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Spin Current and Polarization in Impure Two-Dimensional Electron Systems 
with Spin-Orbit Coupling
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We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit 
interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain 
coupled diffusion equations for the electron density and spin. Using these equations we calculate 
electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio 
between spin-orbit energy splitting A and elastic scattering rate t_1 . We demonstrate that the spin-Hall 
conductivity vanishes in an infinite system independent of this ratio.
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Introduction.—The subject of the novel and quickly 
developing field of spintronics is the transport of elec
tronic spins in low-dimensional and nanoscale systems. A 
possibility of coherent spin manipulation represents an 
ultimate goal of this field. Typically, spin transport is 
strongly affected by a coupling of spin and orbital degrees 
of freedom. The influence of the spin-orbit interaction is 
twofold. The momentum relaxation due to diffusive scat
tering of carriers, e.g., by disorder, inevitably leads to spin 
relaxation and destroys spin coherence. On the other hand, 
the controlled orbital motion of carriers can result in a 
coherent motion of their spins. Thus, spin-orbit coupling 
is envisaged as a possible tool for spin control in elec
tronic devices. In particular, it is possible to generate spin 
polarization and spin currents by applying electric field, 
the phenomenon known as the spin-Hall effect.

Although the study of the spin-Hall effect recently 
evolved into a subject of intense research f 1-11], the issue 
remains highly controversial Sinova et al. [2] have pre
dicted that in a clean, infinite, homogeneous two
dimensional electron system (2DES) the spin current j'k =  

v k} develops a nonzero expectation value under an 
external electric field E. (Here |  &  and v are the operators 
of the electron spin and velocity, respectively.) The spin- 
Hall conductivity, defined as the ratio u sH =  —j~ ,/E x, 
was predicted to have a universal value crsH =  ^ , inde
pendent of the magnitude of the spin-orbit energy split
ting A. The effect of impurity scattering on a spin current 
has been discussed in Refs. [4,9,10]. References [4,10] 
show that the spin-Hall conductivity disappears in the 
dirty lim it A t -1 , reaching the universal value only 
for a sufficiently clean regime, A »  r _1. The clean re
gime has been analyzed by Inoue et al. [9], who argued 
that the spin current completely disappears due to vertex 
corrections. Recently, Dimitrova [11] obtained the uni
versal value independent of the relation between the spin- 
orbit splitting A and the impurity scattering rate.

Because the spin current is not measurable directly, its 
physical meaning is obscure. In the presence of spin-orbit

PACS numbers: 72.25.-b, 73.23.-b, 73.50.Bk

interaction, electron spin is not a conserved quantity, and 
a spin current is not directly related to the transport of 
spins. In particular, Rashba [8] demonstrated that spin 
current can be nonzero even in equilibrium, as the sym 
metry of an isotropic spin-orbit Hamiltonian allows non
zero in-plane currents j*  =  —f x #  0. A more meaningful 
quantity is spin polarization (spin accumulation) rather 
than a spin current Equilibrium currents do not lead to 
spin accumulation. It remains unclear whether the pre
dicted nonequilibrium spin-Hall currents j~ accumulate 
near sample boundaries. Bulk polarization has been 
studied in both the three-dimensional [12] and two
dimensional [13] electron systems in the electric field.

In this Letter, we develop a consistent microscopic 
approach to spin transport in impure 2DES. We derive a 
quantum kinetic equation which describes the evolution 
of a density matrix of a noninteracting 2DES. For length 
scales exceeding the mean free path, this equation re 
duces to a modified diffusion equation. We then compute 
spin polarization and spin current in a general situation 
when the finite-size system is driven out of equilibrium by 
an external electric field as well as by the density gra
dient We find that the spin current actually vanishes in an 
infinite system for arbitrary At .

However, in a mesoscopic conductor connected to two 
massive metallic contacts, nonequilibrium spin currents 
j~, flow in the vicinity of the contacts (as shown in Fig. 1). 
A nonzero spin-Hall effect can also be achieved in an 
infinite system by applying a finite frequency electric 
field. We evaluate the ac spin-Hall conductivity, which is 
maximal for a frequency of order of the spin-relaxation 
rate. This result is instructive for making a connection 
with previous works and clarifying the “ universality” 
issue of the spin-Hall conductivity.

Kinetic equation.—Noninteracting electrons in an 
asymmetric quantum well can be described by a single 
particle Hamiltonian

H  =  [p — eA(t)]2/2m  + arj ■ [p — eA(f)] + Ujy (1)
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FIG. 1 (color online). In a spin-Hall bar setup, the clcctric 
currcnt is driven through 2DES contactcdby the metallic leads 
conncctcd to a voltage source. The clcctric field Ex crcatcs an 
in-planc spin polarization Sv in the bulk. Spin currents j\, arc 
running in the vicinity of the contacts while vanishing in the 
bulk. Out-of-planc polarization S. is accumulated at the sample 
corncrs.

where p =  —//iV is electron momentum, m is the effec
tive mass, A (t) is a vector potential of the uniform 
electric-field E =  — A, and r\ is proportional to the elec
tron spin operator. (We neglect terms cubic in p.) The 
disorder potential Uj is assumed to be random, short 
range, and spin independent. For the isotropic 
("Rashba” ) spin-orbit interaction [ 14], r\ =  z X <5\ where 
& are the Pauli matrices. To describe a lionequilibrium 
state of the system, we use the Keldysh approach [ 15]. We 
introduce the retarded and advanced Green’s functions GR 
and Ga , and Keldysh function GK satisfying Dyson’s 
equation

direction. Neglecting weak-localization effects, one can 
relate the self-energy % to the Green’s function G by a 
standard disorder averaging technique [16], % =  8XX> X 
G(x, x)/niT.  We consider only the lim it where r ” 1 and A 
are small compared to the Fermi energy p 2F/2m.  In the 
absence of electron-electron interactions, functions GR 
and GA are independent of the lionequilibrium state of the 
system. In the Fourier representation, they are given by

1
(3)G R.A

pe
~~ ~  A/J^p ±  2t '

Here =  (p2 — p 2F)/2m  is the kinetic energy counted 
from the equilibrium chemical potential, Ap =  a p  is the 
energy of the spin-orbit splitting, and fjp =  i) • p /p  is the 
projection of the spin operator r\ onto the direction of the 
electron momentum The Keldysh function GK satisfies 
the equation

[G "]_1Ga -  GA[GA]_1 =  X KGA -  Ga'2 a . (4)

It is now customary to apply the Wigner transformation to 
Eq. (4), i.e., the Fourier transform with respect to the 
relative time and space arguments,

G A'( /* x * ; /_ x _ )=  — f  ̂ ^ g p e(t,x)ei^ ‘'AI,}1Sx- iBS,r 
77 J (277 )

(5)

where t± =  t ±  St  and x^ =  x ±  Sx/2 .  In the semiclas
sical approximation, the Wigner transform of the right- 
hand side of Eq. (4) can be replaced by a product of the 
Wigner transforms of 2  and G:

(Go 1 -  2 )G =  1, G Ga

0
g a

g a
(2)

Here the lower bar denotes a matrix in Keldysh space, 
Go 1 =  idt ~  aild ^ is a density of states per spin

J

^ 2 1  + + an], Vg  | + ia[fi  
()t 2 [m p 1 P.Spe] = + i (G^Pf -  P'G*"). (6)

where V =  V + eErL, and

P, —  t2 t t v  J

d2p  ,

(2W 8PB
(7)

is the density matrix of electrons with the energy s. The 
total number of particles and their total spin can be 
expressed via p e as follows:

I-----------------------------------------------------------------------------
charge densities exceeding the electron mean free path 
I =  v f t , the distribution £pp relaxes slowly to equilib
rium  To describe this relaxation, we derive the equation 
for the density matrix p e(r, t). It is useful to move small 
gradient terms to the right-hand side of the kinetic 
Eq. (6), so that its left-hand side describes fast relaxation 
to the local equilibrium distribution:

- T r / ;  j d e& p s. (8)
(<>, + ? ’Xgpe + f 'A ^ p J p e ] n/- 4-“''-pe “''-pe ' “''-pe

(1)

Iii the lim it r  —► oo Eq. (6) reduces to the ballistic equa
tion of Ref. [17]. Note, however, that the function £pe is 
not a distribution function in the conventional sense, 
since it depends on both energy and momentum.

A stationary solution to the quantum kinetic Eq. (6) is 
of the form £pe =  AP(Gp’P — Gpp), where A e is an arbi
trary scalar function of the electron energy s. This solu
tion represents the state in which the charge density is 
uniform, and spin density is zero. In a lionequilibrium 
state with the characteristic length scales of the spin and

where

OCpXpJ = iT- ' \G*ep s ~  p sG$e\

3<peKpe] - ^ { - +  art, V£pe2 \m

(9)

(10)

Small anisotropic deviations from local equilibrium are 
due to the gradient term 5Cpi! in the kinetic equation 
which can be treated perturbatively. The solution to 
Eq. (9) can formally be written (in the Fourier represeii-
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tation with respect to time) as

. _,(2Ap ~  pe + 2ApfjpJCpef]p ~  ihAp\_?]p, 3Cpe]
* pr ~ 1 0 (4 A 2 ^ 0 2)

= £[0Cpe\  d i )

where O =  co + i / r .  In a zeroth order, one can neglect 
the gradient term 3Cpl altogether, so that Eq. (11) gives 
the distribution ^  in terms of the density matrix p e. In 
the first order, we substitute the obtained expression for 
|p °i in the gradient term 3Cpl to obtain an improved 
expression for the distribution function, gpe\  This proce
dure is then to be repeated to the necessary order,

Ipi =  L [ X f e{pe) J
(12) 

8 ^ = 8 ^ l) + J  ' — !•

Integrating the second-order approximation over the mo
mentum p, one arrives at the diffusion equation for the 
density matrix p e. In a quasistationary regime ( a r «  1) 
the equation takes the following form:

^  +  D V 2p e +  iC[r}, Vpe] + B{V, V p J  =  ̂
d t  Ts 2 Ts

(13)

The first two terms in this equation describe spin and 
charge diffusion with D  =  v2ft / 2 being the conventional 
diffusion constant, and v F =  p F/ m  the Fermi velocity. 
The third term describes a spin precession due to the drift 
velocity, and the fourth term describes the coupling be
tween charge and spin. The right-hand side of Eq. (13) 
describes spin relaxation due to the Dyakonov-Perel 
mechanism [181. The coefficients of the spin relaxation, 
spin-density coupling, and spin precession are

i _  2A<r «<r2 r  =  _ ^ j _
r s i + 4<r2’ i + 4 < r 2’ (i +4<r2)2 '

where A =  APf, and the dimensionless parameter £ =
A t describes the relative strength of spin-orbit coupling 
and disorder scattering. In deriving Eq. (13), we assumed 
that the spin-orbit splitting is small compared to the 
Fermi energy (A «: EF), while the parameter £ =  A t is 
arbitrary. (Physically, £ represents the angle of spin pre
cession between two consecutive collisions.) In the case
of weak spin-orbit coupling or a very clean sample (£ «
1), the Dyakonov-Perel relaxation time is large compared 
to the elastic mean free time r s ~  t /  g2 »  t  and the 
characteristic spin-relaxation length /̂DT  ̂is large com
pared to the mean free path. The spin dynamics is thus
slow both in space and in time, and Eq. (13) has a mean
ing of a real diffusion equation for the coupled density 
and spin degrees of freedom. The spin-density coupling 
coefficient B differs, in the limit f  «  I. from the corre
sponding term that was given in the original version of 
Ref. [101. However, Ref. [101 was corrected in proof and

now agrees with our result. We see below that the value of 
B  is crucial for the magnitude of the spin-Hall effect.

In the opposite lim it, £ »  1, spin relaxation is fast, 
t s ~  t ,  and occurs on a length scale of the mean free path 
/, i.e., locally as compared to the system size L  »  /. Spin- 
relaxation dynamics (e.g., propagation of a spin-polarized 
injected beam) is therefore beyond the reach of the dif
fusion equation and must be studied with the kinetic 
Eq. (6). However, Eq. (13) can still be used to study a 
steady state in which spin polarization changes slowly on 
a scale of I (which is the case for spin-Hall conductivity; 
see below). One then has to retain the terms describing 
density diffusion, spin relaxation, and spin-density cou
pling. In the vector basis,

P e  =  («e/2) + a- ■ se, (14)

Eqs. (13) are reduced to

V 2«e = 0 ,  s E =  —B t s z  X V «e. (15)

Total density and spin polarization are expressed in this 
basis as N  =  v f  d s n e, and S =  v f  d s s e.

Spin accumulation.—We now apply the spin diffusion 
Eq. (13) to analyze spin accumulation in a finite-size 
sample of the length L  contacted by two ideal unpolar
ized metallic leads. The sample is infinite in the trans
verse direction so that p e (x) depends on the longitudinal 
coordinate x  only. Note that the electric field in the 
sample enters Eq. (13) only via V =  V + e E d e and there
fore can be eliminated by shifting the energy as s —> s + 
eEx.  Thus, the electric field may be treated via the bound
ary conditions, p e (0) =  F e^ eV, p e (L ) =  F e , where V  =  
EL  is the voltage bias between the two leads, and F e is the 
equilibrium Fermi-Dirac distribution. Substituting the 
expansion (14) into Eq. (13) we observe that s xe =  s \  =
0. The other two equations yield

n e {x) =  2(1 -  x / L ) F e - eV + 2x F j L ,  

d 2s ye _ s ye _  B d n e 2  _  (16)
Hx2 r r T )  ~ d l ’ 5 “  7"

Note that the B  term in the equation for rte leads to small 
corrections, ~ a 2/ v 2Fy which must be neglected in the 
considered approximation. The solution to the second of 
Eqs. (16) yields

S'U) -  1 -  C° Sh[y ~ j /L ,] \  (17)
2 t t v f  \  coshy J

where y  =  L / 2 L S, and Ee(( =  V/ L .  For y  —> oo, this 
agrees with the previous calculation by Edelstein [ 131.

S pin  current.—The spin current, as defined in the in 
troduction, is found from the Keldysh Green’s function,

1 A /y
i i  =  ^ Tr<3J'(Vi: “  Va W (;A +  2 e ikzN - (18)

The function G K can be expressed via the density p e with 
the help of the equation, G K =  G Rz G A, which follows
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from Dyson's Eq. (4). After simple transformations.

Jk Sirmr
Tro-W^ -  V*)x / d sd y

a
(19)

X C e(x -  y)pe(y)Ge(y -  xO + - € ikzN.

Keeping now in the integrand only the zero and first-order 
terms in the expansion of p e over y — x, we arrive at the 
final expression for the nonequilibrium spin current in 
terms of the density and spin distribution functions.

4
8‘:£-[z X E err]* , v r f t S W

~e— --- :-------—ttt— + ■
S'S-')

2tt(1 +  4£-) 1 +  4£-
(20)

Here E elT =  E -  V N / l e v  is the gradient of the electro
chemical potential including both the electric field and 
the gradient of electron density. Substituting Eq. (17) into 
Eq. (20) we observe that the two contributions to j'k 
cancel each other in the bulk of a sample. Therefore, the 
dc spin current vanishes independent of

However, near the contacts where the spin polarization 
deviates from its bulk value, the spin current is nonzero. 
Using the expression (17) in Eq. (20), we find that the spin 
current near the contacts decays as (^ <5C 1)

jz(x ) =  x/L
2 77

(21)

For a sample of finite width, this spin current should lead 
to a nonzero spin accumulation Sz within a distance Ls of 
the corners of the sample, as illustrated in Fig. 1.

Note that for a nonuniform system in thermal equilib
rium, where E en- =  0, the spin density given by Eq. (16) is 
zero, as well as the spin current. Small equilibrium spin 
currents [8], proportional to ( a / v F)3, are beyond the 
approximation used when deriving Eq. (20). Our deriva
tion of the diffusion Eq. (13) and the spin current (20) 
relies on the approximation (3) that neglects contributions 
from diagrams with crossed impurity lines (ladder ap
proximation). This is usually justified provided that 
E f t  »  1. In an infinite system the result (20) is equiva
lent to a calculation within the Kubo formalism with the 
first term representing a single-loop contribution and the 
second term originating from the ladder impurity 
diagrams.

To reconcile our result for spin current with the pre
dictions of Ref. [2], it is helpful to consider the ac spin- 
Hall effect [91. When the applied electric field is time 
dependent, spin polarization is retarded with respect to 
the field, due to the finite spin-relaxation time. As a 
result, the spin polarization contribution in Eq. (20) 
does not exactly cancel the electric-field contribution, 
and spin-Hall conductivity becomes nonzero. Solving 
Eq. (9) for the homogeneous infinite system and general
izing Eq. (19) for a time-dependent state, we find.

cr,sil (co) =
e A 2
277 o) t[4 A 2 — (w + -O2] +  2/A2

(22)

For low frequencies, cors <  1, the spin-Hall conductivity 
remains small, <rs l l ----- iwr.  W hen the frequency ex
ceeds the spin-relaxation rate (cors ^  1 ), <rsll reaches 
its maximum value <?t/(477tv). For clean samples, this 
is the universal value e/877 predicted in Ref. [2], while 
for dirty samples (£ 1 ) the maximum value of the 
spin-Hall conductivity remains strongly suppressed, 
o-sii ~  eC2/(2ir).

To conclude, we derived a quantum kinetic equation 
for 2D electrons in the presence of spin-orbit coupling 
and short-range potential scattering. We proved that the 
dc spin-Hall effect disappears in a bulk sample, and we 
computed the spin accumulation in a finite-size system 
for a wide range of parameters.
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