
14th IEEE International Symposium on Asynchronous Circuits and Systems

The Family of 4-phase Latch Protocols

Graham Birtwistle
DCS, Sheffield

g r a h a m @ d c s . s h e f . a c . u k

Kenneth S. Stevens
ECE, University of Utah
k s t e v e n s @ e c e . u t a h . e d u

A b s t r a c t

A complete fam ily o f untimed asynchronous 4-
phase pipeline protocols is derived and characterised.
This fam ily contains all untimed protocols where data
becomes valid before the request signal rises. Start­
ing with a specification o f the most parallel such pro­
tocol, rules are provided fo r concurrency reduction to
systematically generate the fam ily o f all 137 related
protocols that can be pipelined. Graphical and text­
ual nomenclatures are developed to represent proto­
col properties and behaviours. The protocols are cat­
egorised according to their behaviours when composed
into linear and structured parallel pipelines. Six basic
categories emerge, along with several properties such
as a single state that determines whether a protocol is
fully or ha lf buffered. When equivalence classes are cal­
culated fo r parallel pipeline behaviours they are domi­
nated by 15 shapes (all o f which are delay-insensitive)
which are related by a simple lattice. Several pub­
lished circuits are shown to map to 16 o f our 137 fam ily
members. This work enhances the understanding o f
handshake protocols, their properties, and relationships
between different implementations in terms o f concur­
rency and behavioural properties.

1. I n t r o d u c t io n

Asynchronous request acknowledge protocols have
been employed for years. Yet it is surprising how little
is understood of the fundamental behaviour of the pro­
tocols when they are composed into systems. This
work formally and exhaustively investigates all pos­
sible untimed asynchronous latch controller protocols.
The behaviour of each protocol is then investigated in
linear and parallel configurations to study its concurrent
behaviour. A number of properties emerge such as pro­
tocol equivalence classes, protocol compatibility sets,
behavioural properties such as the ability to latch data
in every latch, control the latch without extra state logic,
and full lattice representation.

We have found Milner’s CCS (Calculus of Communi­
cating Systems) [10] to be very apt notation for studying
protocol families in this way: it is expressive enough to

model signal protocols; its semantics conveniently cap­
ture event orderings rather than specific timings; and it is
compositional which makes it straightforward to model
both linear and parallel pipelines. Further, latch proto­
cols and pipeline structures can be compressed down to
the minimal canonical state graph and property checked
on CCS’s supporting software, the public domain CWB
(Concurrency Workbench) [11]. CCS has also been
extended to directly support circuit realisations with
speed-independent broadcast communication [12].

Our technique is quite straightforward: the most
parallel behaviour of a 4-phase latch controller is first
described in CCS and the CWB is used to generate its
equivalent state graph (32 states). Using a few con­
currency reduction rules, states are systematically cut­
away on the incoming and outgoing channels to gener­
ate all less concurrent state graphs that will still obey
some related latch controller protocol. The cut-aways
are exhaustive: all possible protocols in the family are
generated as minimised state graphs. Notice that this
paper only describes concurrency reduction for untimed
protocols. The rules for timed protocols (burst-mode or
relative timed) will be presented elsewhere.

The CCS notation allows us to compose parallel
specifications of the channels with their concurrency
reducing synchronisation, and reduce these to canonical
state-graph specifications. The composition of parallel
protocols and their systematic reduction to a minimal
canonical representation renders comparison between
implementations trivial and assists in validating com­
pleteness. Such transformations are not readily possible
with STG and Petri-net specifications.

1.1. Previous Work

Figure 1 shows LC , a 4-phase latch controller, and
its associated latch where the data is stored. The input
(upstream) channel handshakes with lr (the left request)
and la (the left acknowledgment), and the output (down­
stream) channel with rr (the right request) and ra (the
right acknowledgment). Each channel employs the
simple protocol of interleaving request and acknowledg­
ment signals. By convention we overline output signals
but not input signals. Note that in this work we have
abstracted out the data-path, and only model the proto-

1522-8681/08 $25.00 © 2008 IEEE
DOI 10.1109/ASYNC.2008.19

71 @ computer ^

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:graham@dcs.shef.ac.uk
mailto:kstevens@ece.utah.edu

dIN

LC

’ enable'

FF/LATCH dOUT

Figure 1. LC: th e g en e ric latch pro tocol

L P d" r-d"
lr

la

side and the notification of the arrival of the next data
value (lr|). It is thus not surprising that the Manchester
4-phase latches studied vary in state size (from roughly
18 to 26 states). When combined into linear pipelines
LPd, their minimised behaviours settled into predictable
pattern of state sizes from pipeline depth 2; whereas
the parallel pipeline patterns PPw,d were regular from
depth 1, but did not agree with the linear pipeline pattern
(PPw,d was always more state rich). Three new math­
ematically inspired 4-phase protocols were also exam­
ined, two of which did exhibit stable behaviour in that
PPw,d = LPd for positive w and d. One of these proto­
cols has 32 states and is the most parallel 4-phase latch
protocol achievable.

With a little modeling and analysis on the CWB, it
was easy to show the following results for the latches
considered:

lr

rr

Figure 2. L inear and Parallel P ipelines

col on the handshake pins of the two channels. Work
is in progress on modeling the latch enable signals for
normally open and normally closed protocols and will
be reported elsewhere.

We quickly review the relevant results presented in
[1]. That work made no attempt to be complete and
considered only four published 4-phase latch controllers
and three idealised protocols. Besides modeling these
seven latch controllers singly, it also considered their
behaviours when composed into structured pipelines:

1. LPd : a linear pipeline of latch protocols of depth d
(see the top part of Figure 2).

2. PPw,d: the structured composition of w d-deep
pipelines running in parallel (see the lower part of
Figure 2). The fork module F 2 broadcasts lr to
both linear pipelines and waits until all have replied
before responding with la. The join module J 2 is
the inverse of F 2.

Notice that the specifications of LC, LPd and PPw,d
are all in terms of lr, la, lr, ra and can thus be compared
and contrasted directly.

The Manchester group has published several 4-phase
latch controller circuits, some faster, some more power
efficient. One source of variety is the amount of over­
lap permitted between the recovery phase on the rr\/ra \

1. LC, a single latch protocol, may have between
16..32 states.

2. LPd and PPw,d usually have O(16d) states, but
this will be O(8d) if values are latched in alternate
stages.

3. for the 4 Manchester designs, LPd = PPw,d.

These 4-phase results were checked by running CCS
models on the CWB for w,d = 1..8. In addition several
equivalent 2-phase results were given formal proofs.
None of these are deep, rather they are case rich, shal­
low and tedious. Preliminary work on the 4-phase proofs
shows them to be similarly structured and yet more case
rich and tedious. It would be nice to get the proofs mech­
anised and verified with a proof checker such as HOL.

1.2. Structure o f th e Paper

The structure of the rest this paper is as follows. In
Section 2, we present our specification notation CCS
and construct a specification of the most concurrent 4-
phase latch protocol LCmax which has 32 states when
expressed in our normal form as a minimised state
graph. In Section 3 we show how the whole family
of less state rich (less parallel) 4-phase latch proto­
cols can be derived from LCmax through concurrency
reduction. Each sub-behaviour is expressed as a state
graph and given a unique characterisation. We also tab­
ulate the behaviours when pipelined singly and in paral­
lel. In Section 3.3 we discuss six protocol categories
that emerge, including the 15 protocols that are sta­
ble: for them LPd = PPw,d. An important side effect
for designs with this behaviour is that we can replace
quite complicated formal models of parallel PPw,d data­
paths by the much simpler LPd model when reasoning
about concurrent pipelined designs such as a micropro­
cessor. In Section 4 we partition the state space into pro­
tocol equivalence classes when pipelined in linear and

72

parallel configurations. Section 5 presents the stable cir­
cuits (and hence their equivalence classes) into a lattice
based on concurrency. Section 6 ties in related work and
Section 7 lists some published designs and places them
in our family lattice. Finally we summarise the work
done so far and some future directions.

2 . L C m ax: T h e M a x im a l 4 - p h a s e P r o to c o l

In this section, we model the behaviour of LCmax,
the 4-phase latch protocol of maximal concurrency,
and display its regular behaviour when composed into
pipelines. In CCS, our first step in specifying LCmax is
to describe as the composition of L which deals with the
incoming channel and R which deals with the outgoing
channel.

L
R
LCcon

= lr] . la]
= rr] . ra]
= (L | R)

n
rr]

laI
ra]

L
R

The definition of L simply spells out the order of one
cycle of input signals and then repeats forever. The
signals are separated by ‘ . ’ which we may interpret in­
formally as signal precedence. CCS specifies the order
of events, but they occur with arbitrary delays rather than
strict timings, resulting in all possible concurrent signal
interleavings. The protocol it describes may accordingly
take an arbitrary time between these signals. The defi­
nition of R follows the same pattern. The above specifi­
cation minimises to a 4 x 4 block of states which (with
loop back) and via the semantics of CCS, covers every
possible interleaving of the 8 signals, from one extreme
just L running and to the other just R running and all
intermediate possible interleavings.

However L and R can not run untrammeled. We now
add synchronisations that will (1) ■ stop L from accept­
ing fresh data when the previous data value has not been
accepted downstream, and (2) • stop R from emitting
an rr] until a fresh value has been latched. The second
version of the specification of LCmax indicates how to
handle these interplays between L and R :

L
R
LCmax

= lr] . ■ .

= (L |R)

la]
a]

lr]
rr]

la]
ra]

L
R

1.

2.

■ : after R has received a signal ra], it is sure
that the current data value has been captured down­
stream. R will now unblock L (if it were blocked).
Both L and R may continue on.
• : with space assured, (the unblocked) L is free to
capture next fresh data value and then unblock R (if
it were blocked). Both L and R may continue on.

Notice the ordering lr].B .^ ... in process L. Channel L
must have an empty latch (make sure that R has received
ra]) before it stores the next value on dIN in the latch.
For channel R the conditions are reversed.

We may remark that whereas the placing of the
receiving ■ in L and • in R are crucial, it is quite in
order to shuffle the awakening • to the right in L and the
awakening ■ to the right in R. All such shufflings are
captured by our cut-away method described in Section 3.

L :

R :

F igure 3. C o n stra in ts on LCmax

These two synchronisations may be modeled in several
ways. One reusable style1 to model (see Figure 3) is
define two tokens one for each of the synchronisations:

1. ■ by S, the space token
2. • by V, the value token,

S = gS.pS.S
V = gV.pV.V

each of which is taken (by a get handshake, gS or gS)
and replaced (by a put handshake, p V or pS). Impor­
tantly, puts never delay the sender; but gets will block a
requester until permission is granted. This leads to the
final form of our specification:

L = lr].gS.pV .la] .lr].la].L
R = gV.rr].ra].pS.rr].ra].R
S = gS.pS.S V = pV.gV.V

LCmax = (L | S | V | R) \ {gV,pV,gS,pS}

The last line of the specification defines the behaviour of
LCmax as the composition of the upstream channel pro­
cess L; the downstream channel process R; and the syn­
chronisation between the two channels with space and
value tokens S and V . The handshakes between L , R and
S and V are made private (hidden) with \ {gV,pV,gS,pS}
so that no other process can tamper with them.

The only synchronising constraint on the input chan­
nel of LCmax is that L must wait until a slot is free (gS)
to accept the value on dIN ; and the only constraint on the
output channel is that fresh data must be latched (gV)

1 In particular it handles the shuffles alluded to above and imple­
menting the cut-aways of Section 3.

73

Figure 4. (M inimised) s ta te s of th e LCmax latch protocol

before the rr] signal can be sent downstream. Both L
and R are allowed to proceed at their earliest possible
opportunity when blocked.

LCmax as defined is the most concurrent pro­
tocol possible fo r a latch protocol where data
is valid before the rising request on the left
channel.

This protocol has 32 states, and d-deep pipelines and
parallel pipelines have 16d + 16 states. Figure 4 depicts
the minimised state graph of LCmax. A middle 4x4
block of states can be iterated for deeper pipelines to
give rise to minimised versions of LPd. Runs on the
CWB confirm that PPw,d = LPd for w, d = 1..8. Thus
LCmax exhibits stable behaviour. By inductive argu­
ment, we can reason about the overall control signal
behaviours of structured widening and thinning paral­
lel pipelines as though they were linear pipelines of the
same depth — a much simpler model to grasp.

3 . T h e F a m i ly D e r iv e d f r o m L C max

R1
R2
R3
R4

o o o + o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

The initial state is marked ‘+’; other reachable states
by ‘o’, and unreachable states by ‘.’. Each shape is
a graphical representation of a specific handshake pro­
tocol, fully specifies its behaviour, and differentiates it
from all other protocols. The graphical representation
provides intuition about the concurrency and specific
behavioural and pipeline properties of all protocols.

3.1. C oncurrency R eduction R ules

The rules for generating members of the untimed2 4-
phase family are:

1. The initial idle state must be reachable from all
states in the graph. This has the following conse­
quences:

The possible design space for 4-phase protocols is
bounded above by LCmax which exhibits the largest
possible parallelism. A formal method is developed to
derive all less concurrent protocols from LCmax. This is
achieved by creating and applying rules which system­
atically reduce concurrency by minimal increments. The
behaviour of all protocols when pipelined is then tabu­
lated.

A convenient, more a compact notation of the min­
imised state graph of the most concurrent protocol
LCmax of Figure 4 has been developed. Since all the
transitions follow simple patterns, we choose to present
our ideas using what we call a shape:

(a) This will restrict the number of states that can
systematically be removed from the “left” and
“right” side of the state graph. For example,
the following is the maximum left cut-away
that preserves reachability of the initial state:

R 1 : . . . + o o o o o
R 2 : . . . o o
R 3 : . . . o o o o o o
R 4 : . . . o o o o o o

2Rules 3 and 4 may change for other timing disciplines such as
burst-mode and relative timing, but the overall approach remains the
same.

74

(b) Each row in the graph must contain at least
one state, otherwise the graph will deadlock
(represented as D).

2. Internal holes in the state space are disallowed.
Thus the following state graph is deemed illegal:

R 1 : o o o + o o o o o
R2 : o . o o o
R3 : o . o o o o o o o
R4 : o o o o o o o o o

Such graphs are found to generate very irregular
behaviour when pipelined. This rule cuts the search
space from over 400,000 protocols to 250.

(a) Disallowing holes in shapes has the conse­
quence that we can generate all possible sub­
behaviours by listing all viable ways of cut­
ting states away on the left; similarly on the
right; and then mechanically generating all
combinations of cut-aways.

3. In untimed protocols, inputs lr and ra must always
be accepted.

4. The protocol can restrict when outputs rr and la are
possible.

(a) The Speed-independent set of protocols
is a concurrency reduction of the delay-
insensitive set after employing output order­
ing.

3.2. T he C ut-A w ay N otation

The following notation is adopted for cut-aways:

1. Labcd means from LCmax remove the leftmost a
live states (circles) from R1; the leftmost b live
states (circles) from R2; etc. Thus cut-away L2112
from LCmax results in the shape:

R1 : . . o + o o o o o
R2 : . o o o o
R3 : . o o o o o o o o
R4 : . . o o o o o o o

in which each cut-away state is denoted by ‘.’.
Since this shape has 7 reachable states in row 1,
4 in row 2, 8 in row 3, and 7 in row 4, we use the
short hand 7487 where it suits (the notation is occa­
sionally ambiguous, whereas the cut-away notation
is not).

2. Similarly Rabcd cuts away from the right hand end
of LCmax. Cut-away R2222 on LCmax results in
the following shape or shorthand 7377:

R 1 : o o o + o o o . .
R 2 : o o o . .

R3 : o o o o o o o . .
R4 : o o o o o o o . .

3. Applying both the cut-aways L21120R2222 to
LCmax returns the shape 5265:

R 1 : . . o + o o o . .
R 2 : . o o . .

R 3 : . o o o o o o . .
R 4 : . . o o o o o . .

The following cut-away patterns emerge from the
rules:

1. LEFT: L0000, L1001, L1111, L2002, L2112,
L3003, L3113, L2222, L3223, L3333.

There are 10 in all. Any cut-aways of depth 4
would make the initial state an orphan and are
rejected. Cut-aways consisting entirely of even
numbers (L0000, L2002, L2222) are of the delay-
insensitive (DI) class. The set with odd numbers
(L1001, etc.) are the speed-independent class and
employ output ordering.

2. RIGHT: R0000, R0020, R0040, R0022, R0042,
R2022, R2042, R2222, R2242, R2262, R0044,
R2044, R4044, R2244, R2264, R4244, 4264.

There are 25 in all but after experimentation only
the 17 listed here turn out to yield protocols that
implement pipelining. The delay-insensitive class
of right cut-aways exist when both the first two
numbers agree and the last two numbers agree
(R0000, R0022, R2222, R0044, R2244). The oth­
ers are of the speed-independent class.

3.3. P rotocol C ategories

These cut-aways allow us to classify pipeline proto­
cols into three families. The delay-insensitive family
consists of both left and right DI cut-aways. The speed-
independent family consists of protocols where the left
or right cut-away employs output ordering. The timed
family (not included in this paper) consist of cut-aways
that restrict the arrival of inputs lr or ra based on local
timing assumptions.

We have mechanised the task of generating all pos­
sible delay-insensitive and speed-independent pipelined
protocols. All 250 have been evaluated on the CWB by
running them in linear pipelines of depth 1..8 and paral­
lel pipelines of depth 1..8 and width 1..8.

When the 250 protocols were examined, 6 categories
emerged:

75

1. deadlock: The protocol deadlocks because the L
and R cut-aways meet or overlap. 92

2. constant: Protocols that only hold one data item
per linear pipeline. 21

3. O(8): A special class of protocols that can only
hold a data item in every other pipeline stage. Their
state sizes increase by 8 not 16 as the pipelined
grow deeper. These are only found when apply­
ing the R2244, R2264, R4244 and R4264 right cut­
aways. Notice that 4 of these shapes are stable even
though O(8). 22

4. semi-regular 0(16): These protocols do not main­
tain their native shape when composed into either
linear pipelines LPd or parallel pipelines PPw,d.
Some of the concurrency removed in the protocols
is regained in their parallel compositions. 43

5. regular O(16): These protocols retain their shapes
predictably when composed in a linear pipeline
LPd, and increment by 16 states with each increase
of pipeline depth. However, parallel pipelines
PPw,d do not maintain their native shape. 60

6. stable O(16): These protocols retain their shapes
in linear and parallel pipelines of all depths. This
only occurs for delay-insensitive protocols. 12

The category of constant protocols are all concur­
rency reduced versions of the DI protocol L0ooo°R2266.
This consists of cutting off the right six columns of the
LCmax shape of Figure 4. Thus, at least one of the states
in R2266 are required for pipelining.

Certain protocols can only store data in every other
latch when the pipeline is stalled3, called half-buffering
[8]. Any protocol that does not contain the state marked
with x in Figure 4 (or that remove any states in R2)
cannot store data in every latch when stalled. Thus, we
define this state as the pipeline state. The O(8) category
is a subset of this set since these states only occur with
R2244, R2264,R4244 and R4264 cut-aways. However,
note that even certain delay-insensitive protocols, such
as L0000°R 2222, cannot store data in all latches. Proto­
cols that do not include the pipeline state are not useful
for certain implementations such as FIFOs.

Protocols in the stable category retain their native
shapes when composed in parallel. Further, the linear
and parallel pipelines are equivalent: LPd = PPw,d
V w, d > 0. This means that a linear portion of such a
pipeline may be replaced by a parallel pipe of the same
length; and vice versa. Thus such structured pipelines
may be thinned or fattened with no effect visible to
the external observer of their control signals. This is a
very useful guarantee and a handy simplification when

3Assuming pulse latch clocking is not employed.

reasoning about parallel pipelines. Stable protocols can
only occur when both the left and right cut-aways are
delay-insensitive. For each additional parallel stage,
16 states are added. Thus, the state space of protocol
L0000°R 0000 grows as 32, 48, 64, 80, . . . as pipeline
depth increases. The 16 additional states per pipeline
stage correspond to the 4 x 4 block in the hashed box
of Figure 4. Therefore, the native interface protocol of
a d-deep pipeline is the resultant shape calculated by
removing the d x 16 states in the center of the shape.

The regular and semi-regular protocols behave reg­
ularly for d = 2 ,3 ,4 The shape for d > 1
is not equivalent to the native shape for the protocol.
All shapes consisting of two or more stages in parallel
(d > 2) converge on a specific concurrent protocol with
more concurrency. Thereafter the behaviour maintains
the same native protocol shape. Much of the concur­
rency that is regained in these categories is the return of
concurrency that was removed through output ordering.

For example, consider the semi-regular speed-
independent protocol L1001°R0000. It contains 30
states and implements output ordering where la] pre­
cedes rr]. The protocol interface becomes identical to
LCmax when composed in linear pipelines of depth 2 or
more. However, it is identical to LCmax in all parallel
pipelines. This is shown in the following table that gives
the number of states in various parallel configurations:

d = 1 d = 2 d = 3 d = 4
LPd 30 48 64 80
PPw,d 32 48 64 80

This shows that some of the concurrency removed from
a protocol is recovered in a regular way when protocols
are placed in parallel configurations.

Thus a protocol may behave identically to a more
concurrent protocol when placed in parallel configura­
tions. This implies that protocol equivalence classes
could emerge, as is shown to be true in Sections 4.1
and 4.2. This also implies that inside a protocol equiva­
lence class, certain concurrency reductions might result
in more efficient implementations than others. Our
results in this area will be reported in future publica­
tions.

The family of untimed protocols is rather large.
Removing the deadlock and constant categories as being
uninteresting for implementing pipelines leaves a family
of 137 distinct and useful protocols. This family is tab­
ulated in Table 1. Only categories 3-6 are recorded for
brevity. The 12 stable shapes are represented as cate­
gory 6, the 60 regular shapes with 5, the 43 semi-regular
shapes with 4, and the 22 O(8) shapes with 3. Deadlock­
ing states, such as L3333°R4044, are marked D.

76

L0000 L1001 L1111 L2002 L2112 L3003 L3113 L2222 L3223 L3333 L o R

6 4 5 6 5 5 5 6 4 5 R0000
4 4 4 4 4 4 4 4 5 4 R0020
5 4 5 5 5 5 5 5 4 5 R0040

6 4 5 6 5 5 5 6 4 5 R0022
5 4 5 5 5 5 5 5 4 D R0042
5 4 5 5 5 5 5 5 4 5 R2022
5 4 5 5 5 5 5 5 4 D R2042

6 4 5 6 5 5 5 6 4 D R2222
4 5 4 4 4 4 4 4 4 D R2242
5 4 5 5 5 D D 5 D D R2262

6 4 5 6 5 5 5 6 4 5 R0044
4 5 4 4 4 4 4 4 4 D R2044
5 4 D 5 D 5 D D D D R4044

3 3 3 3 3 3 3 3 3 D R2244
3 3 3 3 3 D D 3 D D R2264
3 3 D 3 D 3 D D D D R4244
3 3 D 3 D D D D D D R4264

Table 1. C ategorisa tion of th e family of 4 -p h ase la tch es

3.4. A dditional P roperties

Additional important distinguishing properties of the
protocols can be graphically represented on Figure 4 and
using the cut-away notation:

• Only protocols that contain the state marked with
x in Figure 4 will latch data in every pipeline
stage when using 4-cycle protocols. The two-phase
and O(8) protocols can latch every stage if using a
pulsed clock or handshaking through the register.

• The states in which the latch must be transpar­
ent and opaque can be represented by a coloring.
Based on these colorings, it can easily be shown
that certain states require a state variable to control
the latch due to the state spaces. Some protocols
don't cover the states that require a state marking,
and thus result in simpler latch control logic that
can be encoded directly from a combinational func­
tion of the handshake signals, and even the rr and
la signals.

4 . P a r a l l e l P r o to c o l E q u iv a le n c e C la s s e s

Huygens invented the pendulum in 1658. In 1665
he noticed that if he put two of his clocks side by side
then their pendulums would always synchronise within

30 minutes whatever their out-of-phase initial settings.
We have an analogous convergence between different
protocols when placed in parallel configurations.

The parallel behaviour of the family of protocols con­
figured in parallel pipelines is represented in Table 2.
Linear pipelines are presented in Table 3. These tables
are divided by three vertical and five horizontal blocks.
The top left of each block is a stable state that is the
result of composing two delay-insensitive cut-aways. In
Table 1 no particular pattern emerges if we examine by
rows or by columns; there is no predictable pattern of
row or columns of just 4's or 5's. This indicates that
neither the L or R cut-aways are a dominant factor in the
pipelined behaviour of our protocols.

Examining block-by-block, the best behaved is the
center block with stable shape L20o2°Roo22. This shape
is very symmetric in its left and right cut-aways, as a pair
of rrl transitions are pruned by the left cut-away and a
pair of la | transitions by the right cut-away.

4.1. Parallel P ipelines

Table 2 displays the behaviours of the parallel
pipelines PPw,d. Models were run for w = 1..8 and
d = 1..8 for all 137 category 3-6 protocols.

The first interesting fact to emerge is that PPw d =
PP i,d for w = 2, 3,.., 8. Therefore when reasoning

77

L0000 L1001 L1111 2002
J L2112 L3003 L3113 2222
J L3223 L3333 LoR

9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0000
9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0020
9599 9599 9599 9597 9597 9597 9597 7377 7377 7377 R0040

9577 9577 9577 7575 7575 7575 7575 7355 7355 7355 R0022
9577 9577 9577 7575 7575 7575 7575 7355 7355 7355 R0042
9577 9577 9577 7575 7575 7575 7575 7355 7355 D R2022
9577 9577 9577 7575 7575 7575 7575 7355 7355 D R2042

7377 7377 7377 5375 5375 5375 5375 5155 5155 D R2222
7377 7377 7377 5375 5375 5375 5375 5155 5155 D R2242
7377 7377 7377 5375 5375 D D 5155 D D R2262

9555 9555 9555 7553 7553 7553 7553 7333 7333 7333 R0044
9555 9555 9555 7553 7553 7553 7553 7333 7333 D R2044
9555 9555 D 7553 D 7553 D D D D R4044

7355 7355 7355 5353 5353 5353 5353 5133 5133 D R2244
7355 7355 7355 5353 5353 5353 5353 5133 D D R2264
7355 7355 D 5353 D 5353 D D D D R4244
7355 7355 D 5353 D D D D D D R4264

Table 2. Parallel P ipeline P ro to co ls PPw,d

about structured parallel pipelines, one can always use
the simpler representation PP1,d.

The second interesting fact is that within each of the
15 blocks in Table 2, all structured parallel pipelines
result in the equivalent behaviour of the most parallel
shape. Thus in a parallel pipeline, if a less concurrent
protocol is implemented, it is indistinguishable from the
most parallel delay-insensitive protocol. This implies
that any of the protocols that apply concurrency reduc­
tion might result in a more efficient implementation that
results in the same delay insensitive behaviour.

4.2. Linear P ipelines

LPd were evaluated for d = 1.. 8 over all 137 category
3-6 protocols. All single pipeline protocols showed pre­
dictable growth and shape for pipelines of depth 2 and
deeper. Thus Table 3 shows state sizes for depth 2, and
group together equivalent protocols.

Three different equivalence sets emerge:

1. There are four 2 x 2 groups of adjacent cut-aways
which have identical protocols for LPd where d >
2. In each of the four cases, these protocols con­
verge to the most parallel protocol, that in the top
left position of the group. These sets consist of the
four shapes that converge to protocols L0000oR0000,

L00000R2242, and L00000R2044 in the first column
and L32230R0000 in the ninth.

2. There are 12 vertically arranged pairs of shapes
that exhibit unique LC behaviours but are equiva­
lent when pipelined at depths 2 or greater. In each
case they converge to the most state rich shape, the
higher of the two. These pairs consist of the proto­
cols in the first and second rows, ninth and tenth
rows, and 12th and 13th rows in columns three
through eight. Notice, for example, that in rows one
and two of Table 3 there are two distinct pairings of
44 states, 42 states, and 40 states. All other equiv­
alent state pairs do not have equivalent shapes.
For example, even though both L2002oR0042 and
L2002oR2022 have 38 states, they do not have equiv­
alent shapes.

3. There are 13 horizontally arranged pairs of shapes
that result in identical protocols. These are the pair
with 24 states in the last row, 26 states in rows
15 and 16, 28 states in row 14, 30 states in row
five, those with 32 states in rows three and four, 40
states in rows seven, eight, and eleven, 42 states in
rows five and six, and 44 states in row four. All
other protocols are unique, even when they consist
of the same number of states. For example, pro­
tocols L0000oR0040 and L i00ioR0040 both have 44
states but they are different protocols.

78

L0000 L1001 L1111 L2002 L2112 L3003 L3113 L2222 L3223 L3333 LoR

48 48 44 44 42 42 40 40 36 36 R0000
48 48 44 44 42 42 40 40 36 36 R0020
44 44 40 40 38 38 36 36 32 32 R0040

44 44 40 40 38 38 36 36 32 32 R0022
42 42 38 38 36 36 34 34 30 30 R0042
42 42 38 38 36 36 34 34 30 D R2022
40 40 36 36 34 34 32 32 28 D R2042

40 40 36 36 34 34 32 32 28 D R2222
36 36 32 32 30 30 28 28 24 D R2242
36 36 32 32 30 D D 28 D D R2262

40 40 36 36 34 34 32 32 28 28 R0044
36 36 32 32 30 30 28 28 24 D R2044
36 36 D 32 D 30 D D D D R4044

28 28 24 24 22 22 20 20 16 D R2244
26 26 22 22 20 D D 18 D D R2264
26 26 D 22 D 20 D D D D R4264
24 24 D D 20 D D D D D R4264

Table 3. L inear P ipeline P ro to co ls LP2

5. T h e F a m i ly H ie r a r c h y

The cut-away representation L°R of the protocol
family provides a direct method of ordering the entire
family into a lattice based on protocol concurrency. The
protocols are ordered based on state richness: protocol
X < protocol Y iff every state in shape X is also a state in
shape Y . The easiest way of carrying this out is simply
to compare the cut-away definitions of X and Y .

Let Labcd < L a>b>c>d> iff a > a ’ and b > b ’ and c >
c ’ and d > d ’. That is Labcd cuts away more or the same
as La>b>c>d> for each row of a shape.

Similarly for the class of right cut-aways. Then pro­
tocol Labcd°R ef gh is a proper sub-protocol of shape
La'b'c'd' °R e' f 'g'h' iff L abcd < La' b'c'd' and R efgh <
Re’ f 'g'h' . Otherwise they are not comparable.

The process is very simple to mechanise without the
need to generate and compare the minimised state graph
shapes.

The 15 combinations of delay-insensitive cut-away
classes that produce stable shapes are displayed in a lat­
tice in Figure 5. A shorthand notation is used in the
lattice to represent the protocols by listing the number
of states in each row of the shape. The top of the lattice
is 9599 (LCmax) with 32 states, and the least concurrent
stable protocol is 5133 with 12 states. Notice, however,
that this notation is not unique as two different protocols
in the lattice share the shorthand notation of 7377 and

7355. The unambiguous L°R notation can be derived
from the figure to identify the protocol shape.

6 . R e la te d W o r k

Asynchronous designers are well aware of concur­
rency reduction as a means of modifying protocols to
generate more efficient implementations. Some con­
currency reduction algorithms have been automated and
implemented in CAD tools [2]. The formalisation of a
set of concurrency reducing transformations and rules
have been previously published. Lines started with
a concurrent handshake expansion in CSP, and then
applied four reshuffling rules to the handshake signals
to reduce concurrency [8]. This produced nine valid
protocols, eight being reshufflings of the most concur­
rent MSFB protocol. McGee and Nowick developed a
graphical framework based on signal transition graphs
[9]. They formalised three correct-by-construction arc
transformation constraints to reduce concurrency, and
produced a lattice of protocols.

One significant difference to previous work is the
completeness and coverage of the protocol space. The
previous work implements subsets of the work presented
here. Our formal process based transformations are
complete and exhaustive. All protocols, starting with
the most concurrent LCmax, are part of our set. The

79

L0000 L2002 L2222 L o R

I I I
(9 5 9 9)------------------------------(7597) ----------------------------- ^7377^ <— R0000

(9577 ^------------------------------(7575) ----------------------------- (7355) — R0022

---------------(5 1 5 ^) ' ^ ^ \ \ ^ — R2222

----------- ^ \ (^ (7553) ----------- ^ \ (5 333) — R0044

(7355) ------------------------------(5353) ----------------------------- (5133 } — R2244

Figure 5. Lattice of S tab le P ro toco ls

most concurrent protocol in these publications is in the
Loooo°^oo44 protocol equivalence class. This covers
only the bottom six protocol equivalence classes in our
lattice; the nine more concurrent protocol equivalence
classes are not included. Additionally, our work is com­
pletely general. We don’t impose any constraints on the
implementation, and even abstract out the latch control
signals. McGee’s work focused on characterising a par­
ticular implementation style based on dynamic gates and
relied upon internal signals such as reset, precharge, and
evaluate for their model.

This work also derives many characteristics of
pipelined protocols that were previously unknown or
not clarified elsewhere. For example, Lines charac­
terises protocols in terms of their ability to store data in
each latch; the half buffered protocols (such as PCHB)
can only store data in every other latch whereas the
fully buffered protocols (such as PCFB) store data in
all latches upon a pipeline stall [8]. However, no spe­
cific property was defined that results in this charac­
teristic behaviour. Section 3.3 defines this property as
being directly dependent on the pipeline state in row R2
of right cut-aways. The PCFB protocol L 1001°R4044 is
fully buffered since no states are removed in R2 of its
cut-away R4004; the PCHB Li00i°R 4264 is half buffered
because two states are removed from row two of its
right cut-away. Given the pipeline state property we
have defined one can observe the shape of any proto­
col and immediately determine if the protocol is half or
fully buffered. Thus one can quickly prove that Suther­

land’s Micropipeline [13] is a half buffered protocol,
and should not be used in a FIFO. Many other proto­
cols and properties not previously known are presented
here, such as the 15 equivalence classes that result when
protocols are placed in parallel configurations.

7 . P u b l i s h e d C i r c u i t s

A selection of published circuits have been examined
as shown in Table 4. Of the 28 listed there are only 16
distinct protocols implemented.

In the protocol family investigated in this paper, all
but the control handshake signals lr,la and rr,ra are for­
mally hidden from the protocol behaviour. This work
does not consider power, area, speed, or whether the
latch is normally open or closed. Thus each proto­
col has a multitude of possible implementations. What
the protocol does tell you is how every corresponding
implementation will behave at the interface when com­
posed together in a single or parallel pipeline. These
circuits can also be placed into the lattice and tables to
determine properties of the protocol and study alternate
implementations which may be improvements over the
current version.

8 . C o n t r ib u t io n s

In this paper we have presented the family of 4-phase
latch protocols with data valid before rising request:

80

Name Protocol Reference

MSFB L00000R4044 [8]
KG Liooi°Roooo [7]
FD6 L10010R0040 [5]
FD7 Ll001°R0044 [5]
PCFB L10010R4044 [8]
PCHB L10010R4264 [8]
FL2,FL3 L 20020R 0000 [6]
BNC1 L20020R0042 [4]
BNO1,EGc,EGd,FL1 L 20020R 0044 [3, 6]
BNO2,EGa,EGb,BNC2,LH2 L20020R2042 [3, 4]
BRF1,LH1 L20020R2044 [4]
MP L20020R2244 [13]
FD4,WCHB L20020R4264 [5, 8]
BAF1 L21120R2042 [4]
FD5,ERS1,ERT1 L22220R2022 [4, 5]
YBA L 22220R 2222 [14]

Table 4. P ub lished c ircu its, (s tab le in bold)

their control signal properties and behaviours, and how
they compose into homogeneous structured linear and
parallel pipelines.

We have fully specified every protocol that exists in
the family of 4-phase pipeline controllers where data is
valid before the rising edge of request. The most con­
current protocol LCmax is specified, from which all less
concurrent untimed protocols are derived.

A canonical state graph representation for protocols
is presented and called a shape. This easily allows us to
demonstrate properties of handshake protocols and the
result of formal concurrency reduction transformations.

The behaviour of all 250 possible protocols was char­
acterised in linear and parallel pipelines. Six fundamen­
tally different categories emerged. We labeled these as
stable (12 of O(16)), regular (60), semi-regular (43), reg­
ular 2-phase (22) of which 3 are stable, constant (21),
and deadlock (92). Stable behaviours have shapes that
are not modified in linear and parallel configurations.
This set has an interesting property of defining protocol
equivalence classes as noted below, and these protocols
were used to define the protocol lattice. Regular proto­
cols are not modified when placed in linear pipelines, but
their behaviour is more concurrent when placed in paral­
lel pipelines. Semi-regular protocols exhibit increased
concurrency in both linear and parallel pipelines. For all
protocols, their maximum concurrency is reached after
only two pipeline stages.

Additional properties are derived and mapped to our
protocol shapes. We defined the condition that must hold
for a controller to be pipelined. This condition is de­
pendent on right cut-away R2266 which overly restricts
responses on the upstream channel.

While the interaction between the protocol and the
latches was not explicitly modeled, two additional key
properties were defined in this work that relate to the
latching behaviour of the protocol.

First, an important pipeline property in the presence
of stalls is the ability to store data in every latch. This
work defined one specific state, the pipeline state, that
must exist in any 4-phase protocol in this family to
allow it to store data in all latches when stalled. Thus
any fully-buffered protocol will contain this state in the
shape, whereas half-buffered protocols will not.

Second, this work classifies protocols into two sets:
those that require a state variable to control the latch
and those that can control the latch using a function on
the input and output signals of the gate (possibly using
only one handshake signal). This can be a complex­
ity parameter for implementations, as well as provide
a reduction in protocol delays or timing requirements in
circuit implementations. A coloring on the shape can be
derived indicating the states that require an additional
latch control state variable for either normally open or
normally closed control. Details of these colorings are
not presented here due to space limitations.

The protocol shapes were placed into equivalence
classes based on the protocol behaviour presented at the
interfaces. We found that for parallel pipelines there
are 15 equivalence classes of up to 16 different pro­
tocols, each dominated by one of the stable protocols.
Thus stable protocols have a central role in pipelining.
Since linear, independent latches rarely occur, designs
that use concurrency reduction techniques to improve
performance and power, yet map to a pipeline equiva­
lence class might result in very productive optimisation
techniques. Our results in this area will be presented
later.

Linear pipelines were also evaluated and placed into
equivalence classes. These configurations showed a
much finer granularity in equivalence classes, as the
largest sets contained only four protocols.

A definition for categorising protocols into a lattice
was defined, and the 15 parallel protocol equivalence
classes were placed into a lattice. The lattice, nomen­
clature, and shape models presented in this paper pro­
vide several different methods to compare and contrast
protocols and their realisations as circuits. The unique
textual representation of the protocols encodes restric­
tions on the left and right channels and also encodes
timing assumptions built in the circuit including delay-
insensitive and speed-independent protocols, those with
output ordering, and protocols that have inherent timing
in the protocol. The stable protocols, which serve as
basins of attraction to the other protocols, is also derived
from this naming convention.

A large set of published circuits were then mapped to
our protocol family. These circuits include designs using
combinational logic, dynamic logic, and C-elements.

81

The evaluation of tradeoffs between concurrency
reduction, energy, and performance across an entire pro­
tocol family can now be made. This tradeoff largely
occurs due to circuit improvements based on circuit
timing, such as output ordering, against the reduced
system level concurrency that occurs based on the con­
currency reduction. The small number of stable con­
figurations (15) that serve as basins of attraction allow
the choice of fixed design zones. There are also subsets
of the family that present particularly interesting trade­
offs. Namely, all R0044 and larger cut sets retain full
forward concurrency but result in substantially simpli­
fied protocols by removing concurrency when recover­
ing from a stall. From a system level perspective this
type of concurrency reduction can be extremely benefi­
cial especially if stalls are rare, such as in a data-path.
However, this optimisation may perhaps not provide the
best protocol when designing FIFO buffers.

The completeness of this work provides information
to help designers build circuits that meet their power,
performance, and storage needs. This also provides
a uniform representation for comparing various imple­
mentations of equivalent and similar protocols. This
work defines the protocol used for current published
circuit implementations.

There is still much to be done in furthering the under­
standing of asynchronous handshake protocols. Space
precludes us from mentioning work completed or under­
way on mathematical proofs of our results and mathe­
matical transformations that result in the cut-aways, 2-
phase latch controllers, rules for timed protocols such
as burst-mode and relative timed, and the efficiency of
circuits synthesized for a variety of protocols for which
there are no known published implementations.

R e fe re n c e s

[1] G. Birtwistle. Control states in asynchronous pipelines.
In A. Yakovlev and R. Nouta, editors, Asynchronous
Interfaces: Tools, Techniques, and Implementations”,
pages 45-55, July 2000.

[2] J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kon­
dratyev, L. Lavagno, K. S. Stevens, A. Taubin, and
A. Yakovlev. Lazy transition systems and asynchronous
circuit synthesis with relative timing assumptions. IEEE
Transactions on Computer-Aided Design, 21(2):109-
130, Feb 2002.

[3] P. Day and J. V. Woods. Investigation into micropipeline
latch design styles. IEEE Transactions on VLSI Systems,
3(2):264-272, June 1995.

[4] S. B. Furber. A small compendium of 4-phase
macropipeline latch control circuits. Technical Report
v0.3, 17/01/99, University of Manchester, Dept. of Com­
puter Science, 1999.

[5] S. B. Furber and P. Day. Four-phase micropipeline latch
control circuits. IEEE Transactions on VLSI Systems,
4(2):247-253, June 1996.

[6] S. B. Furber and J. Liu. Dynamic logic in four-phase
micropipelines. In Second International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, pages 11-16. IEEE Computer Society Press,
March 1996.

[7] R. Kol and R. Ginosar. A doubly-latched asynchronous
pipeline. In Proceedings o f the International Conference
on Computer Design (ICCD), pages 706-711, Oct 1996.

[8] A. M. Lines. Pipelined asynchronous circuits. Master’s
thesis, California Institute of Technology, Pasadena, CA,
1998.

[9] P. B. McGee and S. M. Nowick. A Lattice-Based Frame­
work for the Classification and Design of Asynchronous
Pipelines. In Proceedings o f the Digital Automation
Conference (DAC05), pages 491-496. IEEE/ACM, June
2005.

[10] R. Milner. Communication and Concurrency. Computer
Science. Prentice Hall International, London, 1989.

[11] F. G. Moller and P. Stevens. The Edinburgh Concur­
rency Workbench (Version 7). University of Edinburgh,
October 1992.

[12] K. S. Stevens. Practical Verification and Synthesis o f
Low Latency Asynchronous Systems. PhD thesis, Uni­
versity of Calgary, Calgary, Alberta, September 1994.

[13] I. E. Sutherland. Micropipelines. Communications o f the
ACM, 32(6):720-738, June 1989. Turing Award Paper.

[14] K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance
asynchronous pipeline circuits. In Second International
Symposium on Advanced Research in Asynchronous Cir­
cuits and Systems, pages 17-28. IEEE Computer Society
Press, March 1996.

82

