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Spin-glass transition of a dilute Ag-Mn alloy in a magnetic field 
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The spin-glass state in a magnetic field is studied in a very dilute Ag-Mn sample containing 150 
ppm of Mn. The field-cooled magnetization of this system is investigated over temperatures ranging 
from 4 down to 0.01 K in magnetic fields from 932 to 1 Oe. Scaling is observed in the nonlinear 
susceptibility above Til and in the order parameter below Tg • The critical exponents are in good 
agreement with those obtained on much-higher-concentration spin glasses and are different from the 
mean-field values. There is strong evidence for a phase transition. 

I. INTRODUCTION 

The spin-glass state has been investigated with a variety 
of experimental and theoretical techniques, the central 
question being whether there exists a true thermodynamic 
phase transition at the spin freezing temperature Tg • In 
the past few years there has been increasing evidence 
pointing toward the existence of a phase transition. Sus­
ceptibility data l on concentrated spin glasses have been 
explained in terms of a non-mean-field scaling theory.2 
Recent EPR linewidth studies3,4 did show that near Tg 
for T> Tg , scaling behavior was observed for the critical 
part of the linewidth. Theoretically, the scaling laws as 
applied to spin glasses have been extensively discussed.s.6 

We present here a study of the magnetization of a very 
dilute spin glass, Ag-Mn, whose Tg is 0.15 K. Such a low 
Tg gives an easy access to a wide range of magnetic fields 
for investigating the behavior of the spin-glass transition 
and state in a magnetic field. In fact, in this work we 
scan the magnetic field up to a field parameter 
h =0.8357, where h is equal to g/-LBH /kBTg and H is the 
applied magnetic field. The original Edwards-Anderson 
model7 shows that there is no transition in a magnetic 
field because the order parameter is then always nonzero. 
However, experimental8 and theoretical9 work based on 
the Sherrington-Kirkpatrick modeIlO shows a phase tran­
sition in a magnetic field. Our investigation of such a 
very dilute system will provide general characteristics of a 
spin-glass system which can be compared to the very­
high-concentration spin glasses studied so extensively. In 
this work we study the spin-glass transition above and 
below Tg , the sample being field cooled. There is general 
belief that field cooling of the sample yields a thermo­
dynamic equilibrium state or quasiequilibrium state. 10 

The authors of Ref. 11 have studied the entire H- T 
phase diagram, arguing that, at fixed field, on reducing 
the temperature the system first undergoes a crossover at 
temperatures T",(H) from paramagnetic behavior to a re­
gion of nonlinear susceptibility. Only at the lowest tem­
peratures, at and below Tg(H), where Tg(H) < Tg(O), the 
system enters the spin-glass state. According to mean­
field theory, the transition temperature Tg(H) follows a + 
power law, which is more or less close to experimental re­
sults, but the prediction of T,,(H) is far away from experi-
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mental results. The non-mean-field scaling theory pro­
posed by Malozemoff et al. 1,2 gives a reasonable explana­
tion for Tg(H) and T,,(H) for the spin glasses Gd-Al and 
Cu-Mn. 

The present paper presents experimental details of the 
measurements, followed by an analysis of the spin-glass 
state above and below Tg • Because of the nature of the 
measurements at very low temperatures, each point corre­
sponds to an equilibrium point, the waiting time for each 
point being 2-3 h. Our results do not deal with irreversi­
bilities and hence we present a new approach in analyzing 
the equilibrium data in the spin-glass state. 

II. EXPERIMENTAL DETAILS 

The magnetization of the sample was measured with a 
SQUID (superconducting quantum-interference device) 
magnetometer, the external field H being trapped in a su­
perconducting niobium cylinder surrounding the sample. 
The Mn spin contribution is obtained by subtracting the 
background signal from a piece of pure Ag used in the fa­
brication of the Ag-Mn alloy. Such subtraction is possible 
by using an astatic pair of coils coupling the flux from the 
samples to the SQUID magnetometer. 12 Cooling is pro­
duced by a 3He-4He dilution refrigerator, and the sample 
is located inside the mixing chamber, in good contact with 
the dilute phase of the mixture. Temperatures were mea­
sured by a cerium magnesium nitrate magnetic thermome­
ter coupled to another SQUID magnetometer. The sam­
ples were field cooled over a period of hours, and data 
were taken on warming of the sample in small tempera­
ture increments and after equilibrium had been established 
between the thermometer and the sample. 

The sample consisted of polycrystalline Ag-Mn alloy 
formed from 6N pure Ag and 4N Mn in an induction fur­
nace; it was machined to a cylinder 6.25 mm long and 2.5 
mm in diameter. During the preparation of the sample 
the alloy was well mixed by the induced currents for 
several minutes and then dropped into a room­
temperature mold in order to facilitate a rapid quench 
from the melt. The concentration was determined by 
atomic absorption analysis. 
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III. ANALYSIS OF DATA 

The data that were obtained are shown in Fig. 1. The 
figure shows the magnetization normalized to the magnet­
ic field H as a function of temperature for a wide range of 
external magnetic fields ranging from 1 to 932 Oe. This 
graph shows the change from the paramagnetic state to 
the spin-glass state, the sharpness of this change depend­
ing on the magnetic field. In our analysis we start with an 
approach proposed by Malozemoff et aI., 1 but then, when 
in the spin-glass state, we present a new approach in deal­
ing with this state, which is based on the characteristics of 
the order parameter and its scaling behavior. Hence, we 
divide the analysis for the temperature regimes 
T> Tg, Tg, T < Tg, and then the combined behavior is 
used to construct a phase diagram (H, T). 

A. Determination of Tg • 

The strongest critical behavior occurs not in the linear 
susceptibility Xo but in the nonlinear susceptibility Xo-X. 
Since we are measuring the magnetization M (T), a field 
expansion of the normalized magnetization gives 

where X2(T) is the nonlinear susceptibility. The linear 
susceptibility X o( T) is determined by a linear extrapola­
tion to zero field of the M (T) results in fields of 10-1 
Oe. A log-log plot of Xo-M IH against H is used to 
determine X 2(T) and a(T) for each temperature. From 
such an analysis the quantities Xo, X2, and a are extracted; 
Fig. 2 shows the temperature dependence of these quanti­
ties. The linear susceptibility is approximately tempera­
ture independent for T < Tg; the nonlinear susceptibility 
X2 has a maximum at the transition temperature Tg , while 
the exponent a( T) has a minimum at that temperature. 
From the maximum in Xl> for this spin glass of Ag-Mn 
(150 ppm Mn), we determine that Tg = O. 15 K in the 
zero-field limit. 
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FIG. I. Magnetization normalized to magnetic field as a 
function of temperature for 150 ppm Ag-Mn. Solid line shows 
paramagnetic behavior and arrows indicate temperatures at 
which departures from Curie's law occur. 
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FIG. 2. Temperature dependence of linear susceptibility Xo, 
nonlinear susceptibility X 2, and exponent a. 

B. Scaling at T> Tg 

Having extracted the nonlinear susceptibility from the 
data, we analyze it in terms of a non-mean-field scaling 
theory where 

X2=Xo(T)-M(T)IH=H2If>j(tIH2IrP) , (2) 

where 

{ 
-+const as x -+0 , 

j(x) _ 
-x r as X-+oo , 

and 8, y ,r/> are critical exponents. Here t is the reduced 
temperature ( T - Tg ) ITg. In order for the behavior to be 
regular above Tg , the exponents must satisfy the scaling 
relation 

r/>=8y/(8-l) . (3) 

The nonlinear susceptibility X2 is fitted to Eq. (2) by plot­
ting [X2(t)IH 2IIl ] versus UIH2IrP) on double-logarithmic 
scales for different values of the pair of exponents (r/>,8). 
The best scaling is obtained for 8=6.6 and r/>=4.5, and 
this is shown in Fig. 3(a). Now, the nonlinear susceptibili­
ty exponent y is calculated from Eq. (3) to be 3.8. Such a 
large exponent value implies a rapid thermal variation of 
X2 since X2 varies as H 2t- r . The good fit of the non­
linear susceptibility to Eq. (2) implies that it diverges as 
t -r as Tg is approached from the high-temperature side 
and that it goes as H2I1l at Tg • The exponents that we ob­
tained differ from those of a mean-field model, where 
y = 1, r/> = 2, and b = 2; however, they are in good agree­
ment with the values obtained, for example, by Malozem­
off et al. 1 for Gd-AI and Cu-Mn spin glasses. Their 
values for Gd-AI are y =3.8,8=5.7, and r/>=4.5. 

C. Scaling at T < Tg 

This is the regime where the system is in the spin-glass 
phase. Because the measurements are taken in a wide 
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FIG. 3. Scaling behavior of Ag-Mn. (a) Scaling of nonlinear 
susceptibility X2 at T> Tg • (b) Scaling of order parameter q at 
T<Tg • 

range of magnetic fields, the spin-glass state will occur at 
temperature Tg(H) or below, where Tg(H) < Tg(O). Gen­
erally, the transition temperature Tg(H) in finite fields is 
defined as the onset of irreversible magnetization. How­
ever, our magnetization measurements are field-cooled dc 
measurements, and therefore they are true thermodynamic 
values or close to it; the field is not changed. Hence, we 
determine Tg(H) from the behavior of the order parame­
ter q rather than the onset of irreversibilities since we do 
not measure them. 

According to Fischer'sl3 formula relating the order pa­
rameter q to the susceptibility, 

TX 
q=l-- , 

c 
(4) 

where c is Curie's constant and the Curie-Weiss tempera­
ture is zero. If X is independent of temperature, q should 
have a linear variation with temperature. Hence, a set of 
curves of q as determined from Eq. (4) varying with tem­
perature is plotted for the various applied magnetic fields. 
The deviation of q from a straight line is used as the cri­
terion to determine the transition temperature Tg(H) for 
each field. The higher the field, the lower the transition 
temperature Tg(H) for the spin-glass state. These mea­
surements will be discussed in the next section. 

Since we have used the order parameter q to determine 
Tg(H), we raised the question as to whether the order pa­
rameter can also follow a scaling function such as 

(5) 

where, as before, 

{ ~const as X-O , 
fix) p 

-x asx~oo, 
(6) 

and tP={3B'. 
We have plotted [q(H,t)/H 2/1i'] versus (t/H 2I,p) on 

double-logarithmic scales for various values of (tP,B'). 
Here t is (Tg - T)/Tg since we are below Tg. Scaling 
occurs for B'=5.4 and tP=4.5, and this scaling of the ex­
perimental results is shown in Fig. 3(b). We measure B' 
different from B, although they are almost the same; the 
exponent tP is the same below and above Tg • The ex­
ponent of the order parameter is then given by Eq. (6) and 
it is {3=O. 83. 

D. Phase diagram (H, T) 

From all the information obtained in the above 
analysis, it is possible now to construct a phase diagram 
(H, T). The system starts at high temperatures in the 
paramagnetic regime; as the temperature is reduced it 
goes into a regime where the nonlinear behavior of the 
susceptibility dominates (presumably due to the formation 
of various clusters), and finally at lower temperatures the 
system goes into the spin-glass state. The spin-glass state 
is separated from the nonlinear regime by a line of tem­
peratures tg(H), while the nonlinear part is separated 
from the paramagnetic regime by the temperatures tx(H). 
From our analysis these regimes are separated by 
tg(H)=0.04H 11,p and tx(H)= 1.8H11,p, and this is shown 
in Fig. 4. Such a phase diagram is different from the usu­
al representation,l where irreversibilities play an impor­
tant role below tx(H). However, magnetocaloric measure­
ments by Berton et al. 14 on a more concentrated spin 
glass also show a similar equilibrium phase diagram, not 
dealing with irreversibilities. 

IV. DISCUSSION 

The measurements presented here on a very dilute spin 
glass at concentration levels of 150 ppm show behavior 
very similar to other spin glasses whose impurity concen­
trations are larger by many orders of magnitude (for ex­
ample, Gd-AI in Ref. 1 has 37 at. % of Gd). The fact 
that the spin-glass transition Tg is so low for our sample 
makes it easier to span a large range of magnetic fields. 
Our results span a very large field range, h being 0.8357, 

H (Oe) 

FIG. 4. Phase diagram (H,t) of 150 ppm Ag-Mn spin glass. 
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in contrast with an h of 0.008 in Ref. 8 and 0.06 in Ref. I. 
We observe scaling behavior above and below Tg • Also, 
in contrast to most other measurements, we have investi­
gated only the field-cooled, thermodynamic equilibrium 
state of the spin glass with no field cycling. Based on the 
assumption that we have an equilibrium state which has 
experimental support,15 our magnetization does not 
change with time. We have investigated the behavior of 
the order parameter in the spin-glass state. To analyze 
our data we needed only one order parameter. As men­
tioned earlier, our (H, T) phase diagram has a different in­
terpretation from the usual one in that it deals with equili­
brium behavior. In that respect it is similar to that of 
Ref. 14. Although attempts have been made in trying to 
identify the de Almeida-Thouless9 and Sompolinskyl6 

longitudinal instability line tg (H) = - AH2/3 and the 
Gabay-Toulouse transverse freezing line l7 with experi­
mental results at low h, our results do not agree with such 
mean-field behavior; our tg(H) line depends on H2/~ with 
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