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Abstract 
A physics-based stand-alone serial code for fire simulations is integrated in a unified computational 
framework to couple with other disciplines and to achieve massively parallel computation. Uintah, 
the computational framework used, is a component-based visual problem-solving environment 
developed at the University of Utah. It provides the framework for large-scale parallelization for 
different applications. The integration of the legacy fire code in Uintah is built on three principles: 
I) Develop different reusable physics-based components that can be used interchangeably and 
interact with other components, 2) reuse the legacy stand-alone fire code (written in Fortran) as 
much as possible, and 3) use components developed by third parties, specifically non-linear and 
linear solvers designed for solving complex-flow problems. A helium buoyant plume is simulated 
using the Nirvana machine at Los Alamos National Laboratory. Linear scalability is achieved up to 
128 processors. Issues related to scaling beyond 128 processors are also discussed. 

Introduction 
The Center for the Simulation of Accidental Fires and Explosions (C-SAFE) [I] at the University 
of Utah is developing a general framework for large-scale massively parallel simulations of 
accidental fires and explosions involving hydrocarbons, structures, containers and high-energy _ 
materials. Realistic simulation of such complicated systems requires the representation of relevant 
physical processes such as turbulent reacting flows, convective and radiative heat transfer, 
structural mechanics and fundamental gas- and condensed-phase chemistry. Traditionally, such 
processes have been dealt with separately as stand-alone simulation tools. Coupling these processes 
presents a unique challenge from both research as well as software engineering perspective. 
Moreover, such complex systems are characterized by a wide range of continuum length scales 
(Imm-Ikm) and corresponding time scales (1 fs-I s). This entire range cannot be directly computed 
even on the peta-flop computers, next generation ASCI machines. Nevertheless, important features 
of fire physics and its interaction with the structure engulfed in the fire can be captured by 
resolving large length and time scales responsible for controlling the dynamic features of fire. 
Resolving these length and time scales, however, requires using massively parallel computations. 
Therefore, to accomplish our goal of simulating complex large-scale fires in the presence of 
structures, we are developing software components reusing physics-based legacy Fortran codes that 
have been validated against experiments and that are computationally efficient and scalable. These 
components are created to allow one to freely choose options for different turbulent flow, turbulent 
mixing, radiation, and solvers and to easily couple them with Uintah Computational Framework [2] 
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(UCF), a component-based visual Problem Solving Environment (PSE), to achieve parallel 
computations. UCF provides the framework for large-scale parallelization for different 
applications. 

Uintah Computational Framework 
The fire code simulates the propagation of an ignition event over a pool of liquid hydrocarbon fuel. 
To simulate this event, the code uses algorithms that couple turbulent computational fluid dynamics 
(CFD), turbulent mixing and reaction chemistry for fire (including soot), and radiative transport. 
Due to the wide range of physics chemical length and time scales involved in the simulations it is 
necessary to have the flexibility to explore different parallel algorithms. For instance, our CFD 
simulation uses large-eddy simulations in which large, energy carrying length and time scales are 
resolved and the smaller scales are modeled. A domain decomposition strategy is used to 
parallelize highly non-linear governing equations for such a system. While, this strategy works well 
for CFD systems, chemical reactions and turbulent sub-grid scale mixing models are functions of 
local state-space (chemical species) variables and are independent of the grid. Therefore, domain 
decomposition strategy in physical space may not yield the best performance for implementing 
chemical reactions. Instead, we partition our domain in state-space to yield good scalability. The 
same holds true for radiative heat transfer modeling which uses integro-differential radiative 
transport equations that can only be parallelized efficiently by dividing the tasks on the basis-of 
different rays that need to be tracked on the whole grid rather than patches of grid. Moreover, the 
computation of radiative fluxes can be made efficient by taking advantage of the knowledge that 
the spatial grids for predicting radiative fluxes can be much more coarser that those for CFD. Thus, 
the flexibility in maintaining different grids will be very crucial for such simulation environment. 
Uintah is designed to incorporate such flexibility required to efficiently parallelize a multi-physics 
environment. 

Uintah is a component-based visual Problem Solving Environment derived from the SCIRun PSE 
[3,4], combining the visual programming environment that SCIRun uses for shared-memory 
parallel computers with the distributed memory component model being developed by the Coinmon 
Component Architecture (CCA) forum [5]. Uintah allows different types of components to be 
connected through different types of ports, which are general RPC-based method interfaces. Uintah 
has been designed and implemented to satisfy three goals: I) To provide a general framework for 
massive scale simulations of fluid and particle physics, 2) to facilitate both MPI- and thread-based 
parallelism, and 3) to allow scientists from outside the computer field to have an intuitive method 
for easily inserting their algorithms into a parallel framework without being bogged down by all the 
details of parallel programming. UCF hides the complexity of parallel data management from the 
application developer by using two key abstractions: a component called the Data Warehouse, and 
a task graph representation of the numerical algorithm. The Data Warehouse presents developers 
with the abstraction of a global, single-assignment memory with automatic data lifetime 
management and storage reclamation. The task graph is designed to handle the wide range ofloads 
due to different physics and architectural communication limitations. 

Each algorithm is defined in terms of tasks with inputs and outputs provided. These tasks are 
described per patch or computational domain by variable names and spatial relations (including 
ghost cells). This information is used by a scheduler component defmed in the UCF to create a task 
graph with edges of the graph representing (possible) communication required between different 
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processors. Based on the task graph, the scheduler decides which task will be executed by which 
processor and is guided by cost models for computation and communication. The disadvantages of 
the task graph approach are that an optimal solution is NP-hard (however, good solutions are not 
too hard), creation of the schedule can be expensive (however, it only needs to be recomputed 
periodically for load balance and the cost can be amortized over several time-steps). On the other 
hand, it accommodates flexible integration needs and workload profiles, offers a mix of static and 
dynamic load balancing, helps manage complexity of a mixed threadslMPI programming model, 
and allows the individual simulation components to evolve independently. 

Integration and Parallelization 

The fire code, Arches, that we developed and validated over the years was a stand-alone physics
based, serial code. To achieve the goal of developing a generalized framework for large-scale, 
massively parallel simulations of accidental fires and explosions, our focus in this work was on 
integrating the fire code in the UCF. 

Integration Strategy 
The integration ofthe Arches in UCF is built on three principles: I) Develop different reusable 
physics-based components that can be used interchangeably and interact with other components, 2) 
reuse the legacy stand-alone fire code (written in Fortran) as much as possible, and 3) use 
components developed by third parties, specifically non-linear and linear solvers designed for 
solving complex-flow problems. 

Our first step was to design a generalized, component-based architecture for fire simulations that 
can be incorporated in any computational framework that provides support for parallelization. First, 
we worked on the software design specifications to integrate with UCF. Figure I illustrates 
different design components and their relationships for fire simulations. These components are 
designed around real world concepts (such as subgrid scale micromixing as represented by the 
MixingModel component), and they encapsulate functionality found in multiphysics problems. 
Many of the design decisions were necessitated by the parallel-processing paradigm provided by 
UCF. 

After finalizing the design, we added details to the design model to describe and optimize the 
implementation of the different physics-based, reusable components. These components fulfill two 
important features. First, they provide an interface to the UCF. An example of how these 
components interface with UCF for a CFD simulation is shown in Figure 2. 

Boxes in the figure represent Arches components and the oval shapes represent the Data 
Warehouse component of the UCF. A request to advance simulations in time is passed from UCF 
to the Arches Integrator component. Arches Integrator reads the data provided by Data Warehouse 
and uses the Arches Solver component to solve the set of nonlinear equations defined at the time of 
the problem setup. It also creates a temporary Data Warehouse (referred to as "new dw" in the 
figure) to store data computed during the time step simulation. It can be seen that all the Arches 
components interact with the temporary Data Warehouse during the course of the simulation. At 
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Figure 1: Component-based design for Arches. 

Figure 2: An example fire simulation 
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the end of one time step, Arches Integrator writes the data computed for the new time step back to 
the original Data Warehouse. 

Second, the components defme and encapsulate a family of algorithms. This design provides the 
flexibility to use and test different algorithms interchangeably in plug and play fashion. Figure 3 
illustrates the SGSTurbulenceModel component for LES where different turbulence models are 
implemented and can be used interchangeably depending on the problem we are solving. 

Figure 3: Subgrid scale turbulence 
model component of Arches 

Code reuse was necessary to minimize the code development process since most of our stand-alone 
code was already validated. To accomplish this task, we spent significant time modularizing the 
Fortran subroutines for use in our components. This included reorganizing subroutines to fit within 
the design described above, and removing our dependency on common blocks. 

Realistic fire simulations must account for relevant physical processes such as turbulent reacting 
flow, convective and radiative heat transfer, multi-phase interactions, and fundamental gas phase 
chemistry. Representations of these physical processes lead to very large, highly nonlinear, partial 
differential equations (PDEs). Robust nonlinear and linear solvers for these large-scale nonlinear 
sets ofPDE on massively parallel ASCI platforms are required. To this end, we selected Portable 
Extensible Toolkit for Scientific Computation (PETSc) to provide general-purpose solvers. PETSc 
provides a suite of nonlinear and linear scalable solvers for scientific applications modeled using 
PDEs. [6] PETSc solvers are written to be independent of the underlying data structures that define 
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the problem. We have exploited this feature in the creation of the interface between PETSc and 
Uintah. The interface provides the capability to manipulate Uintah data structures as the vectors 
and the sparse matrices that are used by PETSc. The interface also allows us to write custom 
algorithms that can be used as preconditioners to the PETSc solvers. 

Through the Uintah-PETSc interface, we now have access to the full range of solver capabilities 
provided by PETSc. To achieve scalability for big problem and large number of processors, we are 
working on developing customized preconditioners like AdditivelMultiplicative Schwartz with 
PETSc solvers. 

The fluid flow component of the Arches is now integrated and running into Uintah. An explicit 
solver is in place that uses the Uintah-PETSc interface for solving the pressure equation in an 
implicit fashion. 

Parallelization Strategy 
For parallel CFD computation, UCF creates a task graph using the components provided by the 
application developer and assigns them to different processors determined by the Scheduler based 
on the cost model for computation and communication, as described in the previous section. 

Figure 4 shows a typical task graph created during the process of solving the pressure equation, one 
of the steps in a fire simulation. 
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Figure 4: An example task graph 
for pressure solver of Arches 
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This process has been divided into two tasks. In the first task, a linear matrix is generated through 
discretization and the application of boundary conditions. Before the start of this task, each 
processor has the data it requires for computing the matrix. In the second task the matrix is solved 
using PETSc (see previous section). As shown in Figure 4, the computational domain is divided 
into four patches, and each patch is associated with a processor. Arrows in the figure indicate data 
dependencies between the processors. The Data Warehouse uses this task graph to determine 
dependencies and data transfer. 

Results 
Figure 5 illustrates the parallel scalability obtained with the integrated UCF/Arches code. The 
simulation consists ofa buoyant helium plume of diameter 10cm. The problem domain is 1m x 1m 
x 1m, discretized into 3.4 million cells. The resulting code demonstrates linear scalability to 125 
processors on the SGI Origin 2000 at Los Alamos National Laboratory. We have identified two 
bottlenecks to achieving scalability beyond 125 processors: First, the UCF has known limitations 
that are being address in a second version. Second, the preconditioner used in this computation 
does not exhibit good scaling characteristics beyond 125 processors. Multigrid preconditioners are 
being examined for future runs. 

Other optimizations planned include the combination of MPI-based message-passing 
communication with a finer-grained thread-based communication. UCF facilitates this combination 
without complicated changes in the application code. Preliminary results indicate that performance 
improvements of 50% or more are achievable with this type of mixed communication model. 
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Figure 5: Scalability of Arches running in 
the Uintah Computational Framework 
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Conclusions 
The Uintah PSE and Uintah Computational Framework provide a mechanism for achieving 
parallelism with an existing Fortran CFD code. In integrating the Arches code with UCF, we 
attempted to strike a balance between code re-use and performance obtained. While some changes 
were necessary to the underlying Fortran code, the bulk of the algorithmic sections of the code 
remained intact. 
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