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Abstract

SC IRun is a scientific programming environm ent 
that allows the interactive construction, debugging, 
and steering o f large-scale scientific computations. 
We review related system s and introduce a taxon
omy that explores different computational steering so
lutions. Considering these approaches, we discuss why 
a tightly integrated problem solving environment, such 
as SCIRun, simplifies the design and debugging phases 
o f computational science applications and how such an 
environm ent aids m  the scientific discovery process.

I. I n t r o d u c t io n
Since the introduction  of com puters, scientists and 

engineers have a ttem pted  to  harness their power to 
sim ulate complex physical phenom ena. Today, the 
com puter is an alm ost universal tool used in a wide 
range of scientific and engineering dom ains.

C om putational science and engineering is the field 
th a t has grown out of the widespread use of com puters 
to  num erically sim ulate the physical phenom ena asso
ciated w ith m any problem s in science and engineering. 
In a typical scenario, a com putational scientist follows 
this algorithm :
C o n s t r u c t  a  m o d e l o f  t h e  p h y s ic a l  p ro b le m  d o 
m a in . Specify the shape of the problem  dom ain, as 
well as other physical properties, such as electrical con
ductivity, density or viscosity. Simple problem s may 
have relatively simple models, such as cubes, spheres 
or other simple geometries. However, current trends 
typically require the use of “real” life models th a t ac
curately portray  a related physical problem  dom ain. 
For example, com putational medicine problem s typ i
cally addressed by the U tah  Scientific C om puting and 
Im aging (SCI) group involve creating a detailed model 
of the hum an anatom y which describes the shape and 
electrical conductivities for the bones, muscles and or
gans in a hum an torso [1]. M odeling m ay also in
clude the specification of initial conditions for the sim 
ulation, such as the current weather conditions for a 
weather sim ulation.
A p p ly  b o u n d a r y  c o n d it io n s .  B oundary conditions 
are the forces th a t drive a particu lar problem . Typical

boundary  conditions m ay include the velocity of wind 
at the input of a wind tunnel, the electrical sources for 
an electrical problem , or boundary tem peratures for a 
heat conduction problem . Conditions are defined on a 
boundary  th a t couple w ith the governing equations to 
define the behavior of the system  at these boundaries. 
Param eters to  these equations m ay also be specified 
in conjunction w ith other model param eters. 
D e v e lo p  a  n u m e r ic a l  a p p r o x im a t io n  to  t h e  g o v 
e r n in g  e q u a t io n s .  Governing equations are a set of 
p artia l differential equations th a t define the behavior 
of the problem . Since the com puter cannot operate on 
these equations directly, the equations are discretized 
using m ethods such as F inite Difference, F inite Ele
m ent, F inite Volume, B oundary Elem ent m ethods. 
C o m p u te .  Once the d a ta  has been specified, the 
com puter is used to  solve this num erical approxi
m ation. This typically involves solving a linear or 
non-linear system  of algebraic equations. For real
istic models, these system s of equations can be ex
trem ely large, incorporating thousands to  millions of 
unknowns.
V a l id a te  t h e  r e s u l ts .  Once the solution has been 
found, the scientist m ust determ ine if the results are 
correct. V alidation m ethods include com puting known 
problem  invariants (a form  of “checksum” ), com paring 
results w ith experim ental da ta , com paring results w ith 
those of simple problem s w ith analytical solution, and 
determ ining th a t the answer is plausible according to 
the scientists’ expertise on the problem .
U n d e r s ta n d  th e  r e s u l ts .  Early scientists printed 
out stacks of num bers on continuous sheet line p rin t
ers and stared at them  for hours. As com puters grew 
m ore powerful, scientists were able to  perform  more 
complex sim ulations. Fortunately, these more pow
erful com puters are able to  present inform ation in a 
m ore m eaningful way using Scientific Visualization.

Over the years, scientific com puting has grown into 
a widely accepted m ethod of scientific investigation. 
Scientists are continuously try ing to  perform  more ac
curate sim ulations, to  create more realistic physical 
models, and to  obtain  solutions in less tim e w ith less 
work. M any scientists are also applying these tech
niques to  new problem  dom ains and are using them
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A. Computational Steering

Currently, organizing, running and visualizing a 
new large-scale sim ulation still requires hours, days or 
weeks of a researcher’s tim e. D ata  I /O  and conversion 
tim e further com plicates and slows the process. Even 
for experienced scientists who m ay employ scripts and 
conversion program s to  aid them  in the task, the pro
cess is anything bu t stream lined. As noted at the NSF 
sponsored workshop on H ealth Care and High Perfor
m ance C om puting in 1994, scientists and engineers 
w ant a system  in which all these com putational com
ponents are linked. In other words, they wish to  “close 
the loop,” so th a t all aspects of the m odeling and sim u
lation  process can be controlled graphically w ithin the 
context of a single application program . In areas such 
as healthcare, researchers cannot afford the predom i
nant batch-m ode approach since their applications are 
tim e critical in nature.

In 1987, the V isualization in Scientific Com puting 
(ViSC) workshop reported [2]: “Scientists. . . want to 
drive the scientific discovery process; they want to  in
teract w ith their da ta . Interactive visual computing is 
a process whereby scientists com m unicate w ith d a ta  
by m anipulating  its visual representation during pro
cessing. The more sophisticated process of navigation 
allows scientists to  steer, or dynam ically modify com
pu tations while they are occurring. These processes 
are invaluable tools for scientific discovery.”

A lthough these thoughts were recorded ten years 
ago, they express a very simple, still current idea: th a t 
scientists want more in teraction th an  is perm itted  by 
m ost sim ulation codes. C om putational steering has 
been defined as “the capacity to  control the execution 
of long-running, resource-intensive program s” [3]. In 
com putational science, we apply this concept to  link 
visualization w ith com putation  and geometric design 
to  interactively explore (steer) a sim ulation in tim e 
an d /o r space. As the application is developed, a sci
entist can leverage the steering and visualization to 
assist in the debugging process as well as modify the 
com putational aspects based upon perform ance feed
back. As knowledge is gained, a scientist can change 
the input conditions, algorithm s, or other param eters 
of the sim ulation.

Im plem entation  of a com putational steering envi
ronm ent requires a successful in tegration of the m any 
aspects of scientific com puting, including perform ance 
analysis, geometric m odeling, num erical analysis, and 
scientific visualization. These requirem ents need to 
be effectively coordinated w ithin an efficient com
puting environm ent (which, for large-scale problems,

to solve new practical problems. means dealing w ith the subtleties of various high- 
perform ance architectures).

Recently, several tools and environm ents for com
pu ta tional steering have been developed. These range 
from  tools th a t modify perform ance characteristics of 
running applications, either by au tom ated  m eans or 
by user interaction, to  tools th a t modify the under
lying com putational application, thereby allowing ap
plication steering of the com putational process. Our 
view is th a t a Problem  Solving Environm ent (PSE) 
th a t encompasses all of these characteristics, from  al
gorithm  developm ent through perform ance tuning to 
application steering, for scientific exploration and vi
sualization and provides a rich environm ent for accom
plishing com putational science.

In the rem ainder of this paper, we first describe the 
application of a system  we have developed, SCIRun, 
to  the dom ain of com putational field problem s. Next, 
we briefly describe the SCIRun software architecture. 
We review related work and introduce a taxonom y 
th a t explores different com putational steering solu
tions. We then present our thoughts on why a P rob
lem Solving Environm ent such as SCIRun is crucial to 
com putational science and engineering.

II. C om p u tation al F ield  P rob lem s and  
SC IR un

SCIRun is a scientific program m ing environm ent 
th a t allows the interactive construction, debugging, 
and steering of large-scale scientific com putations. 
The prim ary purpose of SCIRun is to  enable the user 
to  interactively control scientific sim ulations while the 
com putation  is in progress. This control allows the 
user, for example, to  vary boundary conditions, model 
geometries, a n d /o r various com putational param e
ters during sim ulation. Currently, m any debugging 
system s provide this capability  in a low-level form. 
SCIRun, on the other hand, provides high-level con
tro l over param eters in an efficient and intuitive way 
through graphical user interfaces and scientific visual
ization [4], [5]. These m ethods perm it the scientist or 
engineer to  “close the loop” and use the visualization 
to  steer phases of the com putation.

The ability to  steer a large scale sim ulation pro
vides m any advantages to  the scientific program m er. 
As changes in param eters become more instantaneous, 
the cause-effect relationships w ithin the sim ulation be
come more evident, allowing the scientist to  develop 
more in tu ition  about the effect of problem  param eters, 
to  detect program  bugs, to  develop insight into the op
eration of an algorithm , or to  deepen an understanding 
of the physics of the problem (s) being studied.

Initially, we designed SCIRun to  solve specific prob



lems in C om putational Medicine [1], [6], bu t we have 
m ade extensive efforts to  make SCIRun applicable 
in other com putational science and engineering prob
lem dom ains. In addressing specific problem s, we 
found th a t there were a wide range of disparate de
m ands placed on a steerable problem  solving environ
m ent such as the SCIRun system . We now provide a 
more detailed discussion of solving com putational field 
problems.

A. Geometric Modeling
In m ost com putational engineering and science ap

plications, significant geometric m odeling m ust take 
place prior to  sim ulation and visualization. Model
ing efforts usually involve geom etrical construction of 
a physical dom ain, in which a continuous structure 
m ust be discretized and adequately rendered into dis
crete spatial elements.

C onstruction of the geometric model is often one 
of the m ost tim e consum ing aspects of m odeling and 
sim ulation. For each new configuration, a new model 
m ust be assembled. Once a m odel is up and running 
sim ulations, a researcher m ust wait through an entire 
sim ulation before m aking changes to  the geom etry or 
before learning if the changes already enacted have 
been effective. Because m aking such changes and re
com puting the effects of those changes is very tim e 
consuming, researchers are often restricted in the num 
ber of options they can effectively test.

In the SCIRun com putational steering system , a 
goal is to  change geometric features of the model or 
the spatial discretization of the solution dom ain in
teractively. Ideally, the user receives some degree of 
feedback on the calculation alm ost im m ediately, and 
is allowed to  change input boundary  conditions, such 
as spatial location and m agnitude of a source, or the 
tim estep w ith which the calculation proceeds. These 
changes autom atically  trigger the com putational and 
visualization phases of the problem . Such an environ
m ent allows more im m ediate access to  sim ulation re
sults, significantly reducing the tim e spent in m aking 
sim ulation and m odeling design changes.

B. Numerical Analysis
A variety of techniques are used to  num erically ap

proxim ate the p artia l differential equations (PDEs) 
th a t govern m ost com putational field problem s. We 
discuss the finite element (FE) m ethod here, although 
m ost of the concepts apply to  finite difference, bound
ary element, and m ultigrid  m ethods. A pplication of 
the FE  m ethod yields a linear system , A x  =  b , where 
A  is the so-called “stiffness m atrix ” and can vary from 
hundreds of thousands to  millions of degrees of free
dom.

For solving this system , the scientist can choose 
from  a variety of direct and iterative solution m ethods, 
as well as from  different preconditioners. A user in
terface is provided to  change tolerances, m axim um  it
eration counts, and other num erical param eters. D ur
ing the solution process, SCIRun provides feedback on 
several num erical and perform ance param eters, such 
as residual error, iteration  count, M FLOPS, etc. The 
scientist can also interactively decide upon the level of 
accuracy used for a given sim ulation based upon a p ri
ori design criteria. Upon in itia ting  the sim ulation, the 
scientist views the in itial results and is presented with 
a visual representation of the com pu ta tion ’s effective
ness (based on various quan tita tive  m easures, such as 
the error per element of the finite element analysis). 
Then, the scientist decides if (s)he would like to  con
tinue the com putation  using a more (or less) refined 
level of discretization or restart the com putation  with 
different input conditions.

C. Scientific Visualization
Certainly, effective in terp retation  of com puter sim 

ulations depends upon the visualization of the data . 
Traditionally, visualization has been entirely sepa
rate  from  the com putation phase. C om putations 
were stored off to  disk a n d /o r piped into a sepa
rate  visualization software package once all com pu
tations are com pleted. Furtherm ore, m any scientists 
relied on current “off the shelf” visualization packages 
th a t are not well suited for use w ith large engineer
ing datasets (at least not in an interactive fashion). 
W ith in  SCIRun, visualization is an integral part of 
the com putational and geom etrical m odeling phases 
The user is able to  visualize and explore interm edi
ate results while the calculations continue to  progress. 
Refined datasets are autom atically  substitu ted  for the 
less accurate ones as they are completed.

SCIRun brings together a large collection of algo
rithm s for realizing the com ponents of a scientific com
puting environm ent outlined above. Connecting these 
algorithm s in an efficient m anner into a flexible en
vironm ent contributes to  the com putational steering 
goal. A lthough creating new m odules for the system  
is ongoing work, current efforts have concentrated on 
building an in tegrated  and interactive environm ent for 
solving large-scale com putational field problems.

III. SC IR un - A C om pu tation al S teer
ing E nvironm ent

SCIRun is a problem  solving environm ent in which 
large scale com puter sim ulations can be composed, ex
ecuted, controlled and tuned interactively. Com pos
ing the sim ulation is accomplished via a visual pro



gram m ing interface to  a dataflow network. Software 
system s such as AVS from  Advanced Visualization 
Systems Inc .[7], Iris Explorer from  NAG, and Visu
alization D ata  Explorer from IBM [8] have m ade this 
archetype popular for scientific visualization [9]. Our 
work has extended this paradigm  into the realm  of 
scientific com putation  and steering.

To execute the program , one specifies param eters 
w ith a graphical user interface ra ther th an  w ith the 
trad itional text-based datafile. Controlling a sim ula
tion involves steering the sim ulation interactively as it 
progresses. In SCIRun, the typical com ponents of the 
com putational paradigm  -  geometric modeling, nu
merical analysis, and scientific visualization -  are in
tegrated  into a visual program m ing environm ent th a t 
provides the researcher w ith the ability to  interactively 
steer any one phase of the process and to see the effects 
propagate throughout the system  autom atically.

As an exam ple of the SCIRun system  interface, see 
Figure 1. A graphical representation of the dataflow 
network is shown in the lower right. The boxes 
represent com putational algorithm s (modules), while 
lines represent d a ta  connections between the modules. 
Each m odule m ay have a separate user interface, such 
as the m atrix  solver interface at the left, th a t allows 
the user to  control various param eters. An interac
tive 3D viewer th a t combines visualization ou tpu t and 
d a ta  probes is found at the top.

W hen the user changes a param eter in any of the 
m odule user interfaces, the m odule is re-executed, and 
all changes are autom atically  propagated  to  all con
necting m odules. The user is freed from  worrying 
about details of d a ta  dependencies and d a ta  file for
m ats. Changes can be m ade w ithout stopping the 
com putation , thus “steering” the com putational pro
cess. W hen other changes are m ade, the com putations 
will be cancelled and autom atically  re-started , m ak
ing the com puter efficient as a “com putational work
bench.”

A. SCIRun - Dataflow System  and Visual 
Programming

Designing an environm ent to  allow the steering of 
complex scientific models is an enorm ous m ulti-faceted 
problem , one which requires a tten tion  in m any differ
ent areas, including program m ing of the system , ex
ploiting parallelism , and in teracting w ith the hum an 
user.
P r o g r a m m in g  S C IR u n : A network of modules in 
SCIRun forms a dataflow program . The system  is 
program m ed visually, w ith pre-packaged m odules con
nected through use of the mouse. If the system  does 
not provide the necessary com ponents for a particu lar

Fig. 1. An exam ple SC IR un netw ork, showing th e  dataflow  
p rogram m ing  interface, user interfaces for contro lling  sim u
lation  p a ram ete rs, and  resu lts from  an large finite elem ent 
m odel.

task, new modules m ay be created by the user. W hen 
building a new m odule, the program m er m ay lever
age off of existing d a ta  structures (hash tables, binary 
trees, linked lists, etc.) and u tility  routines (point and 
vector geometry, num erical integration, etc.). Cur
rently, adding a new m odule is accomplished by im 
plem enting a C + +  class.

P a ra l le l is m : The system  is able to exploit parallelism  
w ithin or between m odules. Inter-m odule parallelism  
allows each m odule to be executed in parallel as soon 
as d a ta  is available on any of its input ports. In tra 
m odule parallelism  can be exploited by the m odule 
w riter to achieve m axim um  perform ance for a specific 
algorithm . For example, a Stream line m odule may 
com pute each stream line using a different processor, or 
m ay utilize an existing dom ain decom position to pass



the advecting particles from  one processor to  another. 
The system  provides the m odule w riter w ith hooks 
for exploiting parallel resources, bu t the parallel algo
rithm s m ust be im plem ented m anually  by the m od
ule writer. Deciding how to allocate resources among 
the available parallel tasks is an open research prob
lem th a t we (and m any others) are still investigating. 
Eventually, we would like such allocations to  be under 
the control of the user, to  perm it steering all aspects 
of the com putation.
U s e r  I n te r a c t io n :  SCIRun facilitates control over 
m any param eters, including model param eters in 3D 
space. W hile scientists are excited by this opportunity, 
3D in teraction presents a very complex hum an com
puter in teraction problem . W hile we have not entirely 
solved these problem s, we have addressed them  by em
ploying 3D widgets [10] to  assist interaction. Clear 
presentation of the large quantities of inform ation pro
duced will require further research in 2D and 3D user 
interface design.

IV. T axonom y of S teering  S ystem s
Even though the area of com putational steering is 

fairly young, m any system s and tools exist to  assist 
program m ers and scientific researchers in tuning and 
running scientific codes. It would be helpful to  th ink 
of these com putational tools and system s w ithin a con
ceptual fram ework in order to  com pare and contrast 
them . In the following section, we will review the work 
of others who previously sought to  classify com puta
tional steering systems. Afterwards, we will present a 
cohesive taxonom y for describing com putational steer
ing system s and toolsets.

A. Previous Classifications

B urnett, et al.[11] propose a taxonom y for com
pu ta tional steering using visual languages. V isualiza
tion system s studied vary on a continuum  from  post
processing through tracking to  interactive visualiza
tion to  steering. Interfaces presented range from  a 
tex tual interface to  a graphical user interface to  a vi
sual program m ing language interface. The authors ar
gue for a m erging of the interactive experim entation 
allowed by steering capabilities and the ease of use of 
a visual program m ing language for a researcher not 
tra ined  in program m ing.

Vetter and Schwan [12] delineate two types of steer
ing in existing systems: hum an-interactive steering 
and algorithm ic steering. In hum an-interactive steer
ing, a person m onitors the com putation  and m anip
ulates param eters of the com putation  while it is exe
cuting. In algorithm ic steering, the com puter makes

decisions by m onitoring inform ation and other sources 
such as history files. Vetter and Schwan describe 
a simple feedback model for com putational steering 
wherein ou tpu t is m onitored by a steering agent, ei
ther hum an or algorithm . The steering agent performs 
steering actions (which could be changes to  the param 
eters of the com putation) based on m onitored inputs. 
They provide examples dem onstrating  the steering of 
an application’s perform ance (load-balancing), which 
autom atically  adapts the d istribu ted  load based upon 
run-tim e statistics.

As noted by B urnett et al.for hum an-interactive 
steering, the m echanism  of in teraction affects the ease 
of use of the system  to a scientist. Systems range 
from  providing a tex tual interface from  which to  steer 
to  providing a graphical interface. Of course, a vi
sual program m ing language could foster the creation 
of a steering environm ent th a t allows the user to  view 
the program , the sim ulation, and the steering m echa
nism  potentially  all a t the same tim e. On the other 
hand, algorithm ic steering would be program m ed en
tirely behind the scenes, bu t would require more pro
gram m ing expertise.

W hile bo th  of these classifications provide insight 
into differing tools and applications for sim ulation 
steering, they provide orthogonal views. B u rn e tt’s 
work focuses on the level of steering and the visual 
interface while V etter’s classification is based upon 
whether the steering process could be autom ated. 
Next, we will review existing tools for sim ulation steer
ing and present a different taxonom y th a t a ttem p ts  to 
highlight the richness of a sim ulation steering environ
m ent or toolset.

B. Some Existing Tools for Steering

L ig h tw e ig h t S te e r in g :  S c r ip t in g  L a n g u a g e s  a n d  
W ra p p e r s :  Beazley and Lom dahl [13] dem onstrate 
the use of a lightweight m ethod of steering a very 
large-scale m olecular dynam ics sim ulation. Using a 
Simplified W rapper Interface G enerator (SW IG) to 
w rap existing sim ulation codes, a scientific researcher 
can easily build a scripting language interface, such as 
T c l/T k  or Python, for steering a com putation. Their 
work highlights the ease of converting existing scien
tific codes into a form  in which they can be glued 
together by a control language. Then, the researcher 
m onitors and m anipulates the com putation  or sim ula
tion using scripting com m ands. Clearly, this m ethod 
requires knowledge of how to program  in scripting lan
guages and does not explicitly constitu te a steering 
toolkit.
C U M U L V S : The CUMULVS library [14], developed 
at ORNL, acts as a m iddle layer between PVM  ap



plications and existing visualization packages such as 
AVS. After initializing a viewer, the application pro
gram m er can provide a list of param eters to  be ad
ju sted  on-the-fly in a CUMULVS steering in itializa
tion procedure call. Separate procedure calls are used 
for altering scalar or vector param eters from  w ithin 
the application. CUMULVS supports m ultiple viewers 
viewing the same running application to  assist collab
orations. An interesting checkpointing capability  for 
rolling back and restarting  a failed program  run has 
the poten tia l to  allow cross-platform  m igration  and 
heterogeneous restart of an application.
P ro g re s s  a n d  M a g e lla n : The Progress Toolkit [15], 
developed at the Georgia In stitu te  of Technology, as
sists application program m ers in developing steerable 
applications. Program m ers instrum ent their appli
cations w ith library calls, using “steerable objects,” 
which can be altered at runtim e through the use of the 
Progress runtim e system . Steerable objects include 
sensors, actuators, probes, function hooks, complex 
actions, and synchronization points. Progress uses a 
client/server program  model.

Developed by the same group, the M agellan Steer
ing System [16] is derived from  the Progress system, 
and extends the steering clients and steering servers 
m odel used in the initial system . This system  uses a 
specialized specification language, ACSL, which pro
vides com m ands for m onitoring and steering using 
probes, sensors and actuators. However, application 
codes still m ust be instrum ented w ith these com m ands 
in order to  utilize the steering capabilities of this sys
tem . These system s have been used for M olecular Dy
nam ics sim ulations.

B oth system s are layered on top of the Falcon sys
tem  [17], also developed at G IT, which m onitors a run
ning program , capturing inform ation ranging from  a 
single program  variable, much as a debugger would, to 
complex expressions. It also perm its the m onitoring of 
perform ance data , w ith interfaces to  visualization sys
tem s, such as Iris Explorer. However, decisions about 
which steering actions to  take are based on previously 
encoded routines stored in a steering event database 
located on a steering server.
V A S E : The V isualization and A pplication Steering 
Environm ent [18] (VASE), from  the Center for Super
com puting Research and Development at UIUC, pro
vides a toolset for interactive visualization and steer
ing in a d istribu ted  environm ent. The VASE user 
m odel identifies three d istinct roles: an application 
developer who writes the scientific codes; a configurer 
who sets up the d istribu ted  environm ent (including 
interprocess com m unication); and an end user (or re
searcher) who uses and steers the application. Steering

is accomplished through the use of steerable locations 
(program m er-defined breakpoints), altering the values 
of variables and param eters, and adding program m ing 
sta tem ents and scripts as the com putation  proceeds. 
VASE uses a control-flow program m ing model, which 
is displayed to  the end user to  guide steering. VASE 
allows algorithm  refinement through the use of script 
m odification at run-tim e. Thus, the steering process 
can modify not only the com putational param eters 
and perform ance characteristics bu t also the actual 
code.
P a b lo :  The Pablo perform ance environm ent [19], also 
designed at UIUC, provides library routines for in
strum enting source code to  extract perform ance d a ta  
as the code executes. This system  follows the Falcon 
m odel of utilizing sensors to  collect inform ation from 
the executing code, and altering system  characteristics 
or param eters through the use of actuators. It seeks 
to  tune the perform ance of running applications as 
they execute. Two different models for performance- 
directed adaptive control (or perform ance steering) 
are discussed: closed-loop adaptive control and in ter
active adaptive control. F irst, a neural network classi
fies file access pa tterns qualitatively  in order to  change 
the file policy on-the-fly, varying cache size and cache 
block replacem ent policy as needed by the executing 
code. Secondly, to  enable hum an-interactive steering, 
Pablo developers argue for the use of an immersive en
vironm ent, specifically the A vatar v irtual environm ent 
proto type [20] built a t the U IU C/N CSA .

C. A Taxonomy for Steering

After exam ining the tools presented above (among 
others), we identified three d istinct types of steering 
in current systems: application steering, algorithm  
refinement, and perform ance steering. A pplication 
steering refers to  the capability  to  modify the com
pu ta tional process through param eter changes, mesh 
m odifications, or other changes th a t affect the com
pu ta tional aspects of the sim ulation. Steering by al
gorithm  refinement allows the underlying code to  be 
modified or refined at runtim e. Perform ance steer
ing focuses on changing com putational resources th a t 
affect the sim ulation perform ance such as load balanc
ing, I /O , cache strategies or other perform ance related 
m odifications.

Similarly, there is a continuum  of in teraction s tra te 
gies from  tex tual to  visual program m ing th a t provide 
m eans for a user to  interactively steer the com puta
tion. It should be noted th a t any steering m odification 
could also be accomplished through au tom ated  means 
(i.e .,requiring no end user interaction), as described 
in some of the system s above. Figure 2 places these



system s w ithin this steering taxonom y. Arrows ex
tend from  each system  to show a range of interaction 
possibilities.

Visual
Programming 
Language

Graphical
User
Interface

Textual

Fig. 2. Taxonom y of Steering  System s and  Tools.

SCIRun was designed to  allow m any forms of in
teraction for scientists w ithin a stand  alone system. 
It provides application steering and algorithm  refine
m ent, bu t currently provides little  true perform ance 
steering. Scripting, while m ostly lim ited to  text-only 
m anipulation , spans the gam ut of steering function
ality, perm itting  perform ance steering, algorithm  re
finement, and application steering. O ther system s fill 
a steering niche, such as P ab lo ’s focus on perform ance 
steering. Finally, some systems, such as Progress, 
Magellan, Falcon and CUMULVS, provide a range of 
steering functionality  and m any forms of interaction 
when coupled w ith a visualization system  such as AVS 
or IRIS Explorer.

V . A d v an tag es  o f P ro b le m  S o lv ing  E n 
v iro n m e n ts  fo r S te e r in g

The usefulness of com putational steering tools and 
system s need not be argued. However, the m echa
nisms for im plem enting these tools differ trem endously 
as we illustrate  in the steering taxonom y. M any times, 
steering m echanism s lim it the steering to  either m od
ifications during the algorithm  developm ent phase or 
during the m odeling and com putational cycle bu t in
h ib it steering for all phases. Problem  Solving Environ
m ents (PSEs) extend capabilities by allowing sim ilar 
steering m echanism s to  be exploited during all phases 
of developm ent, application, and perform ance steer
ing. They also allow the same visualization and anal
ysis tools to  be used during all phases.
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A Problem  Solving Environm ent a ttem p ts  to  inte
grate a domain-specific library w ith a high-level user 
interface, consisting of a very high-level language and 
a graphical interface, through the use of software in
frastructure. Problem  solving in scientific com puta
tion typically involves symbolic com putation , numeric 
com putation, and visualization. Thus, m any PSEs, 
such as M atLab, M athem atica, Maple, and ELLPACK 
[21] in tegrate num erical libraries w ith visualization 
post-processing. In m ost PSEs, the flow of d a ta  is 
unidirectional, inhibiting steering of the com putation. 
An extensive list of PSEs can be found on-line [22].

An in tegrated  problem  solving environm ent pro
vides a com plete set of tools for a scientist to  solve 
a class of problem s. In this context, com putational 
steering can be a versatile tool for m aking changes in 
models, for developing new algorithm s, for visualizing 
and analyzing results, and for tuning the perform ance 
of an application. P rogram m ing tools m ay be a nec
essary evil of the process, bu t the in tent is for the 
PSE to help the scientist accurately solve a problem  
in a m inim um  am ount of tim e. Nonetheless, scien
tists typically expend significant energy on program 
m ing, and they want answers to  “w hat-if” questions 
for things like cache perform ance, m ultiprocessor com
m unication patterns, m em ory usage, and so forth.

Steering a large scientific application involves much 
m ore th an  slapping a graphical user interface on a few 
param eters. Several of the papers m entioned above 
have suggested excellent m ethods for extracting  in
form ation from  running program s, for injecting up
dates back into the program , and for m anaging these 
changes. We argue th a t these techniques will be m ost 
effective when used in a highly in tegrated  environ
m ent, where d a ta  can be shared am ong the various 
com puting and visualization tasks. For our research, 
this in tegrated  environm ent is called SCIRun.

SCIRun employs a blend of object-oriented (C + + ), 
im perative (C and Fortran), scripted (Tel) and vi
sual (the SCIRun Dataflow interface) languages to 
build this interactive environm ent. The basic SCIRun 
system  provides an optim ized dataflow program m ing 
environm ent, a sophisticated C + +  d a ta  model li
brary, resource m anagem ent and developm ent fea
tures. SCIRun m odules im plem ent com ponents for 
com putational, m odeling and visualization tasks.

A. Steering in a Dataflow System

C om putational steering has been im plem ented in 
several dataflow environm ents [11], [12], [14]. The 
naive approach utilized by these system s allows m odi
fying com putation  based upon ou tpu ts from  the m od
ules (inter-m odule steering). As Vetter and Schwan



point out, there are three basic problem s w ith this ap
proach: m odule granularity  is crucial; m odifications 
require re-com putation; and m odifications are lim ited 
to  the num ber of m odule inputs [12]. Most dataflow- 
based com putational steering tools suffer from  these 
lim itations. The first and th ird  lim itation  are related. 
If one provides too few m odules w ithin the dataflow 
network (very coarse g ranu larity ), steering options are 
lim ited since changes are based on connections be
tween the modules. It is obvious th a t the num ber of 
m odule inputs lim it the options for steerable param 
eters. The second lim ita tion  relates to  whether in ter
m ediate results can be retained or not. If upstream  
m odules modify their ou tpu t, dow nstream  modules 
w ithout in ternal sta te  m ust recom pute since their in
puts will change.

SCIRun removes these lim itations by expanding 
m ethods for im plem enting steering. Four differ
ent m ethods are used to  im plem ent steering in the 
dataflow-oriented SCIRun system:
F e e d b a c k  lo o p s  in  t h e  d a ta f lo w  p ro g ra m . For 
a tim e-varying problem , the program  usually goes 
through a tim e-stepping loop w ith several m ajor oper
ations inside. The boundary conditions are integrated 
in one or more of these operations. If this loop is 
im plem ented in the dataflow system , then the user 
can make changes in those operators th a t will be inte
grated  on the next trip  through the loop. This is the 
typical inter-m odule steering.
C a n c e lla t io n . W hen param eters are changed, the 
m odule can choose to  cancel the current operation. 
For example, if boundary  conditions are changed, it 
m ay make sense to  cancel the com putation  and fo
cus on the new solution. Cancelling is sensible when 
solving elliptic boundary value problem s, since the so
lution does not depend on any previous solution. 
D ir e c t  l ig h tw e ig h t  p a r a m e te r  c h a n g e s . An iter
ative m atrix  solver m odule allows the user to  change 
the target error even while the m odule is executing. 
The param eter change does not pass a new token 
through the dataflow network, bu t sim ply changes 
the in ternal sta te  of the m odule, effectively changing 
the definition of the operator ra ther th an  triggering a 
new dataflow event. This allows in tra-m odule steering 
ra ther th an  ju s t inter-m odule steering. This technique 
allows changes to  take place outside of the dataflow 
stream .
R e ta in e d  s t a t e  a c ro s s  m o d u le  f ir in g s . Modules 
are not required to  be stateless. They m ay use knowl
edge from  previous iterations to  optim ize the currently 
executing operations. For example, the m atrix  solver 
m odule uses the solution vector from  the previous ex
ecution as the initial guess for an iterative solution

m ethod. W hen the changes m ade to  the system  are 
small, the solver will converge very quickly, sim ilar to  a 
tim e-dependent system  exploiting tem poral coherence 
by using the previous tim e-step as the initial guess for 
the next tim e step. A more complex exam ple of re
tained sta te  is a D elaunay triangulation  m odule th a t 
only re-meshes local regions around boundaries th a t 
have moved since the previous iteration .

These m ethods provide the m echanism s whereby 
com putational param eters can be changed during pro
gram  execution. This technique creates a much richer 
set of steerable param eters th an  previous systems.

B. Steering Optimizations
To accom m odate the large datasets required by 

high resolution com putational models, we have opti
mized and stream lined the dataflow im plem entation. 
These optim izations are m ade necessary by the lim ita
tions m any scientists have experienced w ith currently 
available dataflow visualization system s [23]. 
P ro g re s s iv e  R e f in e m e n t:  U nfortunately, because 
of m em ory and speed lim itations of current com puting 
technologies, it will not always be possible to  complete 
these large scale com putations at an interactive rate. 
To m ain tain  interactivity, the system  displays interm e
d iate results as soon as they are available. Such results 
include partia lly  converged iterative m atrix  solutions, 
partia lly  adapted finite element grids, and incom plete 
stream lines or isosurfaces. In this way, an engineer 
or scientist can watch a solution converge and decide, 
based on the results observed, to  make changes and 
s ta rt over or allow the sim ulation to  continue to  full 
convergence.
E x p lo i t in g  I n te r a c t io n  C o h e re n c e : A nother com
m on interactive change consists of moving and orient
ing portions of the geometry. Because of the nature 
of this interaction, surface movem ent is ap t to  be re
stricted  to  a sm all region of the dom ain. As m entioned 
above, sta te  can be m aintained across m odule execu
tions to  allow increm ental updates to  the results. 
D a ta  s t r u c t u r e  m a n a g e m e n t:  A naive im plem en
ta tio n  of the dataflow paradigm  m ight use the in
terconnection structure  to  make copies of the data . 
SCIRun uses shared copies of application d a ta  to  al
low the com putation  and visualization algorithm s to 
work w ithout m aking copies of the data . These shared 
regions m ay allow synchronized or unsynchronized ac
cess to  com m on data . Resources are m anaged w ith a 
simple reference counting scheme.

Through coupling these techniques, we are able to 
introduce some degree of in teractiv ity  into a process 
th a t form erly took hours, days or even weeks. Most 
of the optim izations come from  the reduced require



m ent for hum an intervention, transla tion  program s 
and large file I /O . W hile some of these techniques 
(such as displaying in term ediate results) will add to 
the com putation  tim e of the process, we a ttem p t to 
com pensate by providing optim izations (such as ex
ploiting in teraction coherence) th a t are not available 
w ith the old “d a ta  file” paradigm .

C. Responsibilities of a Problem Solving 
Environment

A problem  solving environm ent should be an effi
cient tool for solving all aspects of a problem . It should 
provide flexible m odeling, visualization and com puta
tional com ponents, bu t it will never provide a com
prehensive set. As a result, it should also provide fa
cilities for im plem enting, debugging and tuning new 
com ponents. The scientist should be able to  use these 
same tools th roughout the process - during develop
m ent, debugging, tuning, production and publication. 
To provide an efficient environm ent for developing and 
controlling scientific com putations, the problem  solv
ing environm ent assumes responsibilities.

The first responsibility is to  provide a flexible in
terface for reusing m odeling, com putational and vi
sualization com ponents. SCIRun accomplishes this 
through a visual program m ing interface th a t allows 
a scientist to  compose appropriate tools for analyzing 
and visualizing various d a ta  (including end results, in
term ediate results, and even debug data).

A problem  solving environm ent should also be re
sponsible for providing an appropriate development 
environm ent for PSE com ponents. Development in
cludes debugging and perform ance tuning. T radi
tional debuggers are typically not efficient a t dealing 
w ith the am ount of d a ta  th a t scientific program s pro
duce, so SCIRun allows the scientist to  use the same 
visual analysis tools to  exam ine and probe interm e
diate results. SCIRun also provides visualizations of 
m em ory usage, m odule CPU  usage reports, and ex
ecution states. The developm ent environm ent is fur
ther enhanced through cooperation w ith a trad itional 
debugger, which allows the user to  closely exam ine in
ternal d a ta  structures when a m odule fails. SCIRun 
employs dynam ic shared libraries to  allow the user to 
recompile only a specific m odule w ithout the expense 
of a com plete re-link. A nother SCIRun window con
tains an interactive prom pt th a t gives the user access 
to  a Tel shell th a t can be used to  interactively query 
and change param eters in the sim ulation.

A nother responsibility of a problem  solving envi
ronm ent is to  assure the efficient use of system  re
sources. In a sophisticated sim ulation, each of the 
individual com ponents (modeling, mesh generation,

nonlinear/linear solvers, visualization, etc.) typically 
consumes a large am ount of m em ory and CPU  re
sources. W hen all of these pieces are connected into 
a single program , the poten tia l com putational load is 
enormous. To use the resources effectively, SCIRun 
adopts a role sim ilar to  an operating system  in m an
aging these resources. SCIRun m anages scheduling 
and prioritization of threads, m apping of threads to 
processors, in ter-th read  com m unication, th read  stack 
growth, m em ory allocation policies, and m em ory ex
ception signals.

Steering tools and environm ents, such as Magellan 
and Pablo, th a t focus on perform ance steering and 
algorithm  refinement, address some of these issues. 
They provide m echanism s for perform ance tuning th a t 
can either be controlled by the user/developer or au
tom ated  based upon perform ance statistics. However, 
they do not provide a rich set of com ponents for com
pu ta tional steering of an application. By having an 
in tegrated  steering environm ent for bo th  developing 
and running an application, the user/developer has 
the capability  to  easily m igrate from  developm ent to 
production. Furtherm ore, steering m odifications th a t 
affect the perform ance can be more easily understood 
if discovered in an interactive setting.

D. Requirements of the Application
A problem  solving environm ent provides a fram e

work for constructing and executing steerable scien
tific and engineering applications. However, the appli
cation program m er m ust assume the responsibility of 
breaking up an application into suitable com ponents. 
In practice, this m odularization  is already present in
side m ost codes, since m odular program m ing has been 
preached by software engineers as a sensible program 
m ing style for years.

More im portantly , it is the responsibility of the 
application program m er to  ensure th a t param eter 
changes make sense w ith regard to  the underlying 
physics of the problem . In a CFD sim ulation, for ex
ample, it is not physically possible for a boundary  to 
move w ithin a single tim estep w ithout a d ram atic  im 
pact on the flow. The application program m er may 
be b etter off allowing the user to  apply forces to  a 
boundary  th a t would move the boundary in a physi
cally coherent m anner. Alternatively, the user could 
be warned th a t moving a boundary  in a non-physical 
m anner would cause gross errors in the transient so
lution.

V I. C o n clu sio n s
SCIRun a ttem p ts  to  overcome the artificial distinc

tions between scientific com puting, scientific visualiza
tion, and com putational steering. M any visualization



tasks are scientific com puting problem s themselves, 
hence are further candidates for steering. The pri
m ary goal of SCIRun is to  provide the scientist w ith a 
comprehensive environm ent w ith interfaces to  control 
and in teract w ith the sim ulation at bo th  application 
and system  levels, and to  use scientific visualization 
in all aspects of the problem . This control can be 
im plem ented w ith the best available techniques, such 
as those reviewed above. By in tegrating com puta
tional and visualization com ponents, SCIRun avoids 
the transfer of large datasets to  a separate visualiza
tion process. In addition, the scientist can use the 
same visualization tools in the developm ent stages, 
the perform ance tuning stages, the production stages, 
and even the publication stages of the scientific appli
cation.

At the application level, the m athem atical require
m ents of steering are as im portan t as the program  im 
plem entation, yet those requirem ents receive much less 
focus. For example, it is very easy for a “steerer” to 
input new d a ta  th a t represents a m athem atically  in
valid or physically impossible transition . Opponents 
of steering point at these occurrences and question the 
validity of the results from  such a system . M ethods 
of in tegrating changes in a scientifically m eaningful 
m anner need considerable investigation. W hile it is 
im portan t to  have com plete control of all param eters 
while debugging a sim ulation, production sim ulations 
should have either tigh t requirem ents for valid steering 
input or a flexible system  to help the scientist assess 
the validity of the transform ation.

C om putational steering system s are best im ple
m ented as a p art of an in tegrated  problem  solving and 
developm ent environm ent. W ith  lim ited program 
m ing effort, com putational scientists should be able 
to  interactively create, control, execute, and visualize 
complex scientific sim ulations.
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