
A n I n t e g r a t e d P r o b l e m S o l v i n g E n v i r o n m e n t :

T h e S C I R u n C o m p u t a t i o n a l S t e e r i n g S y s t e m

S te v e n G . P a r k e r , M ic h e lle M ille r , C h a r le s D . H a n s e n a n d C h r i s to p h e r R . J o h n s o n
D e p a r tm e n t o f C o m p u te r S c ie n c e , U n iv e r s i ty o f U ta h , S a lt L a k e C ity , U T 84112

{ s p a rk e r ,m m il le r ,h a n s e n ,c r j} @ c s .u ta h .e d u , h t t p : / / w w w .c s .u t a h . e d u / ~ s c i

Abstract

SC IRun is a scientific programming environm ent
that allows the interactive construction, debugging,
and steering o f large-scale scientific computations.
We review related system s and introduce a taxon
omy that explores different computational steering so
lutions. Considering these approaches, we discuss why
a tightly integrated problem solving environment, such
as SCIRun, simplifies the design and debugging phases
o f computational science applications and how such an
environm ent aids m the scientific discovery process.

I. I n t r o d u c t io n
Since the introduction of com puters, scientists and

engineers have a ttem pted to harness their power to
sim ulate complex physical phenom ena. Today, the
com puter is an alm ost universal tool used in a wide
range of scientific and engineering dom ains.

C om putational science and engineering is the field
th a t has grown out of the widespread use of com puters
to num erically sim ulate the physical phenom ena asso
ciated w ith m any problem s in science and engineering.
In a typical scenario, a com putational scientist follows
this algorithm :
C o n s t r u c t a m o d e l o f t h e p h y s ic a l p ro b le m d o
m a in . Specify the shape of the problem dom ain, as
well as other physical properties, such as electrical con
ductivity, density or viscosity. Simple problem s may
have relatively simple models, such as cubes, spheres
or other simple geometries. However, current trends
typically require the use of “real” life models th a t ac
curately portray a related physical problem dom ain.
For example, com putational medicine problem s typ i
cally addressed by the U tah Scientific C om puting and
Im aging (SCI) group involve creating a detailed model
of the hum an anatom y which describes the shape and
electrical conductivities for the bones, muscles and or
gans in a hum an torso [1]. M odeling m ay also in
clude the specification of initial conditions for the sim
ulation, such as the current weather conditions for a
weather sim ulation.
A p p ly b o u n d a r y c o n d it io n s . B oundary conditions
are the forces th a t drive a particu lar problem . Typical

boundary conditions m ay include the velocity of wind
at the input of a wind tunnel, the electrical sources for
an electrical problem , or boundary tem peratures for a
heat conduction problem . Conditions are defined on a
boundary th a t couple w ith the governing equations to
define the behavior of the system at these boundaries.
Param eters to these equations m ay also be specified
in conjunction w ith other model param eters.
D e v e lo p a n u m e r ic a l a p p r o x im a t io n to t h e g o v
e r n in g e q u a t io n s . Governing equations are a set of
p artia l differential equations th a t define the behavior
of the problem . Since the com puter cannot operate on
these equations directly, the equations are discretized
using m ethods such as F inite Difference, F inite Ele
m ent, F inite Volume, B oundary Elem ent m ethods.
C o m p u te . Once the d a ta has been specified, the
com puter is used to solve this num erical approxi
m ation. This typically involves solving a linear or
non-linear system of algebraic equations. For real
istic models, these system s of equations can be ex
trem ely large, incorporating thousands to millions of
unknowns.
V a l id a te t h e r e s u l ts . Once the solution has been
found, the scientist m ust determ ine if the results are
correct. V alidation m ethods include com puting known
problem invariants (a form of “checksum”), com paring
results w ith experim ental da ta , com paring results w ith
those of simple problem s w ith analytical solution, and
determ ining th a t the answer is plausible according to
the scientists’ expertise on the problem .
U n d e r s ta n d th e r e s u l ts . Early scientists printed
out stacks of num bers on continuous sheet line p rin t
ers and stared at them for hours. As com puters grew
m ore powerful, scientists were able to perform more
complex sim ulations. Fortunately, these more pow
erful com puters are able to present inform ation in a
m ore m eaningful way using Scientific Visualization.

Over the years, scientific com puting has grown into
a widely accepted m ethod of scientific investigation.
Scientists are continuously try ing to perform more ac
curate sim ulations, to create more realistic physical
models, and to obtain solutions in less tim e w ith less
work. M any scientists are also applying these tech
niques to new problem dom ains and are using them

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.utah.edu/~sci

A. Computational Steering

Currently, organizing, running and visualizing a
new large-scale sim ulation still requires hours, days or
weeks of a researcher’s tim e. D ata I /O and conversion
tim e further com plicates and slows the process. Even
for experienced scientists who m ay employ scripts and
conversion program s to aid them in the task, the pro
cess is anything bu t stream lined. As noted at the NSF
sponsored workshop on H ealth Care and High Perfor
m ance C om puting in 1994, scientists and engineers
w ant a system in which all these com putational com
ponents are linked. In other words, they wish to “close
the loop,” so th a t all aspects of the m odeling and sim u
lation process can be controlled graphically w ithin the
context of a single application program . In areas such
as healthcare, researchers cannot afford the predom i
nant batch-m ode approach since their applications are
tim e critical in nature.

In 1987, the V isualization in Scientific Com puting
(ViSC) workshop reported [2]: “Scientists. . . want to
drive the scientific discovery process; they want to in
teract w ith their da ta . Interactive visual computing is
a process whereby scientists com m unicate w ith d a ta
by m anipulating its visual representation during pro
cessing. The more sophisticated process of navigation
allows scientists to steer, or dynam ically modify com
pu tations while they are occurring. These processes
are invaluable tools for scientific discovery.”

A lthough these thoughts were recorded ten years
ago, they express a very simple, still current idea: th a t
scientists want more in teraction th an is perm itted by
m ost sim ulation codes. C om putational steering has
been defined as “the capacity to control the execution
of long-running, resource-intensive program s” [3]. In
com putational science, we apply this concept to link
visualization w ith com putation and geometric design
to interactively explore (steer) a sim ulation in tim e
an d /o r space. As the application is developed, a sci
entist can leverage the steering and visualization to
assist in the debugging process as well as modify the
com putational aspects based upon perform ance feed
back. As knowledge is gained, a scientist can change
the input conditions, algorithm s, or other param eters
of the sim ulation.

Im plem entation of a com putational steering envi
ronm ent requires a successful in tegration of the m any
aspects of scientific com puting, including perform ance
analysis, geometric m odeling, num erical analysis, and
scientific visualization. These requirem ents need to
be effectively coordinated w ithin an efficient com
puting environm ent (which, for large-scale problems,

to solve new practical problems. means dealing w ith the subtleties of various high-
perform ance architectures).

Recently, several tools and environm ents for com
pu ta tional steering have been developed. These range
from tools th a t modify perform ance characteristics of
running applications, either by au tom ated m eans or
by user interaction, to tools th a t modify the under
lying com putational application, thereby allowing ap
plication steering of the com putational process. Our
view is th a t a Problem Solving Environm ent (PSE)
th a t encompasses all of these characteristics, from al
gorithm developm ent through perform ance tuning to
application steering, for scientific exploration and vi
sualization and provides a rich environm ent for accom
plishing com putational science.

In the rem ainder of this paper, we first describe the
application of a system we have developed, SCIRun,
to the dom ain of com putational field problem s. Next,
we briefly describe the SCIRun software architecture.
We review related work and introduce a taxonom y
th a t explores different com putational steering solu
tions. We then present our thoughts on why a P rob
lem Solving Environm ent such as SCIRun is crucial to
com putational science and engineering.

II. C om p u tation al F ield P rob lem s and
SC IR un

SCIRun is a scientific program m ing environm ent
th a t allows the interactive construction, debugging,
and steering of large-scale scientific com putations.
The prim ary purpose of SCIRun is to enable the user
to interactively control scientific sim ulations while the
com putation is in progress. This control allows the
user, for example, to vary boundary conditions, model
geometries, a n d /o r various com putational param e
ters during sim ulation. Currently, m any debugging
system s provide this capability in a low-level form.
SCIRun, on the other hand, provides high-level con
tro l over param eters in an efficient and intuitive way
through graphical user interfaces and scientific visual
ization [4], [5]. These m ethods perm it the scientist or
engineer to “close the loop” and use the visualization
to steer phases of the com putation.

The ability to steer a large scale sim ulation pro
vides m any advantages to the scientific program m er.
As changes in param eters become more instantaneous,
the cause-effect relationships w ithin the sim ulation be
come more evident, allowing the scientist to develop
more in tu ition about the effect of problem param eters,
to detect program bugs, to develop insight into the op
eration of an algorithm , or to deepen an understanding
of the physics of the problem (s) being studied.

Initially, we designed SCIRun to solve specific prob

lems in C om putational Medicine [1], [6], bu t we have
m ade extensive efforts to make SCIRun applicable
in other com putational science and engineering prob
lem dom ains. In addressing specific problem s, we
found th a t there were a wide range of disparate de
m ands placed on a steerable problem solving environ
m ent such as the SCIRun system . We now provide a
more detailed discussion of solving com putational field
problems.

A. Geometric Modeling
In m ost com putational engineering and science ap

plications, significant geometric m odeling m ust take
place prior to sim ulation and visualization. Model
ing efforts usually involve geom etrical construction of
a physical dom ain, in which a continuous structure
m ust be discretized and adequately rendered into dis
crete spatial elements.

C onstruction of the geometric model is often one
of the m ost tim e consum ing aspects of m odeling and
sim ulation. For each new configuration, a new model
m ust be assembled. Once a m odel is up and running
sim ulations, a researcher m ust wait through an entire
sim ulation before m aking changes to the geom etry or
before learning if the changes already enacted have
been effective. Because m aking such changes and re
com puting the effects of those changes is very tim e
consuming, researchers are often restricted in the num
ber of options they can effectively test.

In the SCIRun com putational steering system , a
goal is to change geometric features of the model or
the spatial discretization of the solution dom ain in
teractively. Ideally, the user receives some degree of
feedback on the calculation alm ost im m ediately, and
is allowed to change input boundary conditions, such
as spatial location and m agnitude of a source, or the
tim estep w ith which the calculation proceeds. These
changes autom atically trigger the com putational and
visualization phases of the problem . Such an environ
m ent allows more im m ediate access to sim ulation re
sults, significantly reducing the tim e spent in m aking
sim ulation and m odeling design changes.

B. Numerical Analysis
A variety of techniques are used to num erically ap

proxim ate the p artia l differential equations (PDEs)
th a t govern m ost com putational field problem s. We
discuss the finite element (FE) m ethod here, although
m ost of the concepts apply to finite difference, bound
ary element, and m ultigrid m ethods. A pplication of
the FE m ethod yields a linear system , A x = b , where
A is the so-called “stiffness m atrix ” and can vary from
hundreds of thousands to millions of degrees of free
dom.

For solving this system , the scientist can choose
from a variety of direct and iterative solution m ethods,
as well as from different preconditioners. A user in
terface is provided to change tolerances, m axim um it
eration counts, and other num erical param eters. D ur
ing the solution process, SCIRun provides feedback on
several num erical and perform ance param eters, such
as residual error, iteration count, M FLOPS, etc. The
scientist can also interactively decide upon the level of
accuracy used for a given sim ulation based upon a p ri
ori design criteria. Upon in itia ting the sim ulation, the
scientist views the in itial results and is presented with
a visual representation of the com pu ta tion ’s effective
ness (based on various quan tita tive m easures, such as
the error per element of the finite element analysis).
Then, the scientist decides if (s)he would like to con
tinue the com putation using a more (or less) refined
level of discretization or restart the com putation with
different input conditions.

C. Scientific Visualization
Certainly, effective in terp retation of com puter sim

ulations depends upon the visualization of the data .
Traditionally, visualization has been entirely sepa
rate from the com putation phase. C om putations
were stored off to disk a n d /o r piped into a sepa
rate visualization software package once all com pu
tations are com pleted. Furtherm ore, m any scientists
relied on current “off the shelf” visualization packages
th a t are not well suited for use w ith large engineer
ing datasets (at least not in an interactive fashion).
W ith in SCIRun, visualization is an integral part of
the com putational and geom etrical m odeling phases
The user is able to visualize and explore interm edi
ate results while the calculations continue to progress.
Refined datasets are autom atically substitu ted for the
less accurate ones as they are completed.

SCIRun brings together a large collection of algo
rithm s for realizing the com ponents of a scientific com
puting environm ent outlined above. Connecting these
algorithm s in an efficient m anner into a flexible en
vironm ent contributes to the com putational steering
goal. A lthough creating new m odules for the system
is ongoing work, current efforts have concentrated on
building an in tegrated and interactive environm ent for
solving large-scale com putational field problems.

III. SC IR un - A C om pu tation al S teer
ing E nvironm ent

SCIRun is a problem solving environm ent in which
large scale com puter sim ulations can be composed, ex
ecuted, controlled and tuned interactively. Com pos
ing the sim ulation is accomplished via a visual pro

gram m ing interface to a dataflow network. Software
system s such as AVS from Advanced Visualization
Systems Inc .[7], Iris Explorer from NAG, and Visu
alization D ata Explorer from IBM [8] have m ade this
archetype popular for scientific visualization [9]. Our
work has extended this paradigm into the realm of
scientific com putation and steering.

To execute the program , one specifies param eters
w ith a graphical user interface ra ther th an w ith the
trad itional text-based datafile. Controlling a sim ula
tion involves steering the sim ulation interactively as it
progresses. In SCIRun, the typical com ponents of the
com putational paradigm - geometric modeling, nu
merical analysis, and scientific visualization - are in
tegrated into a visual program m ing environm ent th a t
provides the researcher w ith the ability to interactively
steer any one phase of the process and to see the effects
propagate throughout the system autom atically.

As an exam ple of the SCIRun system interface, see
Figure 1. A graphical representation of the dataflow
network is shown in the lower right. The boxes
represent com putational algorithm s (modules), while
lines represent d a ta connections between the modules.
Each m odule m ay have a separate user interface, such
as the m atrix solver interface at the left, th a t allows
the user to control various param eters. An interac
tive 3D viewer th a t combines visualization ou tpu t and
d a ta probes is found at the top.

W hen the user changes a param eter in any of the
m odule user interfaces, the m odule is re-executed, and
all changes are autom atically propagated to all con
necting m odules. The user is freed from worrying
about details of d a ta dependencies and d a ta file for
m ats. Changes can be m ade w ithout stopping the
com putation , thus “steering” the com putational pro
cess. W hen other changes are m ade, the com putations
will be cancelled and autom atically re-started , m ak
ing the com puter efficient as a “com putational work
bench.”

A. SCIRun - Dataflow System and Visual
Programming

Designing an environm ent to allow the steering of
complex scientific models is an enorm ous m ulti-faceted
problem , one which requires a tten tion in m any differ
ent areas, including program m ing of the system , ex
ploiting parallelism , and in teracting w ith the hum an
user.
P r o g r a m m in g S C IR u n : A network of modules in
SCIRun forms a dataflow program . The system is
program m ed visually, w ith pre-packaged m odules con
nected through use of the mouse. If the system does
not provide the necessary com ponents for a particu lar

Fig. 1. An exam ple SC IR un netw ork, showing th e dataflow
p rogram m ing interface, user interfaces for contro lling sim u
lation p a ram ete rs, and resu lts from an large finite elem ent
m odel.

task, new modules m ay be created by the user. W hen
building a new m odule, the program m er m ay lever
age off of existing d a ta structures (hash tables, binary
trees, linked lists, etc.) and u tility routines (point and
vector geometry, num erical integration, etc.). Cur
rently, adding a new m odule is accomplished by im
plem enting a C + + class.

P a ra l le l is m : The system is able to exploit parallelism
w ithin or between m odules. Inter-m odule parallelism
allows each m odule to be executed in parallel as soon
as d a ta is available on any of its input ports. In tra
m odule parallelism can be exploited by the m odule
w riter to achieve m axim um perform ance for a specific
algorithm . For example, a Stream line m odule may
com pute each stream line using a different processor, or
m ay utilize an existing dom ain decom position to pass

the advecting particles from one processor to another.
The system provides the m odule w riter w ith hooks
for exploiting parallel resources, bu t the parallel algo
rithm s m ust be im plem ented m anually by the m od
ule writer. Deciding how to allocate resources among
the available parallel tasks is an open research prob
lem th a t we (and m any others) are still investigating.
Eventually, we would like such allocations to be under
the control of the user, to perm it steering all aspects
of the com putation.
U s e r I n te r a c t io n : SCIRun facilitates control over
m any param eters, including model param eters in 3D
space. W hile scientists are excited by this opportunity,
3D in teraction presents a very complex hum an com
puter in teraction problem . W hile we have not entirely
solved these problem s, we have addressed them by em
ploying 3D widgets [10] to assist interaction. Clear
presentation of the large quantities of inform ation pro
duced will require further research in 2D and 3D user
interface design.

IV. T axonom y of S teering S ystem s
Even though the area of com putational steering is

fairly young, m any system s and tools exist to assist
program m ers and scientific researchers in tuning and
running scientific codes. It would be helpful to th ink
of these com putational tools and system s w ithin a con
ceptual fram ework in order to com pare and contrast
them . In the following section, we will review the work
of others who previously sought to classify com puta
tional steering systems. Afterwards, we will present a
cohesive taxonom y for describing com putational steer
ing system s and toolsets.

A. Previous Classifications

B urnett, et al.[11] propose a taxonom y for com
pu ta tional steering using visual languages. V isualiza
tion system s studied vary on a continuum from post
processing through tracking to interactive visualiza
tion to steering. Interfaces presented range from a
tex tual interface to a graphical user interface to a vi
sual program m ing language interface. The authors ar
gue for a m erging of the interactive experim entation
allowed by steering capabilities and the ease of use of
a visual program m ing language for a researcher not
tra ined in program m ing.

Vetter and Schwan [12] delineate two types of steer
ing in existing systems: hum an-interactive steering
and algorithm ic steering. In hum an-interactive steer
ing, a person m onitors the com putation and m anip
ulates param eters of the com putation while it is exe
cuting. In algorithm ic steering, the com puter makes

decisions by m onitoring inform ation and other sources
such as history files. Vetter and Schwan describe
a simple feedback model for com putational steering
wherein ou tpu t is m onitored by a steering agent, ei
ther hum an or algorithm . The steering agent performs
steering actions (which could be changes to the param
eters of the com putation) based on m onitored inputs.
They provide examples dem onstrating the steering of
an application’s perform ance (load-balancing), which
autom atically adapts the d istribu ted load based upon
run-tim e statistics.

As noted by B urnett et al.for hum an-interactive
steering, the m echanism of in teraction affects the ease
of use of the system to a scientist. Systems range
from providing a tex tual interface from which to steer
to providing a graphical interface. Of course, a vi
sual program m ing language could foster the creation
of a steering environm ent th a t allows the user to view
the program , the sim ulation, and the steering m echa
nism potentially all a t the same tim e. On the other
hand, algorithm ic steering would be program m ed en
tirely behind the scenes, bu t would require more pro
gram m ing expertise.

W hile bo th of these classifications provide insight
into differing tools and applications for sim ulation
steering, they provide orthogonal views. B u rn e tt’s
work focuses on the level of steering and the visual
interface while V etter’s classification is based upon
whether the steering process could be autom ated.
Next, we will review existing tools for sim ulation steer
ing and present a different taxonom y th a t a ttem p ts to
highlight the richness of a sim ulation steering environ
m ent or toolset.

B. Some Existing Tools for Steering

L ig h tw e ig h t S te e r in g : S c r ip t in g L a n g u a g e s a n d
W ra p p e r s : Beazley and Lom dahl [13] dem onstrate
the use of a lightweight m ethod of steering a very
large-scale m olecular dynam ics sim ulation. Using a
Simplified W rapper Interface G enerator (SW IG) to
w rap existing sim ulation codes, a scientific researcher
can easily build a scripting language interface, such as
T c l/T k or Python, for steering a com putation. Their
work highlights the ease of converting existing scien
tific codes into a form in which they can be glued
together by a control language. Then, the researcher
m onitors and m anipulates the com putation or sim ula
tion using scripting com m ands. Clearly, this m ethod
requires knowledge of how to program in scripting lan
guages and does not explicitly constitu te a steering
toolkit.
C U M U L V S : The CUMULVS library [14], developed
at ORNL, acts as a m iddle layer between PVM ap

plications and existing visualization packages such as
AVS. After initializing a viewer, the application pro
gram m er can provide a list of param eters to be ad
ju sted on-the-fly in a CUMULVS steering in itializa
tion procedure call. Separate procedure calls are used
for altering scalar or vector param eters from w ithin
the application. CUMULVS supports m ultiple viewers
viewing the same running application to assist collab
orations. An interesting checkpointing capability for
rolling back and restarting a failed program run has
the poten tia l to allow cross-platform m igration and
heterogeneous restart of an application.
P ro g re s s a n d M a g e lla n : The Progress Toolkit [15],
developed at the Georgia In stitu te of Technology, as
sists application program m ers in developing steerable
applications. Program m ers instrum ent their appli
cations w ith library calls, using “steerable objects,”
which can be altered at runtim e through the use of the
Progress runtim e system . Steerable objects include
sensors, actuators, probes, function hooks, complex
actions, and synchronization points. Progress uses a
client/server program model.

Developed by the same group, the M agellan Steer
ing System [16] is derived from the Progress system,
and extends the steering clients and steering servers
m odel used in the initial system . This system uses a
specialized specification language, ACSL, which pro
vides com m ands for m onitoring and steering using
probes, sensors and actuators. However, application
codes still m ust be instrum ented w ith these com m ands
in order to utilize the steering capabilities of this sys
tem . These system s have been used for M olecular Dy
nam ics sim ulations.

B oth system s are layered on top of the Falcon sys
tem [17], also developed at G IT, which m onitors a run
ning program , capturing inform ation ranging from a
single program variable, much as a debugger would, to
complex expressions. It also perm its the m onitoring of
perform ance data , w ith interfaces to visualization sys
tem s, such as Iris Explorer. However, decisions about
which steering actions to take are based on previously
encoded routines stored in a steering event database
located on a steering server.
V A S E : The V isualization and A pplication Steering
Environm ent [18] (VASE), from the Center for Super
com puting Research and Development at UIUC, pro
vides a toolset for interactive visualization and steer
ing in a d istribu ted environm ent. The VASE user
m odel identifies three d istinct roles: an application
developer who writes the scientific codes; a configurer
who sets up the d istribu ted environm ent (including
interprocess com m unication); and an end user (or re
searcher) who uses and steers the application. Steering

is accomplished through the use of steerable locations
(program m er-defined breakpoints), altering the values
of variables and param eters, and adding program m ing
sta tem ents and scripts as the com putation proceeds.
VASE uses a control-flow program m ing model, which
is displayed to the end user to guide steering. VASE
allows algorithm refinement through the use of script
m odification at run-tim e. Thus, the steering process
can modify not only the com putational param eters
and perform ance characteristics bu t also the actual
code.
P a b lo : The Pablo perform ance environm ent [19], also
designed at UIUC, provides library routines for in
strum enting source code to extract perform ance d a ta
as the code executes. This system follows the Falcon
m odel of utilizing sensors to collect inform ation from
the executing code, and altering system characteristics
or param eters through the use of actuators. It seeks
to tune the perform ance of running applications as
they execute. Two different models for performance-
directed adaptive control (or perform ance steering)
are discussed: closed-loop adaptive control and in ter
active adaptive control. F irst, a neural network classi
fies file access pa tterns qualitatively in order to change
the file policy on-the-fly, varying cache size and cache
block replacem ent policy as needed by the executing
code. Secondly, to enable hum an-interactive steering,
Pablo developers argue for the use of an immersive en
vironm ent, specifically the A vatar v irtual environm ent
proto type [20] built a t the U IU C/N CSA .

C. A Taxonomy for Steering

After exam ining the tools presented above (among
others), we identified three d istinct types of steering
in current systems: application steering, algorithm
refinement, and perform ance steering. A pplication
steering refers to the capability to modify the com
pu ta tional process through param eter changes, mesh
m odifications, or other changes th a t affect the com
pu ta tional aspects of the sim ulation. Steering by al
gorithm refinement allows the underlying code to be
modified or refined at runtim e. Perform ance steer
ing focuses on changing com putational resources th a t
affect the sim ulation perform ance such as load balanc
ing, I /O , cache strategies or other perform ance related
m odifications.

Similarly, there is a continuum of in teraction s tra te
gies from tex tual to visual program m ing th a t provide
m eans for a user to interactively steer the com puta
tion. It should be noted th a t any steering m odification
could also be accomplished through au tom ated means
(i.e .,requiring no end user interaction), as described
in some of the system s above. Figure 2 places these

system s w ithin this steering taxonom y. Arrows ex
tend from each system to show a range of interaction
possibilities.

Visual
Programming
Language

Graphical
User
Interface

Textual

Fig. 2. Taxonom y of Steering System s and Tools.

SCIRun was designed to allow m any forms of in
teraction for scientists w ithin a stand alone system.
It provides application steering and algorithm refine
m ent, bu t currently provides little true perform ance
steering. Scripting, while m ostly lim ited to text-only
m anipulation , spans the gam ut of steering function
ality, perm itting perform ance steering, algorithm re
finement, and application steering. O ther system s fill
a steering niche, such as P ab lo ’s focus on perform ance
steering. Finally, some systems, such as Progress,
Magellan, Falcon and CUMULVS, provide a range of
steering functionality and m any forms of interaction
when coupled w ith a visualization system such as AVS
or IRIS Explorer.

V . A d v an tag es o f P ro b le m S o lv ing E n
v iro n m e n ts fo r S te e r in g

The usefulness of com putational steering tools and
system s need not be argued. However, the m echa
nisms for im plem enting these tools differ trem endously
as we illustrate in the steering taxonom y. M any times,
steering m echanism s lim it the steering to either m od
ifications during the algorithm developm ent phase or
during the m odeling and com putational cycle bu t in
h ib it steering for all phases. Problem Solving Environ
m ents (PSEs) extend capabilities by allowing sim ilar
steering m echanism s to be exploited during all phases
of developm ent, application, and perform ance steer
ing. They also allow the same visualization and anal
ysis tools to be used during all phases.

SCIRun

r Progress
Falcon
IRIS Explorer

Pablo

Magellan

C
CUMULVS + AVS

VASE

CUMULVS

Scripti ng (app built with SWIG)

/
CF*

/

A Problem Solving Environm ent a ttem p ts to inte
grate a domain-specific library w ith a high-level user
interface, consisting of a very high-level language and
a graphical interface, through the use of software in
frastructure. Problem solving in scientific com puta
tion typically involves symbolic com putation , numeric
com putation, and visualization. Thus, m any PSEs,
such as M atLab, M athem atica, Maple, and ELLPACK
[21] in tegrate num erical libraries w ith visualization
post-processing. In m ost PSEs, the flow of d a ta is
unidirectional, inhibiting steering of the com putation.
An extensive list of PSEs can be found on-line [22].

An in tegrated problem solving environm ent pro
vides a com plete set of tools for a scientist to solve
a class of problem s. In this context, com putational
steering can be a versatile tool for m aking changes in
models, for developing new algorithm s, for visualizing
and analyzing results, and for tuning the perform ance
of an application. P rogram m ing tools m ay be a nec
essary evil of the process, bu t the in tent is for the
PSE to help the scientist accurately solve a problem
in a m inim um am ount of tim e. Nonetheless, scien
tists typically expend significant energy on program
m ing, and they want answers to “w hat-if” questions
for things like cache perform ance, m ultiprocessor com
m unication patterns, m em ory usage, and so forth.

Steering a large scientific application involves much
m ore th an slapping a graphical user interface on a few
param eters. Several of the papers m entioned above
have suggested excellent m ethods for extracting in
form ation from running program s, for injecting up
dates back into the program , and for m anaging these
changes. We argue th a t these techniques will be m ost
effective when used in a highly in tegrated environ
m ent, where d a ta can be shared am ong the various
com puting and visualization tasks. For our research,
this in tegrated environm ent is called SCIRun.

SCIRun employs a blend of object-oriented (C + +),
im perative (C and Fortran), scripted (Tel) and vi
sual (the SCIRun Dataflow interface) languages to
build this interactive environm ent. The basic SCIRun
system provides an optim ized dataflow program m ing
environm ent, a sophisticated C + + d a ta model li
brary, resource m anagem ent and developm ent fea
tures. SCIRun m odules im plem ent com ponents for
com putational, m odeling and visualization tasks.

A. Steering in a Dataflow System

C om putational steering has been im plem ented in
several dataflow environm ents [11], [12], [14]. The
naive approach utilized by these system s allows m odi
fying com putation based upon ou tpu ts from the m od
ules (inter-m odule steering). As Vetter and Schwan

point out, there are three basic problem s w ith this ap
proach: m odule granularity is crucial; m odifications
require re-com putation; and m odifications are lim ited
to the num ber of m odule inputs [12]. Most dataflow-
based com putational steering tools suffer from these
lim itations. The first and th ird lim itation are related.
If one provides too few m odules w ithin the dataflow
network (very coarse g ranu larity), steering options are
lim ited since changes are based on connections be
tween the modules. It is obvious th a t the num ber of
m odule inputs lim it the options for steerable param
eters. The second lim ita tion relates to whether in ter
m ediate results can be retained or not. If upstream
m odules modify their ou tpu t, dow nstream modules
w ithout in ternal sta te m ust recom pute since their in
puts will change.

SCIRun removes these lim itations by expanding
m ethods for im plem enting steering. Four differ
ent m ethods are used to im plem ent steering in the
dataflow-oriented SCIRun system:
F e e d b a c k lo o p s in t h e d a ta f lo w p ro g ra m . For
a tim e-varying problem , the program usually goes
through a tim e-stepping loop w ith several m ajor oper
ations inside. The boundary conditions are integrated
in one or more of these operations. If this loop is
im plem ented in the dataflow system , then the user
can make changes in those operators th a t will be inte
grated on the next trip through the loop. This is the
typical inter-m odule steering.
C a n c e lla t io n . W hen param eters are changed, the
m odule can choose to cancel the current operation.
For example, if boundary conditions are changed, it
m ay make sense to cancel the com putation and fo
cus on the new solution. Cancelling is sensible when
solving elliptic boundary value problem s, since the so
lution does not depend on any previous solution.
D ir e c t l ig h tw e ig h t p a r a m e te r c h a n g e s . An iter
ative m atrix solver m odule allows the user to change
the target error even while the m odule is executing.
The param eter change does not pass a new token
through the dataflow network, bu t sim ply changes
the in ternal sta te of the m odule, effectively changing
the definition of the operator ra ther th an triggering a
new dataflow event. This allows in tra-m odule steering
ra ther th an ju s t inter-m odule steering. This technique
allows changes to take place outside of the dataflow
stream .
R e ta in e d s t a t e a c ro s s m o d u le f ir in g s . Modules
are not required to be stateless. They m ay use knowl
edge from previous iterations to optim ize the currently
executing operations. For example, the m atrix solver
m odule uses the solution vector from the previous ex
ecution as the initial guess for an iterative solution

m ethod. W hen the changes m ade to the system are
small, the solver will converge very quickly, sim ilar to a
tim e-dependent system exploiting tem poral coherence
by using the previous tim e-step as the initial guess for
the next tim e step. A more complex exam ple of re
tained sta te is a D elaunay triangulation m odule th a t
only re-meshes local regions around boundaries th a t
have moved since the previous iteration .

These m ethods provide the m echanism s whereby
com putational param eters can be changed during pro
gram execution. This technique creates a much richer
set of steerable param eters th an previous systems.

B. Steering Optimizations
To accom m odate the large datasets required by

high resolution com putational models, we have opti
mized and stream lined the dataflow im plem entation.
These optim izations are m ade necessary by the lim ita
tions m any scientists have experienced w ith currently
available dataflow visualization system s [23].
P ro g re s s iv e R e f in e m e n t: U nfortunately, because
of m em ory and speed lim itations of current com puting
technologies, it will not always be possible to complete
these large scale com putations at an interactive rate.
To m ain tain interactivity, the system displays interm e
d iate results as soon as they are available. Such results
include partia lly converged iterative m atrix solutions,
partia lly adapted finite element grids, and incom plete
stream lines or isosurfaces. In this way, an engineer
or scientist can watch a solution converge and decide,
based on the results observed, to make changes and
s ta rt over or allow the sim ulation to continue to full
convergence.
E x p lo i t in g I n te r a c t io n C o h e re n c e : A nother com
m on interactive change consists of moving and orient
ing portions of the geometry. Because of the nature
of this interaction, surface movem ent is ap t to be re
stricted to a sm all region of the dom ain. As m entioned
above, sta te can be m aintained across m odule execu
tions to allow increm ental updates to the results.
D a ta s t r u c t u r e m a n a g e m e n t: A naive im plem en
ta tio n of the dataflow paradigm m ight use the in
terconnection structure to make copies of the data .
SCIRun uses shared copies of application d a ta to al
low the com putation and visualization algorithm s to
work w ithout m aking copies of the data . These shared
regions m ay allow synchronized or unsynchronized ac
cess to com m on data . Resources are m anaged w ith a
simple reference counting scheme.

Through coupling these techniques, we are able to
introduce some degree of in teractiv ity into a process
th a t form erly took hours, days or even weeks. Most
of the optim izations come from the reduced require

m ent for hum an intervention, transla tion program s
and large file I /O . W hile some of these techniques
(such as displaying in term ediate results) will add to
the com putation tim e of the process, we a ttem p t to
com pensate by providing optim izations (such as ex
ploiting in teraction coherence) th a t are not available
w ith the old “d a ta file” paradigm .

C. Responsibilities of a Problem Solving
Environment

A problem solving environm ent should be an effi
cient tool for solving all aspects of a problem . It should
provide flexible m odeling, visualization and com puta
tional com ponents, bu t it will never provide a com
prehensive set. As a result, it should also provide fa
cilities for im plem enting, debugging and tuning new
com ponents. The scientist should be able to use these
same tools th roughout the process - during develop
m ent, debugging, tuning, production and publication.
To provide an efficient environm ent for developing and
controlling scientific com putations, the problem solv
ing environm ent assumes responsibilities.

The first responsibility is to provide a flexible in
terface for reusing m odeling, com putational and vi
sualization com ponents. SCIRun accomplishes this
through a visual program m ing interface th a t allows
a scientist to compose appropriate tools for analyzing
and visualizing various d a ta (including end results, in
term ediate results, and even debug data).

A problem solving environm ent should also be re
sponsible for providing an appropriate development
environm ent for PSE com ponents. Development in
cludes debugging and perform ance tuning. T radi
tional debuggers are typically not efficient a t dealing
w ith the am ount of d a ta th a t scientific program s pro
duce, so SCIRun allows the scientist to use the same
visual analysis tools to exam ine and probe interm e
diate results. SCIRun also provides visualizations of
m em ory usage, m odule CPU usage reports, and ex
ecution states. The developm ent environm ent is fur
ther enhanced through cooperation w ith a trad itional
debugger, which allows the user to closely exam ine in
ternal d a ta structures when a m odule fails. SCIRun
employs dynam ic shared libraries to allow the user to
recompile only a specific m odule w ithout the expense
of a com plete re-link. A nother SCIRun window con
tains an interactive prom pt th a t gives the user access
to a Tel shell th a t can be used to interactively query
and change param eters in the sim ulation.

A nother responsibility of a problem solving envi
ronm ent is to assure the efficient use of system re
sources. In a sophisticated sim ulation, each of the
individual com ponents (modeling, mesh generation,

nonlinear/linear solvers, visualization, etc.) typically
consumes a large am ount of m em ory and CPU re
sources. W hen all of these pieces are connected into
a single program , the poten tia l com putational load is
enormous. To use the resources effectively, SCIRun
adopts a role sim ilar to an operating system in m an
aging these resources. SCIRun m anages scheduling
and prioritization of threads, m apping of threads to
processors, in ter-th read com m unication, th read stack
growth, m em ory allocation policies, and m em ory ex
ception signals.

Steering tools and environm ents, such as Magellan
and Pablo, th a t focus on perform ance steering and
algorithm refinement, address some of these issues.
They provide m echanism s for perform ance tuning th a t
can either be controlled by the user/developer or au
tom ated based upon perform ance statistics. However,
they do not provide a rich set of com ponents for com
pu ta tional steering of an application. By having an
in tegrated steering environm ent for bo th developing
and running an application, the user/developer has
the capability to easily m igrate from developm ent to
production. Furtherm ore, steering m odifications th a t
affect the perform ance can be more easily understood
if discovered in an interactive setting.

D. Requirements of the Application
A problem solving environm ent provides a fram e

work for constructing and executing steerable scien
tific and engineering applications. However, the appli
cation program m er m ust assume the responsibility of
breaking up an application into suitable com ponents.
In practice, this m odularization is already present in
side m ost codes, since m odular program m ing has been
preached by software engineers as a sensible program
m ing style for years.

More im portantly , it is the responsibility of the
application program m er to ensure th a t param eter
changes make sense w ith regard to the underlying
physics of the problem . In a CFD sim ulation, for ex
ample, it is not physically possible for a boundary to
move w ithin a single tim estep w ithout a d ram atic im
pact on the flow. The application program m er may
be b etter off allowing the user to apply forces to a
boundary th a t would move the boundary in a physi
cally coherent m anner. Alternatively, the user could
be warned th a t moving a boundary in a non-physical
m anner would cause gross errors in the transient so
lution.

V I. C o n clu sio n s
SCIRun a ttem p ts to overcome the artificial distinc

tions between scientific com puting, scientific visualiza
tion, and com putational steering. M any visualization

tasks are scientific com puting problem s themselves,
hence are further candidates for steering. The pri
m ary goal of SCIRun is to provide the scientist w ith a
comprehensive environm ent w ith interfaces to control
and in teract w ith the sim ulation at bo th application
and system levels, and to use scientific visualization
in all aspects of the problem . This control can be
im plem ented w ith the best available techniques, such
as those reviewed above. By in tegrating com puta
tional and visualization com ponents, SCIRun avoids
the transfer of large datasets to a separate visualiza
tion process. In addition, the scientist can use the
same visualization tools in the developm ent stages,
the perform ance tuning stages, the production stages,
and even the publication stages of the scientific appli
cation.

At the application level, the m athem atical require
m ents of steering are as im portan t as the program im
plem entation, yet those requirem ents receive much less
focus. For example, it is very easy for a “steerer” to
input new d a ta th a t represents a m athem atically in
valid or physically impossible transition . Opponents
of steering point at these occurrences and question the
validity of the results from such a system . M ethods
of in tegrating changes in a scientifically m eaningful
m anner need considerable investigation. W hile it is
im portan t to have com plete control of all param eters
while debugging a sim ulation, production sim ulations
should have either tigh t requirem ents for valid steering
input or a flexible system to help the scientist assess
the validity of the transform ation.

C om putational steering system s are best im ple
m ented as a p art of an in tegrated problem solving and
developm ent environm ent. W ith lim ited program
m ing effort, com putational scientists should be able
to interactively create, control, execute, and visualize
complex scientific sim ulations.

V II. A ck n o w led g m en ts

This work was supported in part by the NSF, NIH,
DOE, and the U tah S tate Centers of Excellence.

R eferen ces

[1] C.R. Johnson, R.S. MacLeod, and M.A. Matheson, “Com
putational medicine: Bioelectric field problems”, IEEE
COMPUTER, pp. 59-67, Oct., 1993.

[2] T. De Fanti et al, “Special issue on visualization in scien
tific computing”, Computer Graphics, vol. 21, no. 6, Nov.
1987.

[3] W. Gu, J. Vetter, and K. Schwan, “An annotated bibliog
raphy of interactive program steering”, Georgia Institute
of Technology Technical Report, 1994.

[4] S.G. Parker, D.M. Weinstein, and C.R. Johnson, “The
SCIRun computational steering software system” , in Mod
ern Software Tools in Scientific Computing, E. Arge, A.M.

Bruaset, and H.P. Langtangen, Eds., pp. 1—44. Birkhauser
Press, 1997.

[5] S.G. Parker and C.R. Johnson, “SCIRun: A scientific pro
gramming environment for computational steering”, in Su
percomputing ‘95. 1995, IEEE Press.

[6] C.R. Johnson and S.G. Parker, “A computational steering
model for problems in medicine”, in Supercomputing ‘94•
1994, pp. 540-549, IEEE Press.

[7] C. Upson and et al., “The application visualization system:
A computational environment for scientific visualization”,
IEEE Computer Graphics & Applications, vol. 9, no. 4,
pp. 30-42, July 1989.

[8] B. Lucas and et al., “An architecture for a scientific vi
sualization system”, in Proceedings of Visualization ’92.
1992, pp. 107-114, IEEE Press.

[9] C. Wiliams, J. Rasure, and C. Hansen, “The state of the
art of visual languages for visualization” , in Proceedings of
Visualization ’92. 1992, pp. 202—209, IEEE Press.

[10] R. Zeleznik and et al., “An interactive 3d toolkit for con
structing 3d widgets”, Computer Graphics (Proceedings of
SIGGRAPH ’93), pp. 81-84, July 1993.

[11] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and
X. Yang, “Toward visual programming languages for steer
ing scientific computations” , IEEE Computational Science
and Engineering, vol. 1, no. 4, pp. 44—62, 1994.

[12] J. Vetter and K. Schwan, “Models for computational steer
ing” , in Proceedings of the Third International Conference
on Configurable Distributed Systems, 1996.

[13] D.M. Beazley and P.S. Lomdahl, “Controlling the data
glut in large-scale molecular-dynamics simulations”, Com
puters in Physics, vol. 11, no. 3, pp. 230—238, May/June
1997.

[14] G.A. Geist, J.A. Kohl, and P.M. Papadopoulos, “Cumulvs:
Providing fault-tolerance, visualization and steering of par
allel applications”, SIAM, Aug. 1996.

[15] J. Vetter and K. Schwan, “Progress: A toolkit for interac
tive program steering”, in Proceedings of the 24th Annual
Conference of International Conference on Parallel Pro
cessing, 1995, pp. 139 - 142.

[16] J. Vetter and K. Schwan, “High performance computa
tional steering of physical simulations”, in Proceedings
of the 11th International Parallel Processing Symposium.
Apr. 1997, Geneva, Switzerland.

[17] W. Gu, G. Eisenhauer, E. Kramer, K. Schwan, J. Stasko,
and J. Vetter, “Falcon: On-line monitoring and steering
of large-scale parallel programs”, in Proceedings of the 5th
Symposium of the Frontiers of Massively Parallel Comput
ing. Feb. 1995, pp. 422 - 429, ACM.

[18] D.J. Jablonowski, J.D. Bruner, B. Bliss, and R.B. Haber,
“Vase: The visualization and application steering environ
ment”, in Proceedings of Supercomputing ‘93. 1993, pp.
560 — 569, IEEE Computer Society Press.

[19] D.A. Reed, C.L. Elford, T.M. Madhyastha, E. Smirni, and
S.E. Lamm, “The next frontier: Interactive and closed loop
performance steering”, in Proceedings of the 25th Annual
Conference of International Conference on Parallel Pro
cessing, 1996.

[20] D.A. Reed, K.A. Shields, L.F. Tavera, W.H. Scullin, and
C.L. Elford, “Virtual reality and parallel systems perfor
mance analysis”, IEEE Computer, pp. 57 — 67, Nov. 1995.

[21] J.R. Rice and Boisvert R.F., Solving Elliptic Problems
using ELLPACK, Springer-Verlag, 1984.

[22] ”, Problem Solving Environments - Projects, Products,
Applications and Tools:
http:/ / www.es.purdue.edu/research/cse/pses/research.html

[23] B. Ribarsky and et al., “Object-oriented, dataflow visu
alization systems—A paradigm shift?”, in Proceedings of
Visualization ’92. 1992, pp. 384-388, IEEE Press.

http://www.es.purdue.edu/research/cse/pses/research.html

