onstrated the perform ance and pow er benefits o f this
flow as the com plete constraint set showed up to a 44%
reduction in pow er com pared to one that allowed autom atic
cycle cutting. The tools w ere used to autom atically synthesize
designs m apped to flops, latches, variable frequency pipelines,
and tim e borrowing designs. The benefit o f a latch based
design was dem onstrated, showing up to a 1 2 % area reduction
and 19% reduction in energy over the flop based version.
Variable pipeline frequency did not substantially change the
perform ance, power, or area o f this linear fork/join pipeline.
Tim e borrowing was able to substantially m itigate variations in
the controller, and reduce the perform ance constraining cycle
tim e by up to 45%, and reduce the energy by up to 5% over
the fixed frequency latch based design.

The flow presented here opens the capability for any clocked
designer to create handshake clocked asynchronous designs
using asynchronous tem plates characterized w ith this flow.
As such, this is an im portant first step to achieving the
evolutionary integration o f asynchronous handshake clocking
into 2 0 % o f the sem iconductors by 2 0 1 2 as predicted by the
ITRS.

V II. A c k n o w l e d g m e n t s

We w ould like to recognize the generous funding from SRC
and N SF who supported this research, A RM for providing the
65nm library, M OSIS and IBM for the foundry information.

R e f e r e n c e s

[1] Nikolas Andrikos, Luciano Lavagno, Davide Pandini, and Christos P.
Sotiriou. A Fully-Automated Desynchronization Flow for Synchronous
Circuits. In Design Automation Conference, pages 982-985. ACM/IEEE,
June 2007.

[2] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou. Handshake protocols for de-synchronization. In Interna
tional Symposium on Asynchronous Circuits and Systems, pages 149
158. IEEE, Apr 2004.

[3] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits From Graph-
Theoretic Specifications. PhD thesis, Massachusetts Institute of Tech
nology, September 1987.

[4] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, and Christos P.
Sotiriou. Desynchronization: Synthesis of asynchronous circuits from
synchronous specifications. IEEE Transactions on Computer-Aided
Design ofIntegrated Circuits and Systems, 25(10):1904-1921, Oct 2006.

[5] Karl M. Fant and Scott A. Brandt. NULL Convention Logic: A Complete
and Consistent Logic for Asynchronous Digital Circuit Synthesis. In
International Conference on Application-Specific Systems, Architectures,
and Processors, pages 261-273, 1996.

[6] TiDE White Paper, Handshake Solutions. V 1.0, June 2007.
[7] Hoshik Kim, Peter A. Beerel, and Kenneth S. Stevens. Relative timing

based verification of timed circuits and systems. In 8th International
Symposium on Asynchronous Circuits and Systems, pages 115-126.
IEEE Press, April 2002.

[8] Alex Kondratyev and Kelvin Lwin. Design of Asynchronous Circuits
Using Synchronous CAD Tools. IEEE Design & Test of Computers,
19(4):107-117, July-Aug. 2002.

[9] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex
Kondratyev. Asynchronous Design Using Commercial HDL Synthesis
Tools. In International Symposium on Advanced Research in Asyn
chronous Circuits and Systems, pages 114-125. IEEE, Apr 2000.

[10] Alain J. Martin. Practical asynchronous circuits and tools. IEEE Design
& Test of Computers, 19(4):108, July-Aug. 2002.

[11] Robin Milner. Communication and Concurrency. Computer Science.
Prentice Hall International, London, 1989.

[12] Ad Peeters and Kees van Berkel. Synchronous handshake circuits.
In Seventh International Symposium on Asynchronous Circuits and
Systems, pages 86-95. IEEE, Mar 2001.

[13] Bradley R. Quinton, Mark R. Greenstreet, and Steven J.E. Wilton.
Asynchronous IC Interconnect Network Design and Implementation
Using a Standard ASIC Flow. In International Conference on Compulter
Design: VLSI in Computers and Processors, pages 267-274. IEEE, Oct
2005.

[14] Oriol Roig, Jordi Cortadella, and Marco A. Pena. Automatic generation
of synchronous test patterns for asynchronous circuits. In Design
Automation Conference, pages 620-628. ACM/IEEE, June 1997.

[15] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol,
C. Dike, M. Roncken, and B. Agapiev. RAPPID: An Asynchronous In
struction Length Decoder. In 5th International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 60-70. IEEE,
April 1999. Best paper award.

[16] Semiconductor Industry Association. The International Technol
ogy Roadmap for Semiconductors, 2005 edition edition, 2005.
http://www.itrs.net/links/2005itrs/design2005.pdf.

[17] Sanjit A. Seshia, Randall E. Bryant, and Kenneth S. Stevens. Mod
eling and verifying circuits using generalized relative timing. In 11th
International Symposium on Asynchronous Circuits and Systems, pages
98-108, March 2005.

[18] Ken Stevens, Shai Rotem, Ran Ginosar, Peter Beerel, Chris Myers,
Kenneth Yun, Rakefet Kol, Charles Dike, and Marly Roncken. An
Asynchronous Instruction Length Decoder. IEEE Journal of Solid State
Circuits, 36(2):217-228, February 2001.

[19] Kenneth S. Stevens. Practical Verification and Synthesis of Low Latency
Asynchronous Systems. PhD thesis, University of Calgary, Calgary,
Alberta, Canada, September 1994.

[20] Kenneth S. Stevens, Ran Ginosar, and Shai Rotem. Relative Timing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
1(11):129-140, February 2003.

[21] Kenneth S. Stevens, Shai Rotem, Steven M. Burns, Jordi Cortadella, Ran
Ginosar, Michael Kishinevsky, and Marly Roncken. CAD Directions for
High Performance Asynchronous Circuits. In Proceedings of the Digital
Automation Conference (DAC99), pages 116-121. IEEE, June 1999.

[22] Frank te Beest, Ad Peeters, Kees van Berkel, and Hans Kerkhoff.
Synchronous full-scan for asynchronous handshake circuits. Journal
of Electronic Testing, 19(4):397-406, Aug 2003.

[23] Kees van Berkel, Ronan Burgess, Joep L. W. Kessels, Ad Peeters, Marly
Roncken, and Frits Schalij. A Fully Asynchronous Low-Power Error
Corrector for the DCC Player. IEEE Journal of Solid-State Circuits,
29(12):1429-1439, Dec 1994.

[24] Ted E. Williams and Mark A. Horowitz. A 160ns 54bit CMOS division
implementation using self-timing and symmetrically overlapped SRT
stages. In Peter Kornerup and David W. Matula, editors, Proceedings
of the 10th IEEE Symposium on Computer Arithmetic, pages 210-217,
1991.

161

http://www.itrs.net/links/2005itrs/design2005.pdf

