
Congruent Weak Conformance

Ronald W. Brower, Member, IEEE and Kenneth S. Stevens, Senior Member, IEEE

Abstract-Congruent weak conformance is a property between
formal models capturing the desired relationship between a
specification and its implementation by allowing unused and
redundant circuitry and tolerating unspec(fied behavior in the
unreachable stale space. By providing greater flexibility in
design than previous properties, it becomes a useful tool to vali
date transformational systems, such as logic synthesis and
hardware description language translation systems.

Index terms-formal methods, process algebras, congruence,
conformance, hardware equivalence.

I. INIRODUCTION

Engineers are continuaJIy chaJIenged to produce electronic
designs that meet specification; and logisticians are forever
seeking replacements for obsolete, non-procurable micro
circuits. Thus there is a general need to find circuits and
circuit models that are "equivalent" either to a specification
model or to some obsolete part that needs to be replaced.
However a moment's reflection reveals that equivalence is a
stronger notion than what is really needed or desired.

First of all, equivalent speed is not necessary. One can of
ten replace an obsolete circuit with a faster circuit of
equivalent function. This approach springs from the ration
alization that the faster part can certainly keep pace with
system demands, while timing constraints simply become
less stringent. However, introducing a speedier component
can uncover race conditions and hazards that were safe
guarded by the delays inherent in the original component.
In fact. practitioners often deliberately introduce delays to
recover timing safeguards when faster parts are used.

Secondly, excess or redundant circuitry in the implementa
tion can often be tolerated. The extra circuitry can simply
sit idle, with pins either uncOlU1ected or grounded. Also,
unneeded behaviors at connected pins can often be ignored
during certain phases of the execution. For example, test-

Mr. Brower is a Ph.D. candidate at the Air Force Institute of
Technology, Wright-Patterson AFR. OH. Dr. Stevens is
with Intel Corporation. Hillsboro. OR.

This work is supported by the Air Force Research Labora
tory. Wright-Patterson AFB. OH.

666 0-7803-7150-X/OI/$IO.OO@2001 IEEE

ability circuits constitute redundant logic when a circuit is
under normal operation.

Thirdly. options allowed by output concurrency can be ex
ploited. If the specification calls for the production of two
concurrent outputs x and y, then both output interleavings: x
followed by y, and y followed by x. are admissible. The
original implementing device may consistently produce one
interleaving and the replacement device the other. One
would never consider the two devices "equivalent," yet each
may serve equally well within a specific application.

Examples of hardware equivalences abound [1-12,15,16].
Any equivalence relation enjoys the symmetric property
which requires that A ; B implies B = A. As noted before.
however, designers and logisticians may settle for devices
that "exceed" the specification. rather than merely "equal
ing" it. Symmetry is not necessary. A might "comply with"
B, yet B could never "comply with" A. To truly model the
notion of device compliance a hardware partial order is
more useful than an equivalence.

The new property of congruent weak confol7lUlnce captures
the desired relationship between a specification and a con
fonning implementation. Congruent weak confonnance
will be useful in supporting future research which seeks to
link simulation-based hardware description languages such
as YHDL to process algebras such as CCS [8]. Once estab
lished. this link will allow stricter verifications of YHDL
models based on the bisimulation semantics of CCS.

II. EXAMPLE

Consider a circuit specified to convert binary-coded
decimal (BCD) to pure decimal. Four input bits are needed
to encode a decimal digit. The converter will need four
inputs corresponding to each of the encoding bits. Call
them a, b. c and d. The ten outputs will be labeled
0, ,0, ' 09 corresponding to the decimal digit detected.

One can think of the outputs as ten lights. Each time there
is change on an input bit, one of the lights turns on while
another is extinguished. According to the specification, one
will not care if momentarily two are lit, or none are lit. The

CCS specification model will have ten named 1 states corre
sponding to each decimal digit detected. In the specifica
tion model given below, the shorthand notation (00 10J is

used to express the concurrency of output signals. 2

S '% a.(oo 1o,).sl +b.(oo 1o,).S2+c.(00 1(4)'S 4+d .(°01°8).S8

SI '% a.(Oo lo,).s +b.(O, 103).s3+c.(0, 1o,).s5+d.(0, 109).s9

S2 '% a.(O',10'3).S3+b.(o,loo).s +c.(O',10'6).s6

S3 '% a.(o,103).S2+b'(0'310',).sl +c.(0'310',).s7

S4"4 a.(0410,).S5+b'(0'4106).S6+c.(0410'0).s

S5 "4 a.(o, 10'4).s4+b.(0, 1o,).S7 +c.(o, 10',).s1

S6 "4 a'(0'610',).S7+b.(06 1(4).S4+c.(02 106).S2

S7 "4 a.(O',10'6).s6+b.(O,lo,).S5+c.(o,10'3).S3

S8 "4 a.(0810'9).s9+b'(0'8100).s

S9"4 a'(O'sI0'9).s8+d.(0910,).SI

Only the states Sand SI respond to all four inputs because
combinations above 1001 are illegal BCD codes. Omitting
the input transitions that would result in illegal codes in the
equations for S2 to S9 constitutes the specification's goaran
tee that the illegal input combinations will not be received.

Given the above specification S, what constitutes a valid
implementation? A 4:16 demultiplexer, or "demux," as
shown below, is an obvious choice. The inputs a, b, c, and
d form the four select lines of the demux. Of the sixteen
outputs, only ten are used. A fifth input pin, here hard
wired to 1, represents the multiplexed input. Note therefore
that a conforming implementation must have a pin for every
input and output called out by the specification, though it
may have more.

-- '.

A "first cut" CCS model for this demux could read just like
the specification model but with the missing input transi
tions added and the extra outputs generated.

I Here ten of the states bear explicit names, but the model has many more
interrnediare stares. There is a state after the occurrence of each atomic
action.
2 This shonhand, which one can think of as a "parallelism of actions." is
not part of the CCS fonnal syntax.

This implementation has more states than the specification
since it can execute illegal sequences. The illegal transi
tions are allowed because the specification guarantees that
they are unreachable-the illegal input combinations will
never be forthcoming. One might hastily conclude that im
plementations must duplicate all the states of the specifica
tion, with additional states allowed. Yet this is not the case.
Although implementation I gratuitously generates all the
possible output interleavings allowed by the specification,
in reality it would be both'difficult and counterproductive to
create such a device. A real, physical layout results in finite
delays along various paths. Most likely, the same interleav
ing appears every time in a physical implementation, espe
cially when the delays are due solely to passive components.
Take, for example, the transitions from S to SI. The con
currency of the outputs is represented by a diamond in the
transition diagram below. Clearly, the implementation need
only navigate one path through this diamond, or through any
such output "burst." The same is not true for inputs. When
an input concurrency is present, as in the case of the C
element [13], the implementation must be poised to accept
any possible interleaving that may come and therefore must
be able navigate all paths through a specified input burst.

1
/\
\/

A "second cut" implementation, J, chooses specific output
interleavings where possible. This implementation might
look something like this:

J "4 a'0"'O'o.JI+b.O'o.O',.J2+c'0'4.O'o.J4+d'0'0.os.J8

Jl ';;{ a.oo.oJJ +b.~.Oj.J3+c.OI,05J5+d.oJ.09J9

and so forth where one specific interleaving is chosen at
each output concurrency. Thus. when presented with an
output concurrency, the implementation can implement any
or all the paths, as long as at least one path is implemented.

Implementations I and J do indeed accept more input be
haviors than the specification calls out and both are able to

667

generate the unused outputs should an illegal input code be
forthcoming. However, the parent system does not care if
the illegal inputs are properly decoded or not. In fact, de
signers will usually want to exploit this "don't care" region
of behavior to produce more efficient designs.

The BCD decoder example shows how a compliant imple
mentation can exceed the specification in the number of lIO
pins, and can generate illegal behavior in the unreachable
state space. In general it can possess more behaviors than
the specification, thought it can get by with fewer output
behaviors.

III. CONGRUENT WEAK CONFORMANCE

The authors have devised a new property called congruent
weak conformance to capture the intuitive notion of con
formance presented above. This property is symbolized by
·!;w'. By definition, whenever I!;w S holds between im
plementation I and specification S then the following four
laws govern what must transpire when either agent requests
an input. or issues an output or hidden action:

Law of Specified Input or Tau (LSIT)
'v'aE)l(S) u {r} , whenever S '4S' then

O3tE ()l(S)u'E-{tr»* such that

(I) Ibl'

(2) ti)l(S) = a
(3) I'!;w S·

Law of Specified Output (LSO)

Let X be a maxoctset of S. O3sE X and 3 tE)I(It such that

(1) sbs'

(2) Ib/'

(3) ti)l(S) s

(4) I' !; • .s'

Law of Implemented Input (LII)

'v'YE)l(S), whenever 1-41' and sb then

(I) sbs'
(2) I' !; • .s'

Law of Implemented Output or Tau (LIOT)

'v'j3E)!(l)u(rj,whenever Il.l' and I) '" j3i)l(S)

then

(I) sbs'
(2) l'!;wS'

A technical description of congruent weak conformance and
proofs of its important properties are outside the scope of
this paper, but will be published shortly.

668

Congruent weak conformance is called "weak" in the same
sense as weak bisimulation [8:108], i.e., it abstracts away
internal actions that are irrelevant to the observable behav
ior of devices. Congruent weak conformance nevertheless
respects internal actions that lead to instability [8: 112]. In
that regard it is similar to observational congruence [8:153].
Like its predecessor, logic conformance [14:136-145], con
gruent weak confonnance does not require the symmetric
property and thereby imparts greater freedom to implemen
tation designs than do hardware equivalences. Furthennore,
both logic conformance and congruent weak conformance
allow unspecified behavior as long as such behavior occurs
within the unreachable state space.

Congruent weak conformance is an improvement over all
previous properties in several respects:

I. Congruence weak conformance allows extra input and
output ports or pins, called extraneous pins, in the im
plementation. The role of extraneous inputs is re
stricted somewhat so that they do not block specified
behavior. Extraneous outputs, however, can freely in
terleave all behavior, subject only to the relative stabil
ity requirement given below.

2. The implementation can chose a single path through an
output concurrency burst, instead of having to imple
ment all such paths.

3. Congruent weak conformance uses a new kind of stabil
ity called relative stability. Relative stability recog
nizes the ability of extraneous outputs to play the same
role as internal action to in yielding unstable models.

4. Congruent weak conformance employs several rules of
construction for building compound models. Though
they seem restrictive at first glance, these rules are in
deed reasonable as well as consistent with good design
intent. Violating these rules is tantamount to changing
the specification after the implementation is begun.
When these rules are employed congruent weak con
formance can indeed be shown to be a congruence
(hence the name). Congruent properties are preserved
by all the operators of the underlying algebra. In prac
tical terms, congruence allows for the safe substitution
of confonning parts within a system.

IV. CONCLUSION

In work yet to be published, we have formally proven that
congruent weak conformance is indeed a congroence and
thus correctly models "safe substitution." We foresee the
useful application of this property to tools that transform
models between design languages. For example, a tool to
transform models from a design languages such as VHDL to
CCS would allow the greater verification powers of CCS to
accrue to VHDL models. Of course, the event-based simu
lation semantics of VHDL do not match the bisimulation
semantics of CCS. Thus, such a transfonned model can not
be called "equivalent" to its VHDL original. However, one

does not want the principle of safe substitution to be lost, so
the property of congruent weak conformance between mod
els ought to be preserved in the course of the translation.
Since we have strived to develop as unrestrictive a property
as possible, it will be easier to devise tools that preserve
congruent weak confortnance than any of the other proper

ties or equivalences. Thus we recommend, when develop
ing such tools, that each transfortnation be validated by
formal proof that it preserves congruent weak confonnance.

v. REFERENCES

[I] Bloom, B., S. Istrail and A. R. Meyer. "Bisimulation Can't
Be Traced: Preliminary Report," 15111 ACM Symposium on
Principles of Programming Languages (POPL), pp. 229-239,
San Diego, CA. 1988.

[2] Brookes, S. D., C. A. R. Hoare and A. W. Roscoe. "A The
ory of Communicating Sequential Processes," JACM 31(3),
pp. 560-599. 1984.

[3] De Nicola. R. and M. Hennessy. "Testing Equivalences for
Processes," Theoretical Computer Science 34, pp. 83-133.
1984.

[4] Groote. J. F. and F. W. Vaandrager. Structured Operational
Semantics and Bisimulation as a Congntence. Report CS
R8845, Centrum voor Wiskunde En Informatica, Amsterdam.
1988.

[5] Hennessy. M. and R. Milner. "Algebraic Laws for Nonde
tenninism and Concurrency," JACM 32(1), pp. 137-161.
1985.

[6] Hoare. C. A. R. "Communicating Sequential Processes," On
the Construction of Programs-an Advanced Course (R. M.
McKeag and A. M. Macnaghten, eds.), pp. 229-254. Cam
bridge University Press. 1980.

[7] Milner, R. "Calculi for Synchrony and Asynchrony," Theo
retical Computer Science 25, pp. 267-310. 1983.

[8] Milner, R. Communication and Concurrency. Prentice Hall.
New York. 1989.

[9] Olderog, E. R. and C. A. R. Hoare. "Specification-oriented
Semantics for Communicating Processes," Acta Injonnatica
23, pp. 9-66. 1986.

[10] Park, D. M. R. "Concurrency and Automata on Infinite
Processes," Proceedings 5th GI Conference (P. Deussen, ed.)
LNCS 104. pp. 167-183. Springer-Verlag. 1981.

[11] Phillips, I. C. C. "Refusal Testing," Theoretical Computer
Sciellce 50. pp. 241-284. 1987.

[12] Pnueli. A. "Linear and Branching Structures in the Seman
tics and Logics of Reactive Systems." Proceedings 1CALP
85, Nafplion (W. Brauer, ed.), LNCS 194, pp. 15-32.
Springer-Verlag. 1985.

[13] Shams, M" J. C. Ebergen and M.l. Elmasry. "Modeling and
Comparing CMOS Implementations of the C-Eleroent,"

IEEE Transactions on VLS1 Systems 6(4), pp. 563-567. De
cember 1998.

[14] Stevens, K. S. Practical Verification and Synthesis of Low
Latency Asynchronous Systems. Doctoral Dissertation.
University of Calgary. Calgary, Alberta, Canada. 1994.

[15] Rounds, W. C. and S. D. Brookes. "Possible Futures, Accep
tances, Refusals and Communicating Processes," Proceed
ings 2211d Annual Symposium on Foundations of Computer .
Sciellce, pp. 140-149. IEEE. New York. 1981.

[16] van Glabbeek, R. J. The Linear Time - Branching Time
Spectrum. Technical Report CS-R9029, Centre for Mathe
matical and Computer Science, P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands, 1990.

669

