Novel Co-operative Magnetic Properties of Decamethylmanganocenium 2,3-Dichloro-5,6dicyanobenzoquinoneide, 3 [Mn(C₅Me₅)₂]^{:+}[DDQ]⁻

Joel S. Miller,*^{*a*} R. Scott McLean,^{*a*} Carlos Vazquez,^{*a*} Gordon T. Yee,^{*a,b*} K. S. Narayan^{*b*} and Arthur J. Epstein*^{*b*}

^a Central Research and Development (Contribution No. 5810), Du Pont, Experimental Station E328, Wilmington, DE 19880-0328, USA

^b Department of Physics and The Department of Chemistry, The Ohio State University, Columbus, OH 43210-1106, USA

The electron-transfer salt 3 [Mn(C₅Me₅)₂]⁺[DDQ]⁻, isomorphous to orthorhombic [Fe(C₅Me₅)₂]⁺[DDQ]⁻, has been prepared. It exhibits a complex field-dependent magnetic phase diagram at low temperatures with evidence for ferromagnetic coupling as well as a low moment state below 4 K for zero-field cooled samples.

Keywords: Decamethylmanganocenium 2,3-dichloro-5,6-dicyanobenzoquinoneide; Electron-transfer salt; Ferromagnetic coupling

Co-operative (bulk) magnetic behaviours have been observed for the $[FeCp_2^*]^+[TCNE]^-$ (Cp*=pentamethylcyclopentadienide; TCNE = tetracyanoethylene) and $[FeCp_2^*]^{-1}$ (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane)[TCNQ] electron-transfer salts.¹ The former has been characterized by powder neutron diffraction and single-crystal measurements to exhibit a spontaneous magnetization (ferromagnetic ground state) with a Curie temperature, T_c, of 4.8 K, whereas the latter is metamagnetic with a Néel temperature, T_N , of 2.55 K. The solution of a simple (one spin site) mean-field model shows that $T_{\rm C}$ is proportional to J and S(S+1) where J is the exchange integral and S is the spin.² Attempts to enhance $T_{\rm C}$ by substituting the S = 1/2 Fe^{III} cation with the isostructural $S = 1 \text{ Mn}^{\text{III}}$ cation, *i.e.* ³[MnCp₂^{*}]⁺, in the [TCNE]⁻ salt were unsuccessful owing to decomposition arising from the chemical reactivity of the donor and acceptor.³ Recently, the expected trend has been realized with the report that the [TCNQ].⁻ salt of ³[MnCp^{*}₂].⁺ is ferromagnetic.⁴ The observed magnetic couplings are consistent with the expectations of the extended-McConnell configurational admixture model.⁵ With the goal of preparing additional molecular-based ferromagnets, the ferromagnetically coupled [FeCp^{*}₂]^{.+}[DDQ][.] (DDQ = 2,3-dichloro-5,6-dicyanobenzoquinone) electrontransfer salt was characterized.⁶ As T_c is proportional to S(S+1), we sought to prepare ³[MnCp₂^{*}]⁺[DDQ]⁻, anticipating that $T_{\rm C}$ might occur at temperatures accessible in our laboratories.

The salt ³[MnCp₂^{*}]⁺[DDQ]⁻ was prepared from ${}^{3}[Mn(C_{5}Me_{5})_{2}]^{+}[PF_{6}]^{-}$ (ref. 7) and $[Et_{4}N]^{+}[DDQ]^{-}$ [ref. 6(b)] at -20 °C. Elemental analysis (Oneida Research Services) for C28H30Cl2MnN2O2 calc. (obs.): C, 60.88, (60.39); H, 5.47 (5.32); N, 5.07% (5.49%). Infrared spectra (Nujol): v_{max} 2205s cm⁻¹ (C=N) (cf. 2206s cm⁻¹ for [FeCp₂^{*}].⁺ [DDQ]⁻).⁶ Room temperature Gunier powder diffraction analysis was used to determine the unit-cell lattice parameters $(a = 14.48 \text{ Å}, b = 17.00 \text{ Å}, c = 10.69 \text{ Å}, and V = 2631.5 \text{ Å}^3)$ which are isomorphous to the Fe^{III} analogue (a = 14.497 Å, b = 17.027 Å, c = 10.616 Å, and V = 2620 Å³).^{6a} Thus, although crystals suitable for single-crystal X-ray analysis are not available, powder diffraction data supports the assumption $[Mn(C_5Me_5)_2]^{+}[DDQ]^{-}$ that possesses the $[Fe(C_5Me_5)_2]^{+}[DDQ]^{-}$ structure comprising parallel in-and out-of-registry $\cdots D^{+}A^{-}D^{+}A^{-}\cdots$ chains.^{6a}

The 2-300 K Faraday balance⁸ magnetic susceptibility of $[Mn(C_5Me_5)_2]^{+}[DDQ]^{-}$ can be fit by the Curie-Weiss expression, $\chi_{\rm M} = C/(T-\theta)$. The effective moment, $\mu_{\rm eff} [\equiv (8\chi T)^{1/2}]$, and θ values for five independently prepared samples are 4.22, 4.25, 4.30, 4.13, and 4.13 $\mu_{\rm B}$ and +25.5, 25.8, 27.1, 28.8, and 31.9 K, and average 4.21 μ_B and 27.8 K, respectively. The moment is greater than expected from a randomly oriented sample based on $\langle g \rangle$ (i.e. 3.11 $\mu_{\rm B}$ for $\langle g \rangle =$ 2.20[†]), but less than expected for a sample oriented with the C_5 axis parallel to the magnetic field (i.e. 4.71 $\mu_{\rm B}$ for $g_{\parallel} =$ 3.33). Thus, owing to the orientational variability of polycrystalline samples, the observed effective moments are consistent with S = 1/2 and S = 1 ions per formula unit. The Curie-Weiss θ value of + 26.8 K suggests significant ferromagnetic interactions. Hysteretic magnetic-field-dependent behaviour was observed below ca. 7 K. The 150-2000 G magnetic field dependence of the magnetization for a zero-field cooled sample previously aligned by 19.5 kG magnetic field is presented for increasing and decreasing magnetic fields in Fig. 1. Above ca. 3.8 K the magnetization exceeds the expectation calculated from the Brillouin function for fully aligned S = 1 and S = 1/2spins. Thus, the data imply a complex magnetic phase diagram at low temperature. Assuming complete alignment of the crystals with the magnetic field parallel to the C_5 molecular axis, the expected saturation magnetization, M_s , of 24 200 emuG mol⁻¹ is realized. This is consistent with ferromagnetic coupling. At ca. 4 K the magnetization abruptly drops by more than an order of magnitude depending on the applied field to a value lower than calculated from the Brillouin function, Fig. 1. At high temperature there is a fielddependent cross-over from a low to a high magnetization state. This is suggestive of the presence of perhaps both a spin-Peierls and metamagnetic transitions. However, since spin-Peierls transitions occur only in antiferromagnetic states, complex magnetic behaviours must be operative for the material. Details of the phase diagram consistent with both the low- and high-field cooling for DDQ as well as the other dihalo-DDO salts will be reported later.

 $^{||}g_{\parallel}| = 3.33$, $g_{\perp} = 1.64$ and $\langle g \rangle = 2.20$ were observed for neutral MnCp^{*}₂ at 4 K in methyltetrahydrofuran. Under similar conditions attempts to determine the EPR of [MnCp^{*}₂]⁺[PF₆]⁻ were unsuccessful.

J. MATER. CHEM., 1991, VOL. 1

Fig. 1 Molar magnetization, M, as a function of temperature, T, for a zero-field cooled polycrystalline sample of $[MnCp_2^*]^{++}[DDQ]^{--}$ previous aligned in 19.5 kG at 150 (\square), 200 (\square), 300 (x), 400 (\oplus), 500 (\triangle), 750 (\bigcirc), 1000 (\blacktriangle), 1500 (\bigcirc), and 2000 (+) G magnetic fields applied at each temperature value in an (a) increasing and (b) decreasing manner. The magnetization calculated from the Brillouin function for fully aligned S=1 and S=1/2 spins at 2000 G (--). (The actual field application sequence was 150, 300, 500, 1000, 2000, 1500, 750, 400, and 200 G prior to annealing at 25 K in zero field for 30 min and then applying 200, 400, 750, 1500, 2000, 1000, 500, 300, and 150 G fields)

We gratefully acknowledge support from the U.S. Department of Energy Division of Materials Science Grant No. DE-FG02-86ER45271.A000. We appreciate the powder X-ray diffraction analysis kindly provided by C. Foris and G. Hyatt and EPR spectra taken by W. Barney S. Hill, and P. J. Krusic at Du Pont CR&D.

References

480

- J. S. Miller, A. J. Epstein and W. M. Reiff, *Chem. Rev.*, 1988, 88, 201; J. S. Miller, A. J. Epstein and W. M. Reiff, *Acc. Chem. Res.*, 1988, 21, 114; J. S. Miller and A. J. Epstein and W. M. Reiff, *Science* 1988, 240, 40.
- 2 J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932; J. H. Van Vleck, Rev. Mod. Phys., 1945, 17, 7; J. H. Van Vleck, Rev. Mod. Phys., 1953, 25, 220; J. B. Goodenough, Magnetism and the Chemical Bond, John Wiley Interscience, New York, 1963; R. L. Carlin,

الم المراجع ال المراجع المراجع

Magnetochemistry, Springer-Verlag, Berlin, 1986; C. Kittel, Introduction to Solid State Physics, John Wiley, New York, 5th edn., 1976; D. A. Dixon, A. Suna, J. S. Miller and A. J. Epstein, in NATO ARW Molecular Magnetic Materials, ed. O. Kahn, D. Gatteschi, J. S. Miller and F. Palacio, 1991, XX, 171.

- 3 J. S. Miller and A. J. Epstein, Adv. Chem. Ser. 1990, 226, 419.
- 4 W. E. Broderick, J. A. Thompson, E. P. Day and B. M. Hoffman, Science, 1990, 249, 410.
- 5 J. S. Miller and A. J. Epstein, J. Am. Chem. Soc., 1987, 109, 3850.
- 6 (a) E. Gerbert, A. H. Reis, J. S. Miller, H. Rommelmann and A. J. Epstein, J. Am. Chem. Soc., 1982, 104, 4403; (b) J. S. Miller, P. J. Krusic, D. A. Dixon, W. M. Reiff, J. H. Zhang, E. C. Anderson and A. J. Epstein, J. Am. Chem. Soc., 1986, 108, 4459.
- 7 J. L. Robbins, N. Edelstein, B. Spencer and J. C. Smart, J. Am. Chem. Soc., 1982, 104, 1882.
- 8 J. S. Miller, D. A. Dixon, J. C. Calabrese, C. Vazquez, P. J. Krusic, M. D. Ward, E. Wasserman and R. L. Harlow, J. Am. Chem. Soc., 1990, 112, 381.

Communication 1/01152I; Received 12th March, 1991