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Conjecture concerning the modes of excitation of the quark-gluon plasma
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It is a widely held belief that at temperatures much higher than the confinement scale of quantum 
chromodynamics (QCD), quarks and gluons become free, giving rise to a new form of matter, called 
the quark-gluon plasma. It is conjectured here that the characterization of the plasma as a free or 
weakly interacting gas of quarks and gluons is valid only for short distances and short time scales of 
the order 1 /7 ’, but that at scales larger than \ / g 2T  (where g 2 is the running QCD coupling) the 
plasma exhibits confining features similar to that of the low-temperature hadronic phase. The con
fining features are manifest in the long-range, i.e., long-wavelength, low-frequency, modes of the 
plasma. To examine the long-range real-time response of the plasma goes beyond the capabilities of 
current lattice-gauge-theory techniques. However, some properties of these modes can be deter
mined indirectly. An attempt is made to characterize the long-range modes of excitation by examin
ing the static high-temperature limit, focusing upon the static screening lengths of colored and neu
tral local operators. Since g 2 is not small at temperatures likely to be accessible in heavy-ion col
lisions, the nonperturbative effects associated with vestiges of confinement are likely to be important 
in the phenomenological analysis of measurements made at accelerators.

I. INTRODUCTION

It is natural to assume that asymptotic freedom permits 
us to use perturbation theory to describe the properties of 
matter at temperatures well above the confinement scale 
Aqcd> since the temperature T  sets a scale for interac
tions. However, it has been known for some time that 
there are problems with infrared divergences in high- 
temperature quantum-chromodynamic (QCD) perturba
tion theory. A straightforward attempt to calculate the 
“magnetic mass” of the gluon perturbatively encounters 
infrared divergences that prevent an orderly summation of 
diagrams.1-3 Furthermore, in the Yang-Mills theory of 
purely gluonic matter, the Wilson-loop expectation value 
has an “area-law” behavior for loops with a strictly spa
tial orientation at low as well as high temperatures, a 
behavior usually associated with nonperturbative confine
ment.

To study the possible nonperturbative or confining 
features of the plasma, it is necessary, of course, to avoid 
using perturbation theory. The approach adopted here 
draws upon what is known or can be known through 
direct numerical studies of the Euclidean functional- 
integral formulation of the theory, paying particular at
tention to the stable or nearly stable modes of excitation 
of the plasma. These excitations are associated with nar
row peaks at low frequency co and low wave number k  in 
the spectral function p AB of pairs of local operators A 
and B:
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(1.1a)

p AB(k,co) =  ( \ + e - e(0)SAB(k,co) . ' (1.1b)

The operation ( ) denotes an average on the Gibbs en
semble. The upper sign is for bosons, lower for fermions. 
For the relativistic quantum-electrodynamic (QED) plas
ma these excitations are the quasielectron, the plasmon, 
the photon, and, at long wavelengths, the various hydro
dynamic modes, namely, the photon and viscous-damping 
and thermal-conduction modes. The peaks in p are nar
row typically at low k where dissipation is weak. These 
are the modes of a nonconfining gauge theory. If QCD 
were to be nonconfining at high temperature, then it 
would be expected to have a similar assortment of excita
tions. I suggest below, however, that this need not be the 
case for QCD. Instead the long-wavelength excitations 
could be color singlets and “hadronic” in character just as 
they are at zero temperature.

As an electron moves through a QED plasma it polar
izes the surrounding medium, with the result that on a 
scale much longer than the Debye screening length no net 
current flow is associated with its passage. It is important 
to be able to distinguish this screening phenomenon from 
a confining phenomenon in QCD, which would also lead 
to a cancellation of the color current of a moving quark. 
To this end one may compare the propagator of the quark 
operator in a suitable gauge with the propagator of an 
operator for a color-singlet meson containing that quark. 
In the case of confinement both propagators have a large- 
distance decay controlled by the same mass constant. In 
the case of screening they do not. It is essential to choose 
a suitable definition of the quark propagator for the pur
poses of carrying out this test. The “confinement” test is 
described in Sec. II. This test is nothing but a rephrasing 
of the area-law test for spacelike Wilson loops, but it is 
helpful to phrase it in terms of the quark propagator it
self.
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The term “screening” has also been used to characterize 
the response of the zero-temperature vacuum and high- 
temperature plasma to the introduction of magnetic 
strings.4,5 This “magnetic screening” is compatible with 
the term “confinement” as it is used here. See the Appen
dix.

To study the modes of excitation of the plasma, it 
would obviously be most desirable to carry out the diffi
cult, full, nonperturbative analysis of the real-time 
response and construct the spectral function (1.1) directly. 
Such a goal lies beyond the capabilities of current lattice- 
gauge-theory techniques. For the present, therefore, we 
must content ourselves with studying the imaginary-time 
response, for which a nonperturbative numerical analysis 
in lattice-gauge theory is possible. In imaginary time, 
correlation functions are measured over a time scale of 
maximum interval A \mt  =  1 /T .  Fourier analysis yields 
information about Green’s functions at discrete imaginary 
frequencies.6 In principle an analytic continuation would 
result in a complete knowledge of the spectral function 
for real co. However, in practical calculations statistical 
errors and a limited lattice size make the continuation im
possible. Thus, studying only the imaginary-time 
response imposes a severe limitation upon the available in
formation.

At high temperatures it has been shown that at macro
scopic scales the (3 + 1  )-dimensional gauge theory reduces 
to a three-dimensional Euclidean gauge theory.1,7-9 To 
be more specific, the Green’s functions for k and co much 
less than T  in the (3 + 1  )-dimensional theory can be com
puted as if  the theory were a zero-temperature Euclidean 
three-dimensional pure Yang-Mills theory, augmented by 
a minimally coupled color-octet scalar field (the vestige of 
A 0). The coupling constant of the three-dimensional 
theory is g^2= g 2T, which also sets the scale for confine
ment. It has been shown by Nadkharni9 that the dimen
sional reduction is valid to the one-loop level in perturba
tion theory. This dimensional reduction is illustrated in 
strong-coupling lattice-gauge theory in Sec. III.

Because the three-dimensional Yang-Mills theory is 
confining, its spectrum must consist of color-singlet ana
logs of glueballs. These states of the three-dimensional 
theory give some information about the modes of excita
tion of the (3 +  1)-dimensional theory. In particular, if a 
plasma mode has a dispersion relation given by

f(k,co) =  0 , (1.2)

then, as shown in Sec. IV, masses M 3 of the glueballs in 
the three-dimensional theory correspond to roots of the 
equation

f ( ± i M 3,0) =  0 , (1.3)

if  the roots exist.
In quantum electrodynamics the various nonhydro

dynamic modes, namely, the quasielectron, plasmon, and 
transverse electromagnetic waves, all have the property 
that the roots (1.3) for imaginary wave number corre
spond one-to-one with the roots of (1.2) for real wave 
number and nearly real frequency—i.e., the two
dimensional surface in complex k and co defined by (1.2) 
intersects the imaginary k axis at co=0. For example the

plasmon in QED is associated with Debye screening. It is 
conjectured that this correspondence is also found in 
QCD, but that only color-singlet modes occur there. If 
so, then the long-range (distances of the order 1 / g 2T)  
modes of the plasma must be “confined” color-singlet 
modes in order to coincide with the spectrum of the con
fined static three-dimensional theory at co =  0. This con
jecture is offered as the simplest possibility that permits a 
reconciliation of the long-range confining characteristics 
of the three-dimensional theory and what is known about 
the validity of perturbation theory in the (3 + 1  )- 
dimensional theory. There are other possibilities. A low- 
lying color-nonsinglet mode of the plasma could have a 
dispersion relation for which no root to (1.3) exists for 
M 3 < 0 ( 7 ’), the ultraviolet cutoff for the three
dimensional theory. In that case the confined modes with 
masses M 3 could become unstable with respect to decay 
into color-nonsinglet modes. The possibility of such an 
instability was suggested by d’Hoker with reference to the 
QCD plasmon.10 A further possibility is that a color- 
nonsinglet mode could satisfy (1.3), but decouple from all 
local operators at co =  0. Indeed, this behavior is found for 
the color-singlet hydrodynamic modes.

As a consequence of this conjecture, the following 
characterization of the high-temperature plasma 
( T » A q C D ) emerges, as illustrated in Fig. 1. At dis
tances and times less than 0 (  1 / T ) ,  perturbation theory is 
valid and a partonlike description of the plasma as a gas 
of quarks and gluons is most economical. At distances 
and times of the order 1 / g T ,  perturbation theory with 
screening may be used, and it is economical to treat the 
plasma as a gas of quasiquarks, plasmons, and dressed 
tranverse gluons. At distances and times of order l / g 2T  
nonperturbative confining effects become important. The 
plasma is described as a fluid of color-singlet excitations. 
Finally at distances much greater than 1 / g 2T,  hydro
dynamic modes are important. Since at thermal equilibri
um the temperature determines the dominant momentum 
for an excitation, the high-temperature plasma is, to a 
good approximation, a weakly interacting gas of quarks 
and gluons. However, this description fails to the extent

Hydrodynamic regim e2 phonons, d issipative  modes

- -  Confining reg im e5 c o lo r-s in g le l exc ita tio n s

I  i/ (g T )  - - Debye sc re e n in g  regim e' plasmon, qua s iqua rk , 
tran sve rse  g luons

l / T  - -  Perturbative re g im e : quarks, gluons

FIG. 1. Scales of the quark-gluon plasma for T  » A q cd *
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it relies on quasifree particle momenta of the order g 2T, 
which are subject to confinement. For temperatures 
T  A q C D , g 2 is of order one and the corrections are ex
pected to be considerable.

II. AREA LAWS 
AND QUARK AND GLUON PROPAGATORS:
A TEST FO R DYNAM ICAL CONFINEM ENT 

OF TH E PLASMA MODES

There is little doubt now that static charges are 
screened at high temperature in a pure gluon plasma.11 
When quarks are introduced into the statistical ensemble 
static charges are screened at all temperatures, just as 
charges are screened at nonzero temperature in QED. In 
QED an electron passing through a plasma carries with it 
a polarization cloud that screens it at long distances. In 
QCD moving colored objects are undoubtedly screened as 
well. However, the nature of the screening for dynamical 
excitations may be qualitatively different. Therefore I 
propose to distinguish between long-range confinement 
and screening of dynamical charges, since this choice has 
a bearing on an understanding of the macroscopic compo
sition of the plasma. The question is whether it is possi
ble to produce a long-wavelength quarklike or gluonlike 
excitation that cannot also be generated by a color-singlet 
source. In the corresponding case of QED there is a 
quasielectron excitation that is certainly distinguished 
from a neutral excitation, even though screening is 
present. In QED the neutralizing polarization cloud that 
moves with the electron is not required to involve the 
transport of a positron, per se, but merely the shifting of 
the vacuum polarization. In QCD it may happen, by con
trast, that the neutralizing quanta are forced to move in 
such a way that they render the would-be quarklike or 
gluonlike disturbance indistinguishable from a disturbance 
initiated by a suitable color-singlet source.

To consider the questions raised above it is necessary to 
find a suitable definition of a quark or gluon 
propagator—a definition that can be used as well for the 
electron in QED .12 At zero temperature in QCD the con
struction of a quark or gluon propagator is plagued by an 
awkward interplay between the gauge dependence and 
confinement. By contrast, because QED is not confining, 
there is no confusion about the electron propagator. One 
might hope that if  QCD were not confining at high tem
peratures, there would be a similar ease in defining propa
gators for colored objects. In fact, we find that this hope 
is not realized. Nonetheless, it is possible to choose a par
ticular gauge in which the electron propagator in QED 
exhibits long-range screening behavior at all temperatures 
and the quark propagator exhibits long-range confining 
behavior in the sense used here. Such a result should 
render the long-range colored propagators thankfully ir
relevant.

Let us attempt to construct the fermion propagator in 
an axial gauge. The asymptotic behavior of the propaga
tor or correlation function at large spatial distances can be 
analyzed in a theory in which spacelike Wilson loops have 
an area law in the pure gauge theory, as they may in 
QCD, and in a theory in which they do not, such as QED.

In the former case the asymptotic behavior is controlled 
by a correlation length corresponding to a singlet “mass.” 
In the latter it is not.

The analysis of the various correlation functions in
volves, in effect, finding the eigenvalues and eigenstates of 
the spacewise transfer matrix. This is the transfer matrix 
that characterizes evolution along a particular spatial 
direction, say the 3 axis. In the finite-temperature Eu
clidean path-integral formulation, one may regard the 3 
axis as the imaginary-time axis and the 4 axis as one of 
the spatial axes. The path integral can then be regarded 
as giving a zero 3-axis-temperature partition function for 
a Hamiltonian defined on a three-dimensional space with 
the original 1 and 2 directions intact but with the third 
spatial dimension (the original 4 axis) reduced to a finite, 
periodic interval of length 1 /  T. The imaginary-time evo
lution operator for this Hamiltonian for short times is the 
original spacewise transfer matrix. This Hamiltonian at 
high T  and long-distance scales is approximately that of a 
(2 + 1  )-dimensional gauge theory with an additional scalar 
field, as discussed in Sec. I ll below.9 To the extent that 
this limiting theory is confining one expects large space
like Wilson loops in the original (3 + 1  )-dimensional 
theory to obey an area law.

Consider the fermion correlation function in QCD or 
QED,

iS (x ,y )=  (\Jj(x)xp(y)) , (2.1)

where the average is over the Gibbs ensemble. Since the 
operator ip(x) is gauge dependent, it is necessary to render 
the expression gauge invariant through the introduction of 
a string operator that connects x  and y. Let the gauge 
fields be defined in a periodic spatial volume of large but 
finite extent. Make the string run from x  to y  for the 
most part along the 3 axis on a contour D  by going to the 
boundary of the lattice and reappearing at the opposite 
boundary as shown in Fig. 2. Here we have assumed 
x 2, <_ 3̂. The volume is to be taken to infinity at fixed 
| >>3 —x 3 | . There is a detour needed to align the positions 

perpendicular to the 3 axis. It is taken to infinity with the 
volume. Thus with the string operator

CD( y ,x ) = P  exp |/ , (2.2)

> 3
FIG, 2. Position of the string D connecting x  and y  in a 

periodic volume and the Polyakov loop W(d,c).  The points x 
and y  are allowed to have an offset in the 2 and 4 directions as 
well.
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the expression

iSD(x ,y )= (  CD(y,x)il>(x)rj>(y))

have
(2.3)

is gauge invariant. Of course a suitable ultraviolet regu
larization, e.g., a lattice, must be introduced to avoid an 
ultraviolet divergent self-energy due to the infinitesimal 
size of the string. To allow for return electric flux in non
confining theories it is useful to introduce a Polyakov 
loop operator W(d,c) also shown in Fig. 2 at a large dis
tance from the other points,

W(d,c) = T r  Pexp fi f (2.4)

so that we have

iS})(x ,y)=( W{d,c)CD{y,x)t/j{x)ip(y)) . (2.5)

Next it is useful to remove the “disconnected” part of the 
correlation function by subtracting its asymptotic value

IJV
lim ^ (x ,^ ) (2 .6)

The proper order for the limits is first to take the trans
verse dimensions of the volume (1 and 2 directions) to in
finity along with the transverse separation between D  and 
W(d,c),  then to take the limit | _v3 — ^c3 | —>- oo in the 
second term above, keeping | x 3—a3 | and b 3 —_y3 
fixed. Finally, after taking the difference, it is useful to 
normalize the result before taking the third dimension to 
infinity:

SDcann(x,y)-=SDconn( x , y ) / ( W (d ,c )W (b ,a ) )  . (2.7)

What does this axial-gauge fermion-correlation product 
measure? Consider first the Polyakov loops at zero tem
perature in QCD. For large | b 3 —a 3 j =  j e?3 —c3 | = L 3,

< W ( d , c ) W ( b , a ) ) ~ e x p ( - 2 m HL 3) , (2.8)
where m H is the lightest mass of an unphysical color- 
singlet meson containing one fixed-triplet source. It is 
easy to understand why this state appears. Close to zero 
temperature the Euclidean space-time volume can be 
made symmetric under the interchange of the time and 3 
axes. Thus the Polyakov loops give a measure of the free 
energy of a state containing a pair of fixed-triplet sources 
at large separation. As L 3 —  ̂cc the temperature vanishes, 
and the only surviving states of finite mass are color sing
lets containing antiquarks or quarks that combine with 
the fixed sources to form color singlets. The world lines 
of these additional dynamical quarks lie close to the Po
lyakov loops, thereby assuring that after dynamical fer
mion degrees of freedom have been considered, no Wilson 
loops of large area have been formed. In the language of 
functional integration, the fermion determinant may be 
expanded as a series of Wilson and Polyakov loops. The 
gauge action suppresses loop combinations that result in a 
large-area spacelike loop.

Now consider the spatial Polyakov loops at high tem
peratures. Assume that the spatially oriented Wilson 
loops still have an area-law behavior. Then to prevent 
large-area Wilson loops, it is again necessary for the fer
mion world lines to lie close to the loop contours. We

< ^(c,rf )^(fe ,a)>~exp[-2wH( D L 3] . (2.9)

In Hamiltonian language m H(T)  is the mass of the 
lowest-lying color-singlet meson containing a fixed-triplet 
source for QCD defined on a periodic space-time volume 
with one of the dimensions reduced to 1 / T  and the other 
two dimensions large.

Next, consider the correlation product S D(x,y). A fer
mion is created at y  and moves to x. The world lines it 
may generate are disconnected, if it is possible to divide 
the volume into a left and right part without cutting a 
dynamical world line. Otherwise they are connected. The 
simplest connected world line goes directly from x  to y. 
The simplest disconnected world line runs back along the 
string from x  to y. The operation (2.6) removes the 
disconnected contributions. Now the simplest surviving 
connected contribution resembles closely the Polyakov 
loop except that for a portion of the loop there is a 
dynamical quark rather than a fixed one, and there is a 
small detour. Again other dynamical fermion lines must 
appear so as to suppress the infinite area loops both at low 
and high temperatures. For large | j>3 — x 3 | the combina
tions of fermion world lines appearing between x  and y  
are those of propagating color-singlet mesons with no 
fixed sources involved. They must contain the propaga
ting quark, however. Let the mass of the lightest such 
color-singlet meson be m (T). Then the normalized corre
lation product has the behavior (up to powers of 
I J>3-*3 i ).

1̂ 3-
constexpj — ,y3 — x 3 | [ m( T)  — m H{T)]} .

(2 . 10)

(It is understood that the limit L  3 — *  oo is taken before the 
limit | _v3 — jc 3 | —> o o .)  The key observation here is that 
the asymptotic behavior at large spatial separations is con
trolled by “masses” of color-singlet states. Notice that in 
QCD the extra Polyakov loop W (d ,c ) is not needed be
cause confinement forces the generation of a color-singlet 
state localized around each loop.

In continuum quantum electrodynamics the result is 
different. Because Wilson loops do not have an area-law 
behavior, there is no need to include additional neutraliz
ing fermion world lines in the Polyakov-loop product (2.8) 
or in the correlation product (2.5). The asymptotic 
behavior of the normalized axial-gauge correlation prod
uct at large spatial separation is still of the form (2.9), but 
the “masses” have a different interpretation. The quanti
ty m H(T)  is the energy of a point source in a periodic 
space with one small dimension 1 /  T.  The quantity m  ( T)  
is the mass of an electron in such a space. In neither case 
is an electrically neutral object required because the theory 
is not confining.

To summarize, we have proposed a procedure for defin
ing a fermion correlation product that has the property 
that at large spatial separation its asymptotic form is con
trolled by neutral states in a “confining” theory, but 
charged states in a nonconfining theory. A similar pro
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cedure can be used to construct correlation products for 
the gauge field itself. Again in a confining theory 
such as QCD, color-neutral states control the asymptotic 
behavior. However, the photon is, of course, neutral and 
so provides no contrasting result for QED.

Finally, to complete the test for dynamical confinement 
it is necessary to measure the corresponding masses for all 
the neutral objects in the plasma. If m (T )  happens to be 
the same as one of these, then the theory is dynamically 
confining.

This test is so far restricted to the static correlation 
lengths that control the large-distance behavior of the 
correlation product. It is important to extend the test to 
real time. A dramatic test of the absence of long-range 
quark and gluon propagation would be to define a propa
gator for charged sources such that for a confining theory 
the singularities in k and real co always coincided with the 
singularities of the propagator of some color-singlet 
operator up to shifts coming from mH(T), whereas in a 
nonconfining theory they did not. The real-time test is 
beyond the scope of the present work.

III. DIM ENSIONAL REDUCTION AT H IGH 
TEM PERATURE ON THE LATTICE

Here we illustrate dimensional reduction at high tem
perature for strong-coupling SU(3) lattice-gauge theory 
with the fermion scheme of Wilson.13 In this approxima
tion the partition function is

Z — f  [dUd7]d7]]exp[SG( U ) + S F(r/,rf,U)] , (3.1)

where the integration is (as usual) over the Haar measure 
for SU(3) link matrices UY (x labels the Euclidean

• • p i space-time lattice point on an N Tx N s lattice and
p =  1,2,3,4 is the direction from that site) and over the
Berezin measure for the fermion Grassmann variables r]x
and rjx . In the strong-coupling high-temperature limit14
we take a lattice with N T =  1, i.e., only one step in the
time direction, and let r= / 3 t =  l / T ,  the lattice constant in
the time direction, be smaller than a, the lattice constant
in the space direction. For this anisotropic lattice

-  2  ReTr(C/Xi4,) +  -  2  ReTr*7x,,:SG(£/) =  ^ 2
§ X *<y

where, because N T =  1, the space-time plaquette is 

and the space-space plaquette is, as usual,

Uxiu u t
x + i  ,j  x + j,i.Ul

(3.2)

(3.3)

(3.4)

The fermion action at zero chemical potential is 

Sy =  (m r +  1 + 3 r /a  ) 2  ?7x?7x
X

-  X  1 +  Y i  wliVx +  VxUxit1 - Y i  )vx+ i

+  i ' 2 , [V x( l+Y4 '> ul 4r)x +  7)xUi4( l —y 4)r)x]  . (3.5)

The third term in (3.5) coming from timeward hopping 
gives rise to a mass term when A'r =  1 by virtue of the fer
mion antiperiodic boundary condition. For free fermions 
the mass is O(T)  relative to the three-dimensional hop
ping term.

At high temperatures it is well known that the timelike 
links UxA cluster around the unit matrix.11 Thus we may 
expand

„ U ^ x )2
u l 4« i + a v ; - - J - , (3.6)

where the {A“} are the usual eight generators of SU(3) ro
tations and <f)“ is a color-octet scalar field defined on the 
three-dimensional lattice. The space-time plaquette then 
satisfies

R eTrUxAi« 3  -  [K ~ D ab( Uxi)*‘ +, ] 2 (3.7)

where Dab(U) is the adjoint representation of the SU(3) 
matrix U.

Ignoring irrelevant constants and rescaling both cf>x and 
rjx gives a revised action

S G+ S F- * S a (4>,U)+SP(ri,ri,U,4) , 

where

(3.8)

S G(4>,U):

+  -
2 T

2  2  R eT rf/x,y , (3.8a)
g  a  x i < j  

SF =  (ma + 2 a / r + 3 )  2  VxVx~  '
X

-  —  2 7?x'r4^T^x  
t  T r

2 r 2  v * ^ a<t>a)2vx

-  T  2  1 +  Y i  W l i V x  +  V x U*i (  1 - Y i  b7s + | ]  •
xi

(3.8b)

In this form the theory is a three-dimensional Euclide
an version of QCD augmented by a color-octet scalar field 
coupled covariantly to the Yang-Mills field. The square 
of the Yang-Mills coupling constant is obtained from the 
inverse of the coefficient of the second term of (3.8a), i.e.,

g 32= g 2T . (3.9)

This three-dimensional lattice theory corresponds to what 
has been proposed for the continuum theory.9 The choice 
N r =  1 is thought to give a good approximation to the 
partition function of the Hamiltonian lattice theory only 
when l / 7 ’= r « a . 14 Thus the temperature gives the 
scale of the ultraviolet (UV) cutoff of the three
dimensional theory. With this approximation we are lim
ited to studying correlations at distances much larger than 
T ~ l. In attempting to do perturbation theory with the 
three-dimensional theory one discovers that the self
energy of the scalar field is potentially UV divergent, but 
is regulated by the lattice. In this way the scalar field ac
quires a mass of order eT  in quantum electrodynamics 
and gives rise to Debye screening and the plasmon.
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As a consequence of this dimensional reduction, the 
spacewise transfer matrix of the (3 + 1  )-dimensional 
theory at high temperatures becomes the usual 
imaginary-time transfer matrix of the Euclidean three
dimensional theory. The static correlation lengths of the 
(3 + 1  )-dimensional theory at high temperature are then 
inverses of the discrete masses of the dimensionally re
duced theory. Therefore the spectrum of the three
dimensional theory is of interest. We close this section by 
speculating about the spectrum of the theory consisting of 
QCD3 coupled to an adjoint scalar field. For the purposes 
of this discussion let us use A “ for /x =  1,2,3 to denote the 
three-dimensional vector field and <j>a to denote the scalar 
field. The three-dimensional SU(2) Yang-Mills theory 
was studied numerically by d’Hoker, who presented evi
dence for confinement.10 His numerical evidence for the 
existence of a mass gap was not decisive, however. Let us 
suppose, nonetheless, that his conclusions are correct and 
that a mass gap occurs, as it does in QCD3+,. It would 
correspond to the lightest glueball o f the theory, presum
ably with valence composition AA. Since the coupling 
constant of the theory (3.9) has a dimension, the glueball 
mass would necessarily conform to this scale, giving

M- = 0 ( g 2T) . (3.10)

With the scalar field included one could entertain the 
possibility that a Higgs phenomenon destroys confine
ment. As a consequence large spatially oriented Wilson 
loops would follow a perimeter law. This possibility can 
also be checked numerically. For what follows we assume 
that no such breakdown of confinement occurs. In this 
case we expect the scalar fields to bind with the vector 
fields to form further glueballs of valence composition <f><j) 
and <j>A, etc. Since the UV mass renormalization dis
cussed above gives the scalar field an effective mass of 
O(gT),  for g 2 «  1 the scalar particles would have masses 
larger than the confinement scale and would bind as 
color-octet analogs of charmonium and states of bare 
charm. Then we would have

M 3tj,A tO(gT) . (3.11)

Thus at distances of order 1 / g 2T  the color plasmon <j> 
would be color neutral, carrying at least one vector field A 
with it. At moderate temperatures it may mix strongly 
with the AA glueballs.

With quarks also included other hadronic analog states 
such as mesons and baryons could be constructed. How
ever, they are not as reliably studied in this approxima
tion, since their bare masses in the reduced theory are in
trinsically of the same size as the UV cutoff. The binding 
of quarks to form color singlets is nonetheless to be ex
pected as a consequence of the analysis of the quark prop
agator in Sec. II above. They should mix with the glue
ball states.

IV. ANALYTICAL CONNECTION BETWEEN 
STATIC CORRELATION LENGTHS 

AND DYNAMICAL MODES

transfer matrix at high temperature, we turn now to a 
brief discussion of the connection between the discrete 
spectrum of the transfer matrix and the dynamical modes 
of the plasma. We first summarize some notation and 
formulas of finite-temperature linear-response theory. 
The retarded momentum-space propagator for a pair of 
local operators A and B is given conventionally by

/r * ( k ,« ) =  f  d^x J ™ d t e i,0‘~ik'x

X < [^ (x ,f) ,5 (0 ,0 )]T> , (4.1)

where the sign denotes a commutator for bosons or an
ticommutator for fermions. The propagator is in turn re
lated to its spectral function through

■00 dco' Pab^>0}''Ir^(k,o>) =  lim f
2it (o — co’ +  ie

(4.2)

and p AB is related in turn to SAB of (1.1a) through (1.1b). 
Finally, the imaginary-time propagator is given by

SnAB(*-)= f 0 d r  f  d 3x e ‘0,nTe

X [ ( A ( x , —ir)B(0,0) )

-U (0 ,0 )> < 5 (0 ,0 )> ] (4.3)

for discrete frequency &>„ — 2-rrn / T  for bosons and 
(2n +  1 ) ir /T  for fermions. For n > 0 the imaginary-time 
propagator is just the analytic continuation of r R(,k,co):

(k) =  r R(k,i<o„) . (4.4)

Let us suppose that for boson operators A and B, 
p AB{k,(o) has a narrow peak at a low-frequency u> and 
wave-number k, such that r R(k,<») has a pole in k and co 
corresponding to a dynamical mode of excitation of the 
plasma. Because of rotational symmetry and parity, the 
location of the pole is given by

f  (k,a>) =  0 , (4.5)

where k =  | k | . It follows that S 0/|fl(k) has a pole in k at 
k =  ± iM  such that

/ ( ± /M ,0 )= 0  . (4.6)

Such a pole implies that the time-averaged correlation be
tween boson operators A and B, defined by

SAB( x ) =  (A(x)B(Q)} — (A(0 ) )  (B(0) )  

where, for a general local operator O,

0 ( x ) = 7r f  d r O ( x , —ir) ,
p  J 0

has an asymptotic contribution

Sab(x ) ~  constexp( — M  | x | ) .

(4.7)

(4.8)

(4.9)

The lowest such M  dominates the asymptotic behavior 
and determines the inverse static correlation length

X ~ \ T ) = M ( T ) (4.10)

Having discussed a possible spectrum for the three- It also determines the gap in the spectrum of the space
dimensional theory and therefore for the spacewise wise transfer matrix.
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As an illustration, let us suppose that to a good approx
imation

f(k,co) =  (o2—s 2k 2 — A2 =  0 (4.11)

is the dispersion relation for a dynamical mode. The gap 
for real-time excitations is A. The static correlation 
length is then

r ‘= M  =  A /s  . (4.12)

Thus the static correlation lengths are determined from 
the dispersion function for the dynamical modes by an an
alytic continuation to zero frequency.

Hydrodynamic modes such as phonons have the typical 
property that <u—>• 0 as k->-0. Thus one might expect the 
static correlation length to be infinite for any fluid with a 
phonon. However, they decouple from local operators at 
zero frequency and so are not found in (4.9). For exam
ple, for nearly all fluids, the photon contribution to the 
spectral function of the energy density is given at low k 
by

p ee(k,co) =  7rCv Tk[8 (co-csk) -8(co  +  csk)] , (4.13)

where C v is the specific heat and cs is the speed of 
sound.15 The decoupling at k = 0  is evident.

V. CONCLUSIONS AND DISCUSSION

Based on the likelihood that the spacewise transfer ma
trix for QCD at high temperature has a color-singlet spec
trum, it has been conjectured that all the low-lying 
dynamical modes of the quark-gluon plasma consist of 
color-singlet excitations. They would be dynamically con
fined in the sense that excitations generated by local 
colored sources would be indistinguishable from excita
tions generated by local color-singlet sources. The con
finement scale is expected to be of order l / g 2T, where g 2 
is the running QCD coupling. Other plasma scales are in
dicated in Fig. 1. Since g 2 is small at very high tempera
ture, the confinement scale is much larger than the typical 
wavelength of particles at high temperatures. Thus the 
high-temperature plasma is, to a good approximation, a 
gas of quasifree quarks and gluons. However, quanta 
with momenta of the order g 2T  are subject to nonpertur
bative confining effects. They contribute to the thermo
dynamic potential fl roughly in proportion to their share 
of the phase-space volume, inside a sphere in momentum 
space of radius g 2T, i.e., a correction

An ^ O ( g 6)T4 . (5.1)

At high temperatures A ll is rather small. However, at the 
deconfinement temperature, g 2 is close to one and the 
corrections are probably considerable.

This characterization of the long-range composition of 
the plasma is contrary to the naive picture that the decon
finement of static charges entails the deconfinement of 
dynamical charges as well. However, as argued in Sec. II 
a simple deconfinement of dynamical charges giving a 
QED-like plasma is incompatible with the expectation 
that spatially oriented Wilson loops in QCD have an

area-law behavior. The situation in QCD is more compli
cated. What is offered here is the next simplest possibili
ty, namely, that the low- and high-temperature phases 
both have confining characteristics, but at sufficiently 
high temperatures confinement has an insignificant effect 
upon the thermodynamic properties. The question then 
becomes, what is the nature of the phase transition, if 
any? Although the pure Yang-Mills plasma exhibits 
deconfinement of static color-triplet charges, dynamical 
charges may well have a different behavior. With light 
quarks present there is also the possiblity of a phase tran
sition that leads to the restoration of manifest chiral sym
metry. Indeed, if  there is a phase transition in light-quark 
QCD, it may well have more of a chiral character than a 
deconfinement character. Thus it may be possible that all 
zero temperature hadrons have analog modes in the high- 
temperature phase. One should measure the behavior of 
the gap functions A( T), particularly near the phase transi
tion for all hadronic modes. One would expect that if  the 
phase transition were deconfining, the hadronic modes 
would be abruptly reduced in number above the critical 
temperature leaving only a few modes available for flavor 
and baryon transport and a few hydrodynamic modes. 
However, if  the phase transition were chiral in character, 
it may happen that most low- and high-temperature 
modes would be in obvious one-to-one correspondence, 
but modes sensitive to the pattern of realization of chiral 
symmetry, such as the pionic mode, would exhibit a signi
ficant discontinuity in the gap function A( T) or its deriva
tive at the phase transition.

Although numerical simulations of real-time response 
in the QCD plasma require as yet undeveloped techniques, 
measurements of static correlations k(T)  are easily possi
ble with current numerical lattice-gauge-theory tech
niques. Perhaps the behavior of k(T)  will give us a hint 
as to how A( T) behaves. Questions of interest are these:

(1) Is there evidence for a gap? i.e., is k(T)  < oo for all 
modes?

(2) Can one produce a quarklike or gluonlike mode that 
is distinguishable from a color-singlet mode?

(3) What are the relative sizes of the correlation lengths 
for mesonic and baryonic modes in light-quark QCD and 
glueball modes in pure Yang-Mills QCD? What are the 
lowest lying nonhydrodynamic excitations in the QCD 
plasma likely to be? Presumably they would have the 
largest k(T).

(4) If chiral symmetry becomes manifest, is there evi
dence in the spectrum, i.e., does k(T)  for the pionic mode 
show a significant change and is there evidence for parity 
doubling?
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APPENDIX untwisted case:

A  strong-coupling analysis shows that the screening of 
a magnetic string can occur at the same time that space
like Wilson loops show an area-law behavior. This result 
is not surprising in the least, but may help to clarify the 
terminology. Thus what I call confinement of the long- 
range high-temperature plasma modes, a phenomenon as
sociated with the area law, and leading to the exclusion of 
colored excitations, is compatible with what others call 
screening of magnetic strings.4,5

Consider a pure SU(2) Yang-Mills lattice action in the 
Wilson form on a periodic Euclidean space-time. Consid
er the set of string plaquettes

T = { U xX2\ x l = a u x 2= a 2] (Al)

for constant aj,  a 2. These are a string of plaquettes per
pendicular to the 3 axis at fixed x x= a u  x 2= a 2 for all 
possible a :3 and j c 4 . The magnetic string is introduced by 
replacing the usual action by the twisted action

s „= J 8  2  U p 
p e r

/? 2  Up
PET

(A2)

where each of the string plaquettes is multiplied by a non
trivial element of the center of the gauge group, in this 
case — 1 (Ref. 16). The twisted action is interpreted as 
representing the effect of introducing a static line of mag
netic flux passing through the lattice along the 3 direc
tion. The response of the vacuum to the introduction of 
such a structure is measured by

J  [ d u P]expStw j  f  [d[fp]expS . (A3)

Another measure of the effect of the twist is the differ
ence between the average plaquettes in the twisted and

_a_
9/8

(Ftw—F ) = N (  ( Up }tw— ( U p ) )  , (A4)

where N  is the total number of plaquettes, ( U P ) is the 
usual plaquette average, and ( UP ) tw is the plaquette aver
age weighted with minus signs for the string plaquettes 
and calculated with the twisted action. The twist effect is 
easily calculated to leading order in the strong-coupling 
approximation at low as well as high temperatures17 and 
is given by

( U p ) tw- ( U D) =  - 1
2 N lN 2

(A5)

where iV( and N 2 are the number of sites in the 1 and 2 
directions. This dependence on the area N \ N 2 is termed 
the screening of the static magnetic string. It occurs both 
at low and high temperatures.4,5 In the same leading- 
order strong-coupling approximation, the spatially orient
ed Wilson loops have the behavior

Wr r  Ml (A6)

at both low and high temperature. This area-law behavior 
is associated with the confinement o f the plasma modes. 
Thus it is possible for both phenomena to occur in the 
same theory. Indeed the screening length for the non- 
Abelian magnetic strings appears to have more in com
mon with the string tension of the spacelike Wilson loops 
than with the masses M (T )  of Eq. (4.10) that are associat
ed with the color-singlet excitations. The scale for all 
three is expected to be 0 ( g 2T) at high temperature, how-
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