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A b s t r a c t

A complete fam ily o f  untimed asynchronous 4- 
phase pipeline protocols is derived and characterised. 
This fam ily contains all untimed protocols where data 
becomes valid before the request signal rises. Start
ing with a specification o f  the most parallel such pro
tocol, rules are provided fo r  concurrency reduction to 
systematically generate the fam ily o f  all 137 related 
protocols that can be pipelined. Graphical and text
ual nomenclatures are developed to represent proto
col properties and behaviours. The protocols are cat
egorised according to their behaviours when composed 
into linear and structured parallel pipelines. Six basic 
categories emerge, along with several properties such 
as a single state that determines whether a protocol is 
fully or ha lf buffered. When equivalence classes are cal
culated fo r  parallel pipeline behaviours they are domi
nated by 15 shapes (all o f which are delay-insensitive) 
which are related by a simple lattice. Several pub
lished circuits are shown to map to 16 o f  our 137 fam ily  
members. This work enhances the understanding o f  
handshake protocols, their properties, and relationships 
between different implementations in terms o f  concur
rency and behavioural properties.

1. I n t r o d u c t io n

Asynchronous request acknowledge protocols have 
been employed for years. Yet it is surprising how little 
is understood of the fundamental behaviour of the pro
tocols when they are composed into systems. This 
work formally and exhaustively investigates all pos
sible untimed asynchronous latch controller protocols. 
The behaviour of each protocol is then investigated in 
linear and parallel configurations to study its concurrent 
behaviour. A number of properties emerge such as pro
tocol equivalence classes, protocol compatibility sets, 
behavioural properties such as the ability to latch data 
in every latch, control the latch without extra state logic, 
and full lattice representation.

We have found Milner’s CCS (Calculus of Communi
cating Systems) [10] to be very apt notation for studying 
protocol families in this way: it is expressive enough to

model signal protocols; its semantics conveniently cap
ture event orderings rather than specific timings; and it is 
compositional which makes it straightforward to model 
both linear and parallel pipelines. Further, latch proto
cols and pipeline structures can be compressed down to 
the minimal canonical state graph and property checked 
on CCS’s supporting software, the public domain CWB 
(Concurrency Workbench) [11]. CCS has also been 
extended to directly support circuit realisations with 
speed-independent broadcast communication [12].

Our technique is quite straightforward: the most 
parallel behaviour of a 4-phase latch controller is first 
described in CCS and the CWB is used to generate its 
equivalent state graph (32 states). Using a few con
currency reduction rules, states are systematically cut
away on the incoming and outgoing channels to gener
ate all less concurrent state graphs that will still obey 
some related latch controller protocol. The cut-aways 
are exhaustive: all possible protocols in the family are 
generated as minimised state graphs. Notice that this 
paper only describes concurrency reduction for untimed 
protocols. The rules for timed protocols (burst-mode or 
relative timed) will be presented elsewhere.

The CCS notation allows us to compose parallel 
specifications of the channels with their concurrency 
reducing synchronisation, and reduce these to canonical 
state-graph specifications. The composition of parallel 
protocols and their systematic reduction to a minimal 
canonical representation renders comparison between 
implementations trivial and assists in validating com
pleteness. Such transformations are not readily possible 
with STG and Petri-net specifications.

1.1. Previous Work

Figure 1 shows LC , a 4-phase latch controller, and 
its associated latch where the data is stored. The input 
(upstream) channel handshakes with lr (the left request) 
and la (the left acknowledgment), and the output (down
stream) channel with rr (the right request) and ra (the 
right acknowledgment). Each channel employs the 
simple protocol of interleaving request and acknowledg
ment signals. By convention we overline output signals 
but not input signals. Note that in this work we have 
abstracted out the data-path, and only model the proto-
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Figure 1. LC: th e  g en e ric  latch pro tocol
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side and the notification of the arrival of the next data 
value (lr|). It is thus not surprising that the Manchester 
4-phase latches studied vary in state size (from roughly 
18 to 26 states). When combined into linear pipelines 
LPd, their minimised behaviours settled into predictable 
pattern of state sizes from pipeline depth 2; whereas 
the parallel pipeline patterns PPw,d were regular from 
depth 1, but did not agree with the linear pipeline pattern 
(PPw,d was always more state rich). Three new math
ematically inspired 4-phase protocols were also exam
ined, two of which did exhibit stable behaviour in that 
PPw,d =  LPd for positive w and d. One of these proto
cols has 32 states and is the most parallel 4-phase latch 
protocol achievable.

With a little modeling and analysis on the CWB, it 
was easy to show the following results for the latches 
considered:

lr

rr

Figure 2. L inear and  Parallel P ipelines

col on the handshake pins of the two channels. Work 
is in progress on modeling the latch enable signals for 
normally open and normally closed protocols and will 
be reported elsewhere.

We quickly review the relevant results presented in 
[1]. That work made no attempt to be complete and 
considered only four published 4-phase latch controllers 
and three idealised protocols. Besides modeling these 
seven latch controllers singly, it also considered their 
behaviours when composed into structured pipelines:

1. LPd : a linear pipeline of latch protocols of depth d 
(see the top part of Figure 2).

2. PPw,d: the structured composition of w d-deep 
pipelines running in parallel (see the lower part of 
Figure 2). The fork module F 2 broadcasts lr to 
both linear pipelines and waits until all have replied 
before responding with la. The join module J 2 is 
the inverse of F 2.

Notice that the specifications of LC, LPd and PPw,d 
are all in terms of lr, la, lr, ra and can thus be compared 
and contrasted directly.

The Manchester group has published several 4-phase 
latch controller circuits, some faster, some more power 
efficient. One source of variety is the amount of over
lap permitted between the recovery phase on the rr\/ra \

1. LC, a single latch protocol, may have between 
16..32 states.

2. LPd and PPw,d usually have O(16d) states, but 
this will be O(8d) if values are latched in alternate 
stages.

3. for the 4 Manchester designs, LPd =  PPw,d.

These 4-phase results were checked by running CCS 
models on the CWB for w,d = 1..8. In addition several 
equivalent 2-phase results were given formal proofs. 
None of these are deep, rather they are case rich, shal
low and tedious. Preliminary work on the 4-phase proofs 
shows them to be similarly structured and yet more case 
rich and tedious. It would be nice to get the proofs mech
anised and verified with a proof checker such as HOL.

1.2. Structure o f th e  Paper

The structure of the rest this paper is as follows. In 
Section 2, we present our specification notation CCS 
and construct a specification of the most concurrent 4- 
phase latch protocol LCmax which has 32 states when 
expressed in our normal form  as a minimised state 
graph. In Section 3 we show how the whole family 
of less state rich (less parallel) 4-phase latch proto
cols can be derived from LCmax through concurrency 
reduction. Each sub-behaviour is expressed as a state 
graph and given a unique characterisation. We also tab
ulate the behaviours when pipelined singly and in paral
lel. In Section 3.3 we discuss six protocol categories 
that emerge, including the 15 protocols that are sta
ble: for them LPd = PPw,d. An important side effect 
for designs with this behaviour is that we can replace 
quite complicated formal models of parallel PPw,d data
paths by the much simpler LPd model when reasoning 
about concurrent pipelined designs such as a micropro
cessor. In Section 4 we partition the state space into pro
tocol equivalence classes when pipelined in linear and
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parallel configurations. Section 5 presents the stable cir
cuits (and hence their equivalence classes) into a lattice 
based on concurrency. Section 6 ties in related work and 
Section 7 lists some published designs and places them 
in our family lattice. Finally we summarise the work 
done so far and some future directions.

2 . L C m ax: T h e  M a x im a l  4 - p h a s e  P r o to c o l

In this section, we model the behaviour of LCmax, 
the 4-phase latch protocol of maximal concurrency, 
and display its regular behaviour when composed into 
pipelines. In CCS, our first step in specifying LCmax is 
to describe as the composition of L which deals with the 
incoming channel and R  which deals with the outgoing 
channel.

L
R
LCcon

= lr] . la] 
= rr] . ra] 
= ( L | R  )

n
rr]

laI 
ra]

L
R

The definition of L  simply spells out the order of one 
cycle of input signals and then repeats forever. The 
signals are separated by ‘ . ’ which we may interpret in
formally as signal precedence. CCS specifies the order 
of events, but they occur with arbitrary delays rather than 
strict timings, resulting in all possible concurrent signal 
interleavings. The protocol it describes may accordingly 
take an arbitrary time between these signals. The defi
nition of R follows the same pattern. The above specifi
cation minimises to a 4 x 4 block of states which (with 
loop back) and via the semantics of CCS, covers every 
possible interleaving of the 8 signals, from one extreme 
just L running and to the other just R running and all 
intermediate possible interleavings.

However L and R can not run untrammeled. We now 
add synchronisations that will (1) ■ stop L  from accept
ing fresh data when the previous data value has not been 
accepted downstream, and (2) •  stop R from emitting 
an rr] until a fresh value has been latched. The second 
version of the specification of LCmax indicates how to 
handle these interplays between L and R :

L
R
LCmax

= lr] . ■ . 

= ( L |R )

la]
a]

lr]
rr]

la]
ra]

L
R

1.

2.

■ : after R has received a signal ra], it is sure 
that the current data value has been captured down
stream. R will now unblock L (if it were blocked). 
Both L and R may continue on.
•  : with space assured, (the unblocked) L  is free to 
capture next fresh data value and then unblock R (if 
it were blocked). Both L  and R  may continue on.

Notice the ordering lr].B .^ ... in process L. Channel L 
must have an empty latch (make sure that R has received 
ra]) before it stores the next value on dIN  in the latch. 
For channel R the conditions are reversed.

We may remark that whereas the placing of the 
receiving ■ in L and •  in R are crucial, it is quite in 
order to shuffle the awakening •  to the right in L  and the 
awakening ■ to the right in R. All such shufflings are 
captured by our cut-away method described in Section 3.

L :

R :

F igure 3. C o n stra in ts  on  LCmax

These two synchronisations may be modeled in several 
ways. One reusable style1 to model (see Figure 3) is 
define two tokens one for each of the synchronisations:

1. ■ by S, the space token
2. •  by V, the value token,

S = gS.pS.S 
V  = gV.pV.V

each of which is taken (by a get handshake, gS or gS) 
and replaced (by a put handshake, p V  or pS  ). Impor
tantly, puts never delay the sender; but gets will block a 
requester until permission is granted. This leads to the 
final form of our specification:

L  = lr].gS.pV .la] .lr].la].L
R = gV.rr].ra].pS.rr].ra].R
S = gS.pS.S V  = pV.gV.V

LCmax = ( L | S | V | R ) \  {gV,pV,gS,pS}

The last line of the specification defines the behaviour of 
LCmax as the composition of the upstream channel pro
cess L; the downstream channel process R; and the syn
chronisation between the two channels with space and 
value tokens S and V . The handshakes between L , R  and 
S and V  are made private (hidden) with \  {gV,pV,gS,pS} 
so that no other process can tamper with them.

The only synchronising constraint on the input chan
nel of LCmax is that L  must wait until a slot is free (gS) 
to accept the value on dIN ; and the only constraint on the 
output channel is that fresh data must be latched (gV)

1 In particular it handles the shuffles alluded to above and imple
menting the cut-aways of Section 3.
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Figure 4. (M inimised) s ta te s  of th e  LCmax latch protocol

before the rr] signal can be sent downstream. Both L 
and R  are allowed to proceed at their earliest possible 
opportunity when blocked.

LCmax as defined is the most concurrent pro
tocol possible fo r  a latch protocol where data 
is valid before the rising request on the left 
channel.

This protocol has 32 states, and d-deep pipelines and 
parallel pipelines have 16d +  16 states. Figure 4 depicts 
the minimised state graph of LCmax. A middle 4x4  
block of states can be iterated for deeper pipelines to 
give rise to minimised versions of LPd. Runs on the 
CWB confirm that PPw,d = LPd for w, d  = 1..8. Thus 
LCmax exhibits stable behaviour. By inductive argu
ment, we can reason about the overall control signal 
behaviours of structured widening and thinning paral
lel pipelines as though they were linear pipelines of the 
same depth — a much simpler model to grasp.

3 . T h e  F a m i ly  D e r iv e d  f r o m  L C max

R1
R2
R3
R4

o o o  + o o o o o
o  o  o  o  o
o o o o o o o o o
o o o o o o o o o

The initial state is marked ‘+’; other reachable states 
by ‘o’, and unreachable states by ‘.’. Each shape is 
a graphical representation of a specific handshake pro
tocol, fully specifies its behaviour, and differentiates it 
from all other protocols. The graphical representation 
provides intuition about the concurrency and specific 
behavioural and pipeline properties of all protocols.

3.1. C oncurrency R eduction  R ules

The rules for generating members of the untimed2 4- 
phase family are:

1. The initial idle state must be reachable from all 
states in the graph. This has the following conse
quences:

The possible design space for 4-phase protocols is 
bounded above by LCmax which exhibits the largest 
possible parallelism. A formal method is developed to 
derive all less concurrent protocols from LCmax. This is 
achieved by creating and applying rules which system
atically reduce concurrency by minimal increments. The 
behaviour of all protocols when pipelined is then tabu
lated.

A convenient, more a compact notation of the min
imised state graph of the most concurrent protocol 
LCmax of Figure 4 has been developed. Since all the 
transitions follow simple patterns, we choose to present 
our ideas using what we call a shape:

(a) This will restrict the number of states that can 
systematically be removed from the “left” and 
“right” side of the state graph. For example, 
the following is the maximum left cut-away 
that preserves reachability of the initial state:

R 1 :  . . . + o  o  o  o  o
R 2 :  . . . o  o
R 3 :  . . . o  o  o  o  o  o
R 4 :  . . . o  o  o  o  o  o

2Rules 3 and 4 may change for other timing disciplines such as 
burst-mode and relative timing, but the overall approach remains the 
same.
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(b) Each row in the graph must contain at least 
one state, otherwise the graph will deadlock 
(represented as D).

2. Internal holes in the state space are disallowed. 
Thus the following state graph is deemed illegal:

R 1 :  o o o + o o o o o
R2 :  o  . o  o  o
R3 :  o . o o o o o o o
R4 :  o o o o o o o o o

Such graphs are found to generate very irregular 
behaviour when pipelined. This rule cuts the search 
space from over 400,000 protocols to 250.

(a) Disallowing holes in shapes has the conse
quence that we can generate all possible sub
behaviours by listing all viable ways of cut
ting states away on the left; similarly on the 
right; and then mechanically generating all 
combinations of cut-aways.

3. In untimed protocols, inputs lr and ra must always 
be accepted.

4. The protocol can restrict when outputs rr and la are 
possible.

(a) The Speed-independent set of protocols 
is a concurrency reduction of the delay- 
insensitive set after employing output order
ing.

3.2. T he C ut-A w ay N otation

The following notation is adopted for cut-aways:

1. Labcd means from LCmax remove the leftmost a 
live states (circles) from R1; the leftmost b live 
states (circles) from R2; etc. Thus cut-away L2112 
from LCmax results in the shape:

R1 :  . . o + o o o o o
R2 :  . o  o  o  o
R3 :  . o o o o o o o o
R4 :  . . o o o o o o o

in which each cut-away state is denoted by ‘.’. 
Since this shape has 7 reachable states in row 1,
4 in row 2, 8 in row 3, and 7 in row 4, we use the 
short hand 7487 where it suits (the notation is occa
sionally ambiguous, whereas the cut-away notation 
is not).

2. Similarly Rabcd cuts away from the right hand end 
of LCmax. Cut-away R2222 on LCmax results in 
the following shape or shorthand 7377:

R 1 :  o o o + o o o .  .
R 2 :  o  o  o  . .

R3 :  o o o o o o o . .
R4 :  o o o o o o o . .

3. Applying both the cut-aways L21120R2222 to 
LCmax returns the shape 5265:

R 1 :  . . o  + o  o  o  . .
R 2 :  . o  o  . .

R 3 :  . o  o  o  o  o  o  . .
R 4 :  . . o  o  o  o  o  . .

The following cut-away patterns emerge from the 
rules:

1. LEFT: L0000, L1001, L1111, L2002, L2112, 
L3003, L3113, L2222, L3223, L3333.

There are 10 in all. Any cut-aways of depth 4 
would make the initial state an orphan and are 
rejected. Cut-aways consisting entirely of even 
numbers (L0000, L2002, L2222) are of the delay- 
insensitive (DI) class. The set with odd numbers 
(L1001, etc.) are the speed-independent class and 
employ output ordering.

2. RIGHT: R0000, R0020, R0040, R0022, R0042, 
R2022, R2042, R2222, R2242, R2262, R0044, 
R2044, R4044, R2244, R2264, R4244, 4264.

There are 25 in all but after experimentation only 
the 17 listed here turn out to yield protocols that 
implement pipelining. The delay-insensitive class 
of right cut-aways exist when both the first two 
numbers agree and the last two numbers agree 
(R0000, R0022, R2222, R0044, R2244). The oth
ers are of the speed-independent class.

3.3. P rotocol C ategories

These cut-aways allow us to classify pipeline proto
cols into three families. The delay-insensitive family 
consists of both left and right DI cut-aways. The speed- 
independent family consists of protocols where the left 
or right cut-away employs output ordering. The timed 
family (not included in this paper) consist of cut-aways 
that restrict the arrival of inputs lr or ra based on local 
timing assumptions.

We have mechanised the task of generating all pos
sible delay-insensitive and speed-independent pipelined 
protocols. All 250 have been evaluated on the CWB by 
running them in linear pipelines of depth 1..8 and paral
lel pipelines of depth 1..8 and width 1..8.

When the 250 protocols were examined, 6 categories 
emerged:
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1. deadlock: The protocol deadlocks because the L 
and R cut-aways meet or overlap. 92

2. constant: Protocols that only hold one data item 
per linear pipeline. 21

3. O(8): A special class of protocols that can only 
hold a data item in every other pipeline stage. Their 
state sizes increase by 8 not 16 as the pipelined 
grow deeper. These are only found when apply
ing the R2244, R2264, R4244 and R4264 right cut
aways. Notice that 4 of these shapes are stable even 
though O(8). 22

4. semi-regular 0(16): These protocols do not main
tain their native shape when composed into either 
linear pipelines LPd or parallel pipelines PPw,d. 
Some of the concurrency removed in the protocols 
is regained in their parallel compositions. 43

5. regular O(16): These protocols retain their shapes 
predictably when composed in a linear pipeline 
LPd, and increment by 16 states with each increase 
of pipeline depth. However, parallel pipelines 
PPw,d do not maintain their native shape. 60

6. stable O(16): These protocols retain their shapes 
in linear and parallel pipelines of all depths. This 
only occurs for delay-insensitive protocols. 12

The category of constant protocols are all concur
rency reduced versions of the DI protocol L0ooo°R2266. 
This consists of cutting off the right six columns of the 
LCmax shape of Figure 4. Thus, at least one of the states 
in R2266 are required for pipelining.

Certain protocols can only store data in every other 
latch when the pipeline is stalled3, called half-buffering
[8]. Any protocol that does not contain the state marked 
with x  in Figure 4 (or that remove any states in R2) 
cannot store data in every latch when stalled. Thus, we 
define this state as the pipeline state. The O(8) category 
is a subset of this set since these states only occur with 
R2244, R2264,R4244 and R4264 cut-aways. However, 
note that even certain delay-insensitive protocols, such 
as L0000°R 2222, cannot store data in all latches. Proto
cols that do not include the pipeline state are not useful 
for certain implementations such as FIFOs.

Protocols in the stable category retain their native 
shapes when composed in parallel. Further, the linear 
and parallel pipelines are equivalent: LPd = PPw,d
V w, d > 0. This means that a linear portion of such a 
pipeline may be replaced by a parallel pipe of the same 
length; and vice versa. Thus such structured pipelines 
may be thinned or fattened with no effect visible to 
the external observer of their control signals. This is a 
very useful guarantee and a handy simplification when

3Assuming pulse latch clocking is not employed.

reasoning about parallel pipelines. Stable protocols can 
only occur when both the left and right cut-aways are 
delay-insensitive. For each additional parallel stage, 
16 states are added. Thus, the state space of protocol 
L0000°R 0000 grows as 32, 48, 64, 80, . . .  as pipeline 
depth increases. The 16 additional states per pipeline 
stage correspond to the 4 x  4 block in the hashed box 
of Figure 4. Therefore, the native interface protocol of 
a d-deep pipeline is the resultant shape calculated by 
removing the d x  16 states in the center of the shape.

The regular and semi-regular protocols behave reg
ularly for d =  2 ,3 ,4 . . . .  The shape for d > 1 
is not equivalent to the native shape for the protocol. 
All shapes consisting of two or more stages in parallel 
(d > 2) converge on a specific concurrent protocol with 
more concurrency. Thereafter the behaviour maintains 
the same native protocol shape. Much of the concur
rency that is regained in these categories is the return of 
concurrency that was removed through output ordering.

For example, consider the semi-regular speed- 
independent protocol L1001°R0000. It contains 30 
states and implements output ordering where la] pre
cedes rr]. The protocol interface becomes identical to 
LCmax when composed in linear pipelines of depth 2 or 
more. However, it is identical to LCmax in all parallel 
pipelines. This is shown in the following table that gives 
the number of states in various parallel configurations:

d = 1 d = 2 d = 3 d =  4
LPd 30 48 64 80
PPw,d 32 48 64 80

This shows that some of the concurrency removed from 
a protocol is recovered in a regular way when protocols 
are placed in parallel configurations.

Thus a protocol may behave identically to a more 
concurrent protocol when placed in parallel configura
tions. This implies that protocol equivalence classes 
could emerge, as is shown to be true in Sections 4.1 
and 4.2. This also implies that inside a protocol equiva
lence class, certain concurrency reductions might result 
in more efficient implementations than others. Our 
results in this area will be reported in future publica
tions.

The family of untimed protocols is rather large. 
Removing the deadlock and constant categories as being 
uninteresting for implementing pipelines leaves a family 
of 137 distinct and useful protocols. This family is tab
ulated in Table 1. Only categories 3-6 are recorded for 
brevity. The 12 stable shapes are represented as cate
gory 6, the 60 regular shapes with 5, the 43 semi-regular 
shapes with 4, and the 22 O(8) shapes with 3. Deadlock
ing states, such as L3333°R4044, are marked D.
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L0000 L1001 L1111 L2002 L2112 L3003 L3113 L2222 L3223 L3333 L o R

6 4 5 6 5 5 5 6 4 5 R0000
4 4 4 4 4 4 4 4 5 4 R0020
5 4 5 5 5 5 5 5 4 5 R0040

6 4 5 6 5 5 5 6 4 5 R0022
5 4 5 5 5 5 5 5 4 D R0042
5 4 5 5 5 5 5 5 4 5 R2022
5 4 5 5 5 5 5 5 4 D R2042

6 4 5 6 5 5 5 6 4 D R2222
4 5 4 4 4 4 4 4 4 D R2242
5 4 5 5 5 D D 5 D D R2262

6 4 5 6 5 5 5 6 4 5 R0044
4 5 4 4 4 4 4 4 4 D R2044
5 4 D 5 D 5 D D D D R4044

3 3 3 3 3 3 3 3 3 D R2244
3 3 3 3 3 D D 3 D D R2264
3 3 D 3 D 3 D D D D R4244
3 3 D 3 D D D D D D R4264

Table 1. C ategorisa tion  of th e  family of 4 -p h ase  la tch es

3.4. A dditional P roperties

Additional important distinguishing properties of the 
protocols can be graphically represented on Figure 4 and 
using the cut-away notation:

• Only protocols that contain the state marked with 
x in Figure 4 will latch data in every pipeline 
stage when using 4-cycle protocols. The two-phase 
and O(8) protocols can latch every stage if using a 
pulsed clock or handshaking through the register.

• The states in which the latch must be transpar
ent and opaque can be represented by a coloring. 
Based on these colorings, it can easily be shown 
that certain states require a state variable to control 
the latch due to the state spaces. Some protocols 
don't cover the states that require a state marking, 
and thus result in simpler latch control logic that 
can be encoded directly from a combinational func
tion of the handshake signals, and even the rr and 
la signals.

4 . P a r a l l e l  P r o to c o l  E q u iv a le n c e  C la s s e s

Huygens invented the pendulum in 1658. In 1665 
he noticed that if he put two of his clocks side by side 
then their pendulums would always synchronise within

30 minutes whatever their out-of-phase initial settings. 
We have an analogous convergence between different 
protocols when placed in parallel configurations.

The parallel behaviour of the family of protocols con
figured in parallel pipelines is represented in Table 2. 
Linear pipelines are presented in Table 3. These tables 
are divided by three vertical and five horizontal blocks. 
The top left of each block is a stable state that is the 
result of composing two delay-insensitive cut-aways. In 
Table 1 no particular pattern emerges if we examine by 
rows or by columns; there is no predictable pattern of 
row or columns of just 4's or 5's. This indicates that 
neither the L or R cut-aways are a dominant factor in the 
pipelined behaviour of our protocols.

Examining block-by-block, the best behaved is the 
center block with stable shape L20o2°Roo22. This shape 
is very symmetric in its left and right cut-aways, as a pair 
of rrl transitions are pruned by the left cut-away and a 
pair of la |  transitions by the right cut-away.

4.1. Parallel P ipelines

Table 2 displays the behaviours of the parallel 
pipelines PPw,d. Models were run for w =  1..8 and 
d =  1..8 for all 137 category 3-6 protocols.

The first interesting fact to emerge is that PPw d = 
PP i,d for w =  2, 3,.., 8. Therefore when reasoning
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L0000 L1001 L1111 2002
J L2112 L3003 L3113 2222
J L3223 L3333 LoR

9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0000
9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0020
9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0040

9577 9577 9577 7575 7575 7575 7575 7355 7355 7355 R0022
9577 9577 9577 7575 7575 7575 7575 7355 7355 7355 R0042
9577 9577 9577 7575 7575 7575 7575 7355 7355 D R2022
9577 9577 9577 7575 7575 7575 7575 7355 7355 D R2042

7377 7377 7377 5375 5375 5375 5375 5155 5155 D R2222
7377 7377 7377 5375 5375 5375 5375 5155 5155 D R2242
7377 7377 7377 5375 5375 D D 5155 D D R2262

9555 9555 9555 7553 7553 7553 7553 7333 7333 7333 R0044
9555 9555 9555 7553 7553 7553 7553 7333 7333 D R2044
9555 9555 D 7553 D 7553 D D D D R4044

7355 7355 7355 5353 5353 5353 5353 5133 5133 D R2244
7355 7355 7355 5353 5353 5353 5353 5133 D D R2264
7355 7355 D 5353 D 5353 D D D D R4244
7355 7355 D 5353 D D D D D D R4264

Table 2. Parallel P ipeline P ro to co ls  PPw,d

about structured parallel pipelines, one can always use 
the simpler representation PP1,d.

The second interesting fact is that within each of the 
15 blocks in Table 2, all structured parallel pipelines 
result in the equivalent behaviour of the most parallel 
shape. Thus in a parallel pipeline, if a less concurrent 
protocol is implemented, it is indistinguishable from the 
most parallel delay-insensitive protocol. This implies 
that any of the protocols that apply concurrency reduc
tion might result in a more efficient implementation that 
results in the same delay insensitive behaviour.

4.2. Linear P ipelines

LPd were evaluated for d =  1.. 8 over all 137 category
3-6 protocols. All single pipeline protocols showed pre
dictable growth and shape for pipelines of depth 2 and 
deeper. Thus Table 3 shows state sizes for depth 2, and 
group together equivalent protocols.

Three different equivalence sets emerge:

1. There are four 2 x 2 groups of adjacent cut-aways 
which have identical protocols for LPd where d >
2. In each of the four cases, these protocols con
verge to the most parallel protocol, that in the top 
left position of the group. These sets consist of the 
four shapes that converge to protocols L0000oR0000,

L00000R2242, and L00000R2044 in the first column 
and L32230R0000 in the ninth.

2. There are 12 vertically arranged pairs of shapes 
that exhibit unique LC  behaviours but are equiva
lent when pipelined at depths 2 or greater. In each 
case they converge to the most state rich shape, the 
higher of the two. These pairs consist of the proto
cols in the first and second rows, ninth and tenth 
rows, and 12th and 13th rows in columns three 
through eight. Notice, for example, that in rows one 
and two of Table 3 there are two distinct pairings of 
44 states, 42 states, and 40 states. All other equiv
alent state pairs do not have equivalent shapes. 
For example, even though both L2002oR0042 and 
L2002oR2022 have 38 states, they do not have equiv
alent shapes.

3. There are 13 horizontally arranged pairs of shapes 
that result in identical protocols. These are the pair 
with 24 states in the last row, 26 states in rows 
15 and 16, 28 states in row 14, 30 states in row 
five, those with 32 states in rows three and four, 40 
states in rows seven, eight, and eleven, 42 states in 
rows five and six, and 44 states in row four. All 
other protocols are unique, even when they consist 
of the same number of states. For example, pro
tocols L0000oR0040 and L i00ioR0040 both have 44 
states but they are different protocols.
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L0000 L1001 L1111 L2002 L2112 L3003 L3113 L2222 L3223 L3333 LoR

48 48 44 44 42 42 40 40 36 36 R0000
48 48 44 44 42 42 40 40 36 36 R0020
44 44 40 40 38 38 36 36 32 32 R0040

44 44 40 40 38 38 36 36 32 32 R0022
42 42 38 38 36 36 34 34 30 30 R0042
42 42 38 38 36 36 34 34 30 D R2022
40 40 36 36 34 34 32 32 28 D R2042

40 40 36 36 34 34 32 32 28 D R2222
36 36 32 32 30 30 28 28 24 D R2242
36 36 32 32 30 D D 28 D D R2262

40 40 36 36 34 34 32 32 28 28 R0044
36 36 32 32 30 30 28 28 24 D R2044
36 36 D 32 D 30 D D D D R4044

28 28 24 24 22 22 20 20 16 D R2244
26 26 22 22 20 D D 18 D D R2264
26 26 D 22 D 20 D D D D R4264
24 24 D D 20 D D D D D R4264

Table 3. L inear P ipeline P ro to co ls  LP2

5. T h e  F a m i ly  H ie r a r c h y

The cut-away representation L°R  of the protocol 
family provides a direct method of ordering the entire 
family into a lattice based on protocol concurrency. The 
protocols are ordered based on state richness: protocol 
X  < protocol Y  iff every state in shape X  is also a state in 
shape Y . The easiest way of carrying this out is simply 
to compare the cut-away definitions of X  and Y .

Let Labcd < L a>b>c>d> iff a > a ’ and b > b ’ and c > 
c ’ and d > d ’. That is Labcd cuts away more or the same 
as La>b>c>d> for each row of a shape.

Similarly for the class of right cut-aways. Then pro
tocol Labcd°R ef gh is a proper sub-protocol of shape
La'b'c'd' °R e' f  'g'h' iff L abcd < La' b'c'd' and R efgh <
Re’ f  'g'h' . Otherwise they are not comparable.

The process is very simple to mechanise without the 
need to generate and compare the minimised state graph 
shapes.

The 15 combinations of delay-insensitive cut-away 
classes that produce stable shapes are displayed in a lat
tice in Figure 5. A shorthand notation is used in the 
lattice to represent the protocols by listing the number 
of states in each row of the shape. The top of the lattice 
is 9599 (LCmax) with 32 states, and the least concurrent 
stable protocol is 5133 with 12 states. Notice, however, 
that this notation is not unique as two different protocols 
in the lattice share the shorthand notation of 7377 and

7355. The unambiguous L°R  notation can be derived 
from the figure to identify the protocol shape.

6 . R e la te d  W o r k

Asynchronous designers are well aware of concur
rency reduction as a means of modifying protocols to 
generate more efficient implementations. Some con
currency reduction algorithms have been automated and 
implemented in CAD tools [2]. The formalisation of a 
set of concurrency reducing transformations and rules 
have been previously published. Lines started with 
a concurrent handshake expansion in CSP, and then 
applied four reshuffling rules to the handshake signals 
to reduce concurrency [8]. This produced nine valid 
protocols, eight being reshufflings of the most concur
rent MSFB protocol. McGee and Nowick developed a 
graphical framework based on signal transition graphs
[9]. They formalised three correct-by-construction arc 
transformation constraints to reduce concurrency, and 
produced a lattice of protocols.

One significant difference to previous work is the 
completeness and coverage of the protocol space. The 
previous work implements subsets of the work presented 
here. Our formal process based transformations are 
complete and exhaustive. All protocols, starting with 
the most concurrent LCmax, are part of our set. The
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L0000 L2002 L2222 L o R

I I I
(9 5 9 9 )------------------------------(  7597 ) ----------------------------- ^7377^ <—  R0000

(  9577 ^------------------------------(  7575 ) ----------------------------- (  7355 )  —  R0022

---------------(  5 1 5 ^) ' ^ ^ \ \ ^  —  R2222

-----------  ^ \ (  ^ (7553 ) -----------  ^ \ (  5 333  )  —  R0044

(  7355 ) ------------------------------(  5353 ) ----------------------------- (  5133 }  —  R2244

Figure 5. Lattice of S tab le  P ro toco ls

most concurrent protocol in these publications is in the 
Loooo°^oo44 protocol equivalence class. This covers 
only the bottom six protocol equivalence classes in our 
lattice; the nine more concurrent protocol equivalence 
classes are not included. Additionally, our work is com
pletely general. We don’t impose any constraints on the 
implementation, and even abstract out the latch control 
signals. McGee’s work focused on characterising a par
ticular implementation style based on dynamic gates and 
relied upon internal signals such as reset, precharge, and 
evaluate for their model.

This work also derives many characteristics of 
pipelined protocols that were previously unknown or 
not clarified elsewhere. For example, Lines charac
terises protocols in terms of their ability to store data in 
each latch; the half buffered protocols (such as PCHB) 
can only store data in every other latch whereas the 
fully buffered protocols (such as PCFB) store data in 
all latches upon a pipeline stall [8]. However, no spe
cific property was defined that results in this charac
teristic behaviour. Section 3.3 defines this property as 
being directly dependent on the pipeline state in row R2 
of right cut-aways. The PCFB protocol L 1001°R4044 is 
fully buffered since no states are removed in R2 of its 
cut-away R4004; the PCHB Li00i°R 4264 is half buffered 
because two states are removed from row two of its 
right cut-away. Given the pipeline state property we 
have defined one can observe the shape of any proto
col and immediately determine if the protocol is half or 
fully buffered. Thus one can quickly prove that Suther

land’s Micropipeline [13] is a half buffered protocol, 
and should not be used in a FIFO. Many other proto
cols and properties not previously known are presented 
here, such as the 15 equivalence classes that result when 
protocols are placed in parallel configurations.

7 . P u b l i s h e d  C i r c u i t s

A selection of published circuits have been examined 
as shown in Table 4. Of the 28 listed there are only 16 
distinct protocols implemented.

In the protocol family investigated in this paper, all 
but the control handshake signals lr,la and rr,ra are for
mally hidden from the protocol behaviour. This work 
does not consider power, area, speed, or whether the 
latch is normally open or closed. Thus each proto
col has a multitude of possible implementations. What 
the protocol does tell you is how every corresponding 
implementation will behave at the interface when com
posed together in a single or parallel pipeline. These 
circuits can also be placed into the lattice and tables to 
determine properties of the protocol and study alternate 
implementations which may be improvements over the 
current version.

8 . C o n t r ib u t io n s

In this paper we have presented the family of 4-phase 
latch protocols with data valid before rising request:
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Name Protocol Reference

MSFB L00000R4044 [8]
KG Liooi°Roooo [7]
FD6 L10010R0040 [5]
FD7 Ll001°R0044 [5]
PCFB L10010R4044 [8]
PCHB L10010R4264 [8]
FL2,FL3 L 20020R 0000 [6]
BNC1 L20020R0042 [4]
BNO1,EGc,EGd,FL1 L 20020R 0044 [3, 6]
BNO2,EGa,EGb,BNC2,LH2 L20020R2042 [3, 4]
BRF1,LH1 L20020R2044 [4]
MP L20020R2244 [13]
FD4,WCHB L20020R4264 [5, 8]
BAF1 L21120R2042 [4]
FD5,ERS1,ERT1 L22220R2022 [4, 5]
YBA L 22220R 2222 [14]

Table 4. P ub lished  c ircu its, (s tab le  in bold)

their control signal properties and behaviours, and how 
they compose into homogeneous structured linear and 
parallel pipelines.

We have fully specified every protocol that exists in 
the family of 4-phase pipeline controllers where data is 
valid before the rising edge of request. The most con
current protocol LCmax is specified, from which all less 
concurrent untimed protocols are derived.

A canonical state graph representation for protocols 
is presented and called a shape. This easily allows us to 
demonstrate properties of handshake protocols and the 
result of formal concurrency reduction transformations.

The behaviour of all 250 possible protocols was char
acterised in linear and parallel pipelines. Six fundamen
tally different categories emerged. We labeled these as 
stable (12 of O(16)), regular (60), semi-regular (43), reg
ular 2-phase (22) of which 3 are stable, constant (21), 
and deadlock (92). Stable behaviours have shapes that 
are not modified in linear and parallel configurations. 
This set has an interesting property of defining protocol 
equivalence classes as noted below, and these protocols 
were used to define the protocol lattice. Regular proto
cols are not modified when placed in linear pipelines, but 
their behaviour is more concurrent when placed in paral
lel pipelines. Semi-regular protocols exhibit increased 
concurrency in both linear and parallel pipelines. For all 
protocols, their maximum concurrency is reached after 
only two pipeline stages.

Additional properties are derived and mapped to our 
protocol shapes. We defined the condition that must hold 
for a controller to be pipelined. This condition is de
pendent on right cut-away R2266 which overly restricts 
responses on the upstream channel.

While the interaction between the protocol and the 
latches was not explicitly modeled, two additional key 
properties were defined in this work that relate to the 
latching behaviour of the protocol.

First, an important pipeline property in the presence 
of stalls is the ability to store data in every latch. This 
work defined one specific state, the pipeline state, that 
must exist in any 4-phase protocol in this family to 
allow it to store data in all latches when stalled. Thus 
any fully-buffered protocol will contain this state in the 
shape, whereas half-buffered protocols will not.

Second, this work classifies protocols into two sets: 
those that require a state variable to control the latch 
and those that can control the latch using a function on 
the input and output signals of the gate (possibly using 
only one handshake signal). This can be a complex
ity parameter for implementations, as well as provide 
a reduction in protocol delays or timing requirements in 
circuit implementations. A coloring on the shape can be 
derived indicating the states that require an additional 
latch control state variable for either normally open or 
normally closed control. Details of these colorings are 
not presented here due to space limitations.

The protocol shapes were placed into equivalence 
classes based on the protocol behaviour presented at the 
interfaces. We found that for parallel pipelines there 
are 15 equivalence classes of up to 16 different pro
tocols, each dominated by one of the stable protocols. 
Thus stable protocols have a central role in pipelining. 
Since linear, independent latches rarely occur, designs 
that use concurrency reduction techniques to improve 
performance and power, yet map to a pipeline equiva
lence class might result in very productive optimisation 
techniques. Our results in this area will be presented 
later.

Linear pipelines were also evaluated and placed into 
equivalence classes. These configurations showed a 
much finer granularity in equivalence classes, as the 
largest sets contained only four protocols.

A definition for categorising protocols into a lattice 
was defined, and the 15 parallel protocol equivalence 
classes were placed into a lattice. The lattice, nomen
clature, and shape models presented in this paper pro
vide several different methods to compare and contrast 
protocols and their realisations as circuits. The unique 
textual representation of the protocols encodes restric
tions on the left and right channels and also encodes 
timing assumptions built in the circuit including delay- 
insensitive and speed-independent protocols, those with 
output ordering, and protocols that have inherent timing 
in the protocol. The stable protocols, which serve as 
basins of attraction to the other protocols, is also derived 
from this naming convention.

A large set of published circuits were then mapped to 
our protocol family. These circuits include designs using 
combinational logic, dynamic logic, and C-elements.
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The evaluation of tradeoffs between concurrency 
reduction, energy, and performance across an entire pro
tocol family can now be made. This tradeoff largely 
occurs due to circuit improvements based on circuit 
timing, such as output ordering, against the reduced 
system level concurrency that occurs based on the con
currency reduction. The small number of stable con
figurations (15) that serve as basins of attraction allow 
the choice of fixed design zones. There are also subsets 
of the family that present particularly interesting trade
offs. Namely, all R0044 and larger cut sets retain full 
forward concurrency but result in substantially simpli
fied protocols by removing concurrency when recover
ing from a stall. From a system level perspective this 
type of concurrency reduction can be extremely benefi
cial especially if stalls are rare, such as in a data-path. 
However, this optimisation may perhaps not provide the 
best protocol when designing FIFO buffers.

The completeness of this work provides information 
to help designers build circuits that meet their power, 
performance, and storage needs. This also provides 
a uniform representation for comparing various imple
mentations of equivalent and similar protocols. This 
work defines the protocol used for current published 
circuit implementations.

There is still much to be done in furthering the under
standing of asynchronous handshake protocols. Space 
precludes us from mentioning work completed or under
way on mathematical proofs of our results and mathe
matical transformations that result in the cut-aways, 2- 
phase latch controllers, rules for timed protocols such 
as burst-mode and relative timed, and the efficiency of 
circuits synthesized for a variety of protocols for which 
there are no known published implementations.
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