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Novel Co-operative Magnetic Properties of 
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The electron-transfer salt 3[Mn(CsMesl 21+ [000] - , isomorphous to orthorhombic [Fe(CsMes)'] '+ [000] '- , has 
been prepared. It exhibits a complex field-dependent magnetic phase diagram at low temperatures with evidence 
for ferromagnetic coupling as well as a low moment state below 4 K for zero-field cooled samples. 
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Co-operative (bulk) magnetic behaviours have been observed 
for the [FeCpn + [TCNEJ - (Cp* = pentamethylcyclopen
tadienide; TCNE = tetracyanoethylene) and [FeCpH + 
[TCN QJ - (TCN Q = 7,7 ,8,8-tetracyano-p-q uinodimethane) 
electron-transfer salts.1 The former has been characterized by 
powder neutron diffraction and single-crystal measurements 
to exhibit a spontaneous magnetization (ferromagnetic ground 
state) with a Curie temperature, Teo of 4.8 K, whereas the 
latter is metamagnetic with a Neel temperature, TN, of 2.55 K. 
The solution of a simple (one spin site) mean-field model 
shows that Tc is proportional to J and S(S + I) where J is 
the exchange integral and S is the spin.2 Attempts to enhance 
Tc by substituting the S = 1/2 FeIII cation with the isostructural 
S= 1 MnIII cation, i.e. 3 [MnCp!] + , in the [TCNE)" - salt were 
unsuccessful owing to decomposition arising from the chemi
cal reactivity of the donor and acceptor. 3 Recently, the 
expected tren~ has been realized with the report that the 
[TCNQ)"- salt of 3[MnCpH + is ferromagnetic. 4 The observed 
magnetic couplings are consistent with the expectations of the 
extended-McConnell configurational admixture model.s With 
the goal of preparing additional molecular-based ferromag
nets, the ferromagnetically coupled [FeCpn + [DDQJ 
(DDQ = 2,3-dichloro-5,6-dicyanobenzoquinone) electron
transfer salt was characterized.6 As Tc is proportional to 
S(S+I), we sought to prepare 3[MnCp!] +[DDQJ- , antici
pating that Tc might occur at temperatures accessible in our 
laboratories. 

The salt 3 [MnCp!] + [DDQJ - was prepared from 
3[Mn(CsMeshY[PF6r (ref. 7) and [Et4 N] +[DDQJ- [ref. 
6(b)] at - 20 °C. Elemental analysis (Oneida Research Ser
vices) for C2sH30CI2MnN202 calc. (obs.): C, 60.88, (60.39); H, 
5.47 (5.32); N, 5.07% (5.49%). Infrared spectra (Nujol): Vmax 

2205s cm - 1 (C=N) (cf 2206s cm -1 for [FeCp!Y 
[DDQJ-).6 Room temperature Gunier powder diffraction 
analysis was used to determine the unit-cell lattice parameters 
(a= 14.48 A, b= 17.00 A, c= 10.69 A, and V=2631.5 A3) 
which are isomorphous to the FeIII analogue (a= 14.497 A, 
b= 17.027 A, c= 10.616 A, and V =2620 A3).6. Thus, although 
crystals suitable for single-crystal X-ray analysis are not 
available, powder diffraction data supports the assump
tion that [Mn(CsMeshJ +[DDQJ - possesses the 
[Fe(CsMeshJ +[DDQJ - structure comprising parallel in
and out-of-registry oo·D· + A-D'+ A- oo, chains.6a 

The 2-300 K Faraday balanceS magnetic susceptibility of 
[Mn(CsMeshJ+[DDQJ - can be fit by the Curie- Weiss 
expression, XM =; C/(T - 0). The effective moment, /lerr 
[=(8XT)1 /2], and 0 values for five independently prepared 
samples are 4.22, 4.25, 4.30, 4.13, and 4.13 /lB and + 25.5, 25.8, 
27.1, 28.8, and 31.9 K, and average 4.21 /lB and 27.8 K, 
respectively. The moment is greater than expected from a 
randomly oriented sample based on <g> (i.e. 3.11 /lB for <g> = 

2.20t), but less than expected for a sample oriented with the 
Cs axis parallel to the magnetic field (i.e. 4.71 /lB for g il = 
3.33). Thus, owing to the orientational variability of polycrys
talline samples, the observed effective moments are consistent 
with S= 1/2 and S= I ions per formula unit. The Curie-Weiss 
o value of + 26.8 K suggests significant ferromagnetic interac
tions. Hysteretic magnetic-field-dependent behaviour was 
observed below ca. 7 K. The 150-2000 G magnetic field 
dependence of the magnetization for a zero-field cooled sample 
previously aligned by 19.5 kG magnetic field is presented for 
increasing and decreasing magnetic fields in Fig. 1. Above ca. 
3.8 K the magnetization exceeds the expectation calculated 
from the Brillouin function for fully aligned S= 1 and S= 1/2 
spins. Thus, the data imply a complex magnetic phase diagram 
at low temperature. Assuming complete alignment of the 
crystals with the magnetic field parallel to the Cs molecular 
axis, the expected saturation magnetization, Ms, of 
24200 emuG mol- 1 is realized. This is consistent with ferro
magnetic coupling. At ca. 4 K the magnetization abruptly 
drops by more than an order of magnitude depending on the 
applied field to a value lower than calculated from the 
Brillouin function, Fig. I. At high temperature there is a field
dependent cross-over from a low to a high magnetization 
state. This is suggestive of the presence of perhaps both a 
spin- Peierls and metamagnetic transitions. However, since 
spin-Peierls transitions occur only in antiferromagnetic states, 
complex magnetic behaviours must be operative for the 
material. Details of the phase diagram consistent with both 
the low- and high-field cooling for DDQ as well as the other 
dihalo-DDQ salts will be reported later. 

tg ll =3.33, gl.= 1.64 and <g) =2.20 were observed for neutral 
MnCp! at 4 K in methyltetrahydrofuran. Under similar conditions 
attempts to determine the EPR of [MnCpn + [PF 6r were unsuc
cessful. 
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Fig. 1 Molar magnetization, M, as a function of temperature, T, for a zero-field cooled polycrystalline sample of [MnCpn+[DDQ]"- previous 
aligned in 19.5 kG at 150 (.), 200 (0), 300 (x), 400 (e), 500 (6),750 (0), 1000 ( ... ), 1500 (0), and 2000 (+) G magnetic fields applied at each 
temperature value in an (a) increasing and (b) decreasing manner. The magnetization calculated from the Brillouin function for fully aligned 
S=1 and S=I/2 spins at 2000G (---). (The actual field application sequence was 150,300,500,1000,2000,1500,750,400, and 200G prior 
to annealing at 25 K in zero field for 30 min and then applying 200, 400, 750, 1500,2000, 1000, 500, 300, and 150 G fields) 
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