
Parallelization and integration of fire simulations in the
Uintah PSE

Rajesh Rawat', Steven G. Parker, Phllip J. Smith3
, Christopher R. Johnson4

Center for Simulation of Accidental Fires and Explosions
University of Utah

Abstract
A physics-based stand-alone serial code for fire simulations is integrated in a unified computational
framework to couple with other disciplines and to achieve massively parallel computation. Uintah,
the computational framework used, is a component-based visual problem-solving environment
developed at the University of Utah. It provides the framework for large-scale parallelization for
different applications. The integration of the legacy fire code in Uintah is built on three principles:
I) Develop different reusable physics-based components that can be used interchangeably and
interact with other components, 2) reuse the legacy stand-alone fire code (written in Fortran) as
much as possible, and 3) use components developed by third parties, specifically non-linear and
linear solvers designed for solving complex-flow problems. A helium buoyant plume is simulated
using the Nirvana machine at Los Alamos National Laboratory. Linear scalability is achieved up to
128 processors. Issues related to scaling beyond 128 processors are also discussed.

Introduction
The Center for the Simulation of Accidental Fires and Explosions (C-SAFE) [I] at the University
of Utah is developing a general framework for large-scale massively parallel simulations of
accidental fires and explosions involving hydrocarbons, structures, containers and high-energy _
materials. Realistic simulation of such complicated systems requires the representation of relevant
physical processes such as turbulent reacting flows, convective and radiative heat transfer,
structural mechanics and fundamental gas- and condensed-phase chemistry. Traditionally, such
processes have been dealt with separately as stand-alone simulation tools. Coupling these processes
presents a unique challenge from both research as well as software engineering perspective.
Moreover, such complex systems are characterized by a wide range of continuum length scales
(Imm-Ikm) and corresponding time scales (1 fs-I s). This entire range cannot be directly computed
even on the peta-flop computers, next generation ASCI machines. Nevertheless, important features
of fire physics and its interaction with the structure engulfed in the fire can be captured by
resolving large length and time scales responsible for controlling the dynamic features of fire.
Resolving these length and time scales, however, requires using massively parallel computations.
Therefore, to accomplish our goal of simulating complex large-scale fires in the presence of
structures, we are developing software components reusing physics-based legacy Fortran codes that
have been validated against experiments and that are computationally efficient and scalable. These
components are created to allow one to freely choose options for different turbulent flow, turbulent
mixing, radiation, and solvers and to easily couple them with Uintah Computational Framework [2]

I Department of Chemical and Fuels Engineering, rawat@crsim.utah.edu
'Scientific Computing and Imaging Institute, School of Computing, sparker@cs.utah.edu
J Department of Chemical and Fuels Engineering, smith@crsim.utah.edu
4 Scientific Computing and Imaging Institute, School of Computing, crj@cs.utah.edu

(UCF), a component-based visual Problem Solving Environment (PSE), to achieve parallel
computations. UCF provides the framework for large-scale parallelization for different
applications.

Uintah Computational Framework
The fire code simulates the propagation of an ignition event over a pool of liquid hydrocarbon fuel.
To simulate this event, the code uses algorithms that couple turbulent computational fluid dynamics
(CFD), turbulent mixing and reaction chemistry for fire (including soot), and radiative transport.
Due to the wide range of physics chemical length and time scales involved in the simulations it is
necessary to have the flexibility to explore different parallel algorithms. For instance, our CFD
simulation uses large-eddy simulations in which large, energy carrying length and time scales are
resolved and the smaller scales are modeled. A domain decomposition strategy is used to
parallelize highly non-linear governing equations for such a system. While, this strategy works well
for CFD systems, chemical reactions and turbulent sub-grid scale mixing models are functions of
local state-space (chemical species) variables and are independent of the grid. Therefore, domain
decomposition strategy in physical space may not yield the best performance for implementing
chemical reactions. Instead, we partition our domain in state-space to yield good scalability. The
same holds true for radiative heat transfer modeling which uses integro-differential radiative
transport equations that can only be parallelized efficiently by dividing the tasks on the basis-of
different rays that need to be tracked on the whole grid rather than patches of grid. Moreover, the
computation of radiative fluxes can be made efficient by taking advantage of the knowledge that
the spatial grids for predicting radiative fluxes can be much more coarser that those for CFD. Thus,
the flexibility in maintaining different grids will be very crucial for such simulation environment.
Uintah is designed to incorporate such flexibility required to efficiently parallelize a multi-physics
environment.

Uintah is a component-based visual Problem Solving Environment derived from the SCIRun PSE
[3,4], combining the visual programming environment that SCIRun uses for shared-memory
parallel computers with the distributed memory component model being developed by the Coinmon
Component Architecture (CCA) forum [5]. Uintah allows different types of components to be
connected through different types of ports, which are general RPC-based method interfaces. Uintah
has been designed and implemented to satisfy three goals: I) To provide a general framework for
massive scale simulations of fluid and particle physics, 2) to facilitate both MPI- and thread-based
parallelism, and 3) to allow scientists from outside the computer field to have an intuitive method
for easily inserting their algorithms into a parallel framework without being bogged down by all the
details of parallel programming. UCF hides the complexity of parallel data management from the
application developer by using two key abstractions: a component called the Data Warehouse, and
a task graph representation of the numerical algorithm. The Data Warehouse presents developers
with the abstraction of a global, single-assignment memory with automatic data lifetime
management and storage reclamation. The task graph is designed to handle the wide range ofloads
due to different physics and architectural communication limitations.

Each algorithm is defined in terms of tasks with inputs and outputs provided. These tasks are
described per patch or computational domain by variable names and spatial relations (including
ghost cells). This information is used by a scheduler component defmed in the UCF to create a task
graph with edges of the graph representing (possible) communication required between different

2

processors. Based on the task graph, the scheduler decides which task will be executed by which
processor and is guided by cost models for computation and communication. The disadvantages of
the task graph approach are that an optimal solution is NP-hard (however, good solutions are not
too hard), creation of the schedule can be expensive (however, it only needs to be recomputed
periodically for load balance and the cost can be amortized over several time-steps). On the other
hand, it accommodates flexible integration needs and workload profiles, offers a mix of static and
dynamic load balancing, helps manage complexity of a mixed threadslMPI programming model,
and allows the individual simulation components to evolve independently.

Integration and Parallelization

The fire code, Arches, that we developed and validated over the years was a stand-alone physics
based, serial code. To achieve the goal of developing a generalized framework for large-scale,
massively parallel simulations of accidental fires and explosions, our focus in this work was on
integrating the fire code in the UCF.

Integration Strategy
The integration ofthe Arches in UCF is built on three principles: I) Develop different reusable
physics-based components that can be used interchangeably and interact with other components, 2)
reuse the legacy stand-alone fire code (written in Fortran) as much as possible, and 3) use
components developed by third parties, specifically non-linear and linear solvers designed for
solving complex-flow problems.

Our first step was to design a generalized, component-based architecture for fire simulations that
can be incorporated in any computational framework that provides support for parallelization. First,
we worked on the software design specifications to integrate with UCF. Figure I illustrates
different design components and their relationships for fire simulations. These components are
designed around real world concepts (such as subgrid scale micromixing as represented by the
MixingModel component), and they encapsulate functionality found in multiphysics problems.
Many of the design decisions were necessitated by the parallel-processing paradigm provided by
UCF.

After finalizing the design, we added details to the design model to describe and optimize the
implementation of the different physics-based, reusable components. These components fulfill two
important features. First, they provide an interface to the UCF. An example of how these
components interface with UCF for a CFD simulation is shown in Figure 2.

Boxes in the figure represent Arches components and the oval shapes represent the Data
Warehouse component of the UCF. A request to advance simulations in time is passed from UCF
to the Arches Integrator component. Arches Integrator reads the data provided by Data Warehouse
and uses the Arches Solver component to solve the set of nonlinear equations defined at the time of
the problem setup. It also creates a temporary Data Warehouse (referred to as "new dw" in the
figure) to store data computed during the time step simulation. It can be seen that all the Arches
components interact with the temporary Data Warehouse during the course of the simulation. At

3

1------------1
:.----11 j Or:·~r!lII'~·<;li(j'1 I:

I I
I I
I I

L:·-"';:::;~~'~-:':I;;:::;~'!:-~":::~:':'~:'."'.::P;~_-J}-----j: rf;;~M:;;~~<>1~<JlJI~~:;l :
. I ' 1

I I
I I
I I

18'8t(;.;;;,.:;;,£;,;"";;.;,-1! ----i: L,_!::!:r:,~~~~~~J :
'---- ... ----, l ____________ J

l jo.!'ffloMncJ£>! 1
L-~.-v·Iv~~~-J

,..---"' ! Rp';I(trr,,\;li:v:lU! J

-~l~·-·

I p,~"Sc'S 1

Figure 1: Component-based design for Arches.

Figure 2: An example fire simulation

4

the end of one time step, Arches Integrator writes the data computed for the new time step back to
the original Data Warehouse.

Second, the components defme and encapsulate a family of algorithms. This design provides the
flexibility to use and test different algorithms interchangeably in plug and play fashion. Figure 3
illustrates the SGSTurbulenceModel component for LES where different turbulence models are
implemented and can be used interchangeably depending on the problem we are solving.

Figure 3: Subgrid scale turbulence
model component of Arches

Code reuse was necessary to minimize the code development process since most of our stand-alone
code was already validated. To accomplish this task, we spent significant time modularizing the
Fortran subroutines for use in our components. This included reorganizing subroutines to fit within
the design described above, and removing our dependency on common blocks.

Realistic fire simulations must account for relevant physical processes such as turbulent reacting
flow, convective and radiative heat transfer, multi-phase interactions, and fundamental gas phase
chemistry. Representations of these physical processes lead to very large, highly nonlinear, partial
differential equations (PDEs). Robust nonlinear and linear solvers for these large-scale nonlinear
sets ofPDE on massively parallel ASCI platforms are required. To this end, we selected Portable
Extensible Toolkit for Scientific Computation (PETSc) to provide general-purpose solvers. PETSc
provides a suite of nonlinear and linear scalable solvers for scientific applications modeled using
PDEs. [6] PETSc solvers are written to be independent of the underlying data structures that define

5

the problem. We have exploited this feature in the creation of the interface between PETSc and
Uintah. The interface provides the capability to manipulate Uintah data structures as the vectors
and the sparse matrices that are used by PETSc. The interface also allows us to write custom
algorithms that can be used as preconditioners to the PETSc solvers.

Through the Uintah-PETSc interface, we now have access to the full range of solver capabilities
provided by PETSc. To achieve scalability for big problem and large number of processors, we are
working on developing customized preconditioners like AdditivelMultiplicative Schwartz with
PETSc solvers.

The fluid flow component of the Arches is now integrated and running into Uintah. An explicit
solver is in place that uses the Uintah-PETSc interface for solving the pressure equation in an
implicit fashion.

Parallelization Strategy
For parallel CFD computation, UCF creates a task graph using the components provided by the
application developer and assigns them to different processors determined by the Scheduler based
on the cost model for computation and communication, as described in the previous section.

Figure 4 shows a typical task graph created during the process of solving the pressure equation, one
of the steps in a fire simulation.

I WI'" Pm"",.
J,.\;Im

- Datafl"...,

Figure 4: An example task graph
for pressure solver of Arches

6

This process has been divided into two tasks. In the first task, a linear matrix is generated through
discretization and the application of boundary conditions. Before the start of this task, each
processor has the data it requires for computing the matrix. In the second task the matrix is solved
using PETSc (see previous section). As shown in Figure 4, the computational domain is divided
into four patches, and each patch is associated with a processor. Arrows in the figure indicate data
dependencies between the processors. The Data Warehouse uses this task graph to determine
dependencies and data transfer.

Results
Figure 5 illustrates the parallel scalability obtained with the integrated UCF/Arches code. The
simulation consists ofa buoyant helium plume of diameter 10cm. The problem domain is 1m x 1m
x 1m, discretized into 3.4 million cells. The resulting code demonstrates linear scalability to 125
processors on the SGI Origin 2000 at Los Alamos National Laboratory. We have identified two
bottlenecks to achieving scalability beyond 125 processors: First, the UCF has known limitations
that are being address in a second version. Second, the preconditioner used in this computation
does not exhibit good scaling characteristics beyond 125 processors. Multigrid preconditioners are
being examined for future runs.

Other optimizations planned include the combination of MPI-based message-passing
communication with a finer-grained thread-based communication. UCF facilitates this combination
without complicated changes in the application code. Preliminary results indicate that performance
improvements of 50% or more are achievable with this type of mixed communication model.

160
140 - 120 II)

""C
C 100 0
CJ
Q) 80 II) -Q) 60
E
i= 40

20
0

16 32 125 250
Figure 5: Scalability of Arches running in
the Uintah Computational Framework

7

Conclusions
The Uintah PSE and Uintah Computational Framework provide a mechanism for achieving
parallelism with an existing Fortran CFD code. In integrating the Arches code with UCF, we
attempted to strike a balance between code re-use and performance obtained. While some changes
were necessary to the underlying Fortran code, the bulk of the algorithmic sections of the code
remained intact.

Acknowledgements
This work was supported by the Department of Energy Accelerated Strategic Computing Inititative
(ASCI), Academic Strategic Alliance Partners (ASAP) program. This work is a collaboration of
the Combustion Research Simulation (CRSIM) group in the Chemical and Fuels Engineering
Department and the Scientific Computing and Imaging Institute in the School of Computing at the
University of Utah. We would like to thank our C-SAFE colleagues for additional collaboration
and assistance related to this effort.

References
[I] T. Henderson, P. McMurtry, P. Smith, G. Voth, C. Wight, and D. Pershing. "Simulating

Accidental Fires and Explosions", IEEE Computational Science and Engineering, volume 7,
number 2, pp. 64-76,2000.

[2] J. Davison de St. Germain, John McCorquodale, Steven G. Parker, Christopher R.
Johnson. Uintah: A Massively Parallel Problem Solving Envirorunent. Ninth IEEE International
Symposium on High Performance and Distributed Computing (HPDC) '00, August 2000.

[3] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. Interactive Simulation
and Visualization. IEEE Computer, December 1999.

[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B.
Smolinski. Toward a Common Component Architecture for High-Performance Scientific
Computing. Proceedings of High Performance Distributed Computing (HPDC) '99. August 1999.

[5] S. Parker, D. Beazley, and C. Johnson. Computational Steering software systems and
strategies. IEEE Computational Science and Engineering, volume 4, number 4, pp. 50-59,1997.

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. The Portable Extensible Toolkit
for Scientific Computing (PETSc) version 28. http://www.mcs.anl.gov/petsc/petsc.htrnl, 2000.

8

