
484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51,NO. 2, FEBRUARY 2003

Blind Identification of Bilinear Systems
N icholas Kalouptsidis, Senior Member, IEEE,  Panos Koukoulas, Member, IEEE,  and V. John Mathews, Fellow, IEEE

A bstrac t— T h is p a p e r  is c o n ce rn ed  w ith  th e  b lin d  iden tifica tio n  
o f  a  c lass o f  b ilin e a r  system s excited  by  n o n -G a u ss ia n  h ig h e r o rd e r  
w h ite  noise. T h e  m a tr ix  o f  coefficients o f  m ixed  in p u t-o u tp u t te rm s 
o f  th e  b ilin e a r  system  m o d el is a ssu m ed  to  b e  t r ia n g u la r  in  th is  
w o rk . U n d e r  th e  a d d itio n a l a ssu m p tio n  th a t  th e  system  o u tp u t is 
c o rru p te d  by  G au ss ian  m ea su re m e n t no ise , w e d e riv e  a n  exac t p a 
ra m e te r  e stim a tio n  p ro c e d u re  b ased  on  th e  o u tp u t  c u m u la n ts  o f  o r 
d e rs  u p  to  four. R esu lts  o f  th e  s im u la tio n  e x p erim en ts  p re sen te d  in 
th e  p a p e r  d e m o n s tra te  th e  v a lid ity  a n d  u sefu lness o f  o u r  a p p ro ac h .

In d e x  Terms— B ilin ea r system s, b lin d  id en tifica tio n , h ig h -o rd e r 
s ta tis tics , n o n lin e a r  system  id en tificatio n .

I. INTRODUCTION

I DENTIFICATION of nonlinear systems is of primary 
importance in today’s applications since many signals of 

interest are generated by nonlinear sources or are processed by 
nonlinear systems. There are several situations in which the 
inherent nonlinearities and distortions cannot be tolerated at a 
given level of performance, and hence, nonlinear processing 
techniques need to be employed. Such important examples 
include nonlinear echo cancellation, predistortion of nonlinear 
channels, equalization of communication channels where 
distortion is produced due to operation of amplifiers near to 
saturation region, linearization of loudspeaker nonlinearities, 
enhancement of noisy images, edge extraction, distortions in 
magnetic recording systems, motion of moored ships in ocean 
waves, control of industrial processes, physiological models, 
nuclear fission, and others [1], [7], [12], [25], [29], [32].

Conventional identification is concerned with the determina
tion of an unknown system on the basis of input-output informa
tion in an uncertain environment. A given excitation drives the 
unknown system and the resulting response is measured. On the 
other hand, blind identification is concerned with the determi
nation of an unknown system on the basis of output information 
only. In this latter case, information about the input that gener
ates the measured output is limited. For instance, it may be a 
pr ior i  known or assumed that the input is white noise.

The need for tractable computational methods requires that 
the class of nonlinear models is properly restricted. Polynomial 
systems form a popular class of nonlinear systems [32]. Under
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relatively mild conditions, such systems are known to possess 
the universal approximation capability [4], [13]. This class of 
systems is defined by input-output relationships of the form

where u (n )  and y ( n )  represent the input and output signals, re
spectively, and ./'(■••) is a polynomial in N  +  M  +  1 variables. 
Polynomial systems can be broadly classified into recursive and 
nonrecursive systems. Nonrecursive polynomial systems are ob
tained from (1) if /  depends only on u { n  — i),  / =  0 .1 ........A’.
In this case, (1) takes the form of a truncated Volterra series 
expansion [36]:

y ( n )  =  h0 +  ^ 2  h i { k \ ) u ( n  -  k i )  

+  E  E  h 2(k 1, k2)u ( n  -  k i ) u ( n  -  k 2)

+  ■•■+ E  E  E  h p ( h , k 2, . . . , k P )

x u ( n  — k i ) u { n  — k2) ■ ■ ■ u ( n  — k p )  (2 )

where hm {k \ , . . . ,  km ) represents the mth-order Volterra kernel 
of the system, and maxjTVi. . . .  , N P } represents the memory of 
the system.

Conventional identification of a truncated Volterra series aims 
at estimating the Volterra kernels from either knowledge of the 
relevant statistics of the input and output signals or measurement 
of the input and output signal. The mean squared error (MSE) 
formulation and the least squares error (LSE) formulation en
able the computation of the Volterra kernels via a linear system 
of equations. Algorithms for the estimation of the parameters 
of Volterra models based on input-output data have been exten
sively studied in the past [2], [10], [13], [14], [15], [17], [27],
[31]-[33], [39], [40]. Most of these methods view the resulting 
linear regression as a multichannel setup. The Volterra param
eters are then obtained by linear multichannel parameter esti
mation algorithms in batch or in adaptive form. Cumulants and 
polyspectra are employed in [19]-[22] to estimate symmetric 
Volterra kernels. These works derive closed-form solutions for 
the estimates when the input is a stationary, Gaussian, zero mean 
stochastic process or a linear process. In a similar manner, the 
identification of Volterra systems of second and third order for 
general stochastic inputs is treated in [14], [20], [21], and [33]. 
In general, for blind identification, the output statistics depend 
nonlinearly on the kernels even when the system is linear. Prob
ably because of the complexity associated with such problems,
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little is known about the blind identification of general Volterra 
systems [9], [24], [35].

Nonrecursive polynomial systems such as the truncated 
Volterra series expansion encounters serious limitations in 
practical applications due to the large number of coefficients 
that need to be estimated. Recursive polynomial models, just 
like linear IIR filters, can accurately represent many nonlinear 
systems with greater efficiency than truncated Volterra series 
representation. A special class of recursive nonlinear models is 
the class of bilinear systems. The input-output relationship of a 
bilinear system is given by

t K “ ' t '

K b
+  b ( i )u (n  — i )

where a (i ) ,  b(i ) ,  and c ( i , j )  represent the system coefficients, 
and the set \ K „ , K b, K cy, K cu } corresponds to the order of the 
system. Several practical systems have been modeled by bilinear 
systems [2], [32]. The input-output bilinear representation of (3) 
is not equivalent to the original state-space bilinear model

yk = C x k + D u k + vk (4)

where v  and w  denote the measurement and process noise. If
(3) is transformed into state-space, it involves polynomial non
linearities between state variables. Conventional identification 
of bilinear state-space models has been studied in [5] and [6 ] 
using subspace identification methods. The more general class 
of state-affine systems, which provide finite dimensional re
alization of Volterra systems with separable kernels, has been 
treated in [8 ] using cumulants.

Conventional identification methods for input-output bi
linear systems fall into equation error and output error methods. 
Equation error algorithms are straightforward to develop, 
and the mean square estimation error surface has a unique 
minimum. However, this unique minimum is, in general, 
biased. Output error algorithms are capable of estimating 
the coefficients without bias. Such enhanced performance 
is, however, determined by error surfaces that are nonlinear 
functions of the coefficient values. Consequently, they may 
contain local minima, and the estimation algorithms may not 
necessarily converge to the global minimum of their error 
surfaces. The parameter estimation for both types of methods 
can be carried out by the LMS algorithm, the extended least 
squares algorithms, or their variants [11], [32]. A different 
approach using cross-cumulant information is pursued in [23] 
and [41]. This approach divides the identification problem into 
successive solutions of triangular linear systems of equations by 
considering appropriate slices of the cross-cumulant sequences 
for each subproblem. Blind identification of bilinear systems 
has attracted limited attention so far [30], [37]. In these works,

closed-form expressions that relate measurable statistics of 
the output signal to the unknown parameters are derived for 
a very restricted class of nonlinear system models and for 
Gaussian inputs. Consequently, the most common approach 
to estimating the parameters of the model is to resort to some 
form of numerical search algorithm that operates in an iterative 
manner [38].

In this paper, we consider the problem of blind identifica
tion of an input-output bilinear system where the matrix of co
efficients of mixed terms is lower triangular. A new algorithm 
for the identification of bilinear system parameters is presented. 
The algorithm employs five stages and utilizes output cumulants 
up to order 4. The derivations are based on the application of the 
Leonov-Shiryaev theorem [28] to the output cumulants.

The rest of the paper is organized as follows. Section II con
tains a formal statement of the blind identification problem. The 
structure of the solution is described in Section III. The algo
rithm is described in Section IV. The details of the derivation of 
the identification structure are provided in Appendices A-C. A 
simulation example that verifies the accuracy of the derivations 
and demonstrates the quality of the estimates is given in Sec
tion V. Finally, Section VI contains our concluding remarks.

II. Problem Statement

We consider bilinear systems of the form

Kb
+ b(i)u(n — i)

where y ( n )  is the output of the system, u(n )  the input, and v (n )  
the measurement noise. The input signal u(n )  cannot be ac
cessed for measurement. The first term in (5) is characterized 
by the parameter vector a  of size K a

Extending standard terminology, we will refer to this term as the 
l inear AR pa r t  of the bilinear model. Similarly, we will call the 
second term in (5), which is produced by the parameter vector 
b  of size K b +  1

the l inear MA p a r t  of the bilinear system. Finally, the third term 
is called mixed pa r t  and is accountable for the nonlinear be
havior of the system. The parameters of the mixed part are de
scribed by a lower triangular matrix C  with entries c(i ,  j )  and 
size K Cy x K cu.

The objective of this paper is to estimate the system param
eters a , b , and C using output information only. To make the 
analysis tractable, we make the following assumptions.

1) The measurement noise v ( n )  is a zero mean Gaussian 
white process and is independent of the input signai u ( n ) .
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Fig. 1. Block diagram representation of the proposed algorithm.

2) The input signal is a non-Gaussian white process with 
zero mean value. This means that the cumulants of the 
input exist and are given by

cum [u(n),  u { n - h ) , . . . ,  u { n - l k- i ) ]  = 7 k ^ ( h ,  • • •, h - 1) (8 )

where <$(Zi,. . . ,  h - i )  is the (k — 1 )-dimensional unit 
sample signal, and 7 & denotes the signal intensity of order 
k. For technical reasons that will become clear during the 
derivations, we assume that 74 ^  3 7 3 / 7 2 .

3) The parameter vectors a  and b , as well as the coefficient 
matrix C , are such that y (n )  is a stationary process. Suf
ficient conditions for the stationarity of bilinear processes 
are derived in [3], [18], and [26].

4) In order to find a unique solution and overcome the 
inherent scaling ambiguity of blind identification, 
we assume that 6(0) =  1. We further assume that 
c ( K cu, K cu) 7  ̂ 0 and that K cu >  K &. Finally, we also 
assume that the system orders K a , K cu, and K cy 
are known.

Based on the above assumptions, a closed-form solution is 
developed for the estimation of the parameters a, b, and C, 
using cumulants of y ( n )  up to order 4. The main components 
of the method are presented next.

III. Organization of the Blind Estimation Algorithm

A block diagram representation of the blind estimation algo
rithm is provided in Fig. 1. It is formed by the cascade of several 
components. The first component is the “HOS estimator.” It is 
fed with ?/(n), which is the measurable output of the system we 
seek to identify, and estimates cumulants up to order 4. Effi
cient procedures for estimating cumulants both in terms of sta
tistical and computational performance in the time as well as 
in the frequency domain have been extensively covered in the

literature and will not be repeated here [34]. The coefficients of 
the linear AR part can be directly estimated from the cumulants. 
This function is performed by the box termed “AR estimator” in 
Fig. 1. The calculation of the coefficients of the linear MA part, 
the mixed part, and the statistics of the input requires knowl
edge of the AR coefficients and combinations of the cumulants 
derived using the estimated AR coefficient values. The combi
nations are generated by two “auxiliary” filters denoted by D 
and S in Fig. 1.

The outputs of the two auxiliary filters and of the AR 
estimator are fed into the “Mixed-MA” estimator to evaluate 
remaining parameters. The mixed-MA estimator contains an 
initialization module and the main module. The initialization 
module computes the K cuth (last) column of C and b ( K cu), 
which is the last entry of the MA part, both scaled by the input 
variance. This module also calculates additional relationships 
between input cumulant intensities that are needed by the main 
module. The main module recursively computes the remaining 
columns of the mixed part together with the MA part. The 
functionality of every component is detailed in the next section.

IV. Algorithm Description

Our method utilizes suitably chosen slices of the output 
cumulants to estimate the system parameters. We will derive 
several relationships between these output cumulants and the 
unknown parameters using a list of properties presented in 
Appendix A. We first define the following input-output cross- 
cumulant sequences

^ i ( ^ i )  =cum [?/(n),w (n-m i)] (9)

# 2( ^ 1, ra2) =  cu m [2/(77), y ( n - m i ) ,  w ( n - m 2)] ( 10)
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<74(7711, m 2, 7773, 777,4) =  cum[?/(n), 7/(77 — 777,1), y ( n  — n7,2)

The following relationships between the output cumulants and 
the system parameters are derived in Appendix B.

K a
c ^ ( k )  =cum[y(n) ,y(n- l1)] = ' y ^ a ( i ) c ^ \ l i - i )

v=0 3=1

+  c ( h j ) 9 2 { i  — h : j  — h ) :  / l > 0 .  (13)
,7=1 *=3

4 3) ( i i , /2) =cum[y ( n ) , y (n -  ), y (n  -  i2)]

IU

+ Y b ® 9 2 < h - h , i - h )
?=o

j=i *=3
K cu Key

+  E  E  Ĉ 1-’ ‘j ) c<y'> ~ h )  

j=l

^ j=l *=3 "  ̂ ' ' ' '

/1 >  0, l2 >  0 .

0 , y ( n - k ), V(n- 12), y ( n - /3)]

=  ^ a ( i ) c ( 4) (/1 -7 , l2 - i , h - i )

K b

+  — — i ~ k )
«=0

+  E  E  c(*’^ ) 4 2)( l 2 - i ) 9 2 ( k ~ k , j ~ h ) 
j=l *=j

+  E E c(i ' i ) cf ( | i _ ®’ !3 - ^ i ( i - i2)
j=i

Z i > 0 , /2 > 0,  Z3 > 0 .  (15)

The above equations are considerably simplified if the lags are 
properly restricted. To this end the following proposition is 
useful. The proof is given in Appendix B.

Proposi t ion 1: The following relations hold:

92 {

l,7722,r

i.niQ.niQ.r

)=(), 777,1 < 0  (16)

) =0, mi >  rrii2, m 2 < 0  (17)
) =0, 7771 , m 2 >  ms

rn3 < 0  and (18)

) = 0 , 777,1 > 77?4, 777,2 >  *774, ?™3 >  ™4
77)4 < 0  (19)

Next, we describe in detail each component of Fig. 1.

A. AR Est imator

The AR parameters a( i )  are determined with the aid of the 
following proposition.

Proposi t ion 2: Let L i , L 2,L-^ >  K cu. Then

IQ

i=l
IQ

(14) r (3)

4 4)(

i=i ' 

^  ’’ :

(2 0 ) 

and (2 1 ) 

(2 2 )
i=i

The proof is a direct application of Proposition 1 and (13)-(15). 
Proposition 2 states that the higher order output cumulant se
quences behave in a manner that is identical to the covariance 
function of an autoregressive signal for sufficiently large values 
of the lag I. This property enables the computation of the a( i )  
parameters via one of the above relations and a linear system 
Toeplitz solver such as a variant of the Levinson algorithm [13]. 
The simplest implementation for the AR parameter estimator re
lies on second-order statistics and (20). Collecting R  successive 
output autocovariance lags in the range K cu <  <  K cu +  R,  
we obtain an overdetermined system of linear equations in the 
unknown parameters.

/  (2) C, + i )\
C,

v 4 2)(



488 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51,NO. 2, FEBRUARY 2003

C

„(2)/ -'V \ 
„,(2) /

0 /

(2), t +  R - 2) . . .  4 2)(

+  2—-ft'a )

, +  R - K a ) )  

(23)

K a

Likewise we define

D 3( h , l 2) = - y a { i ) c f \ h - i , l 2- i )

Kcu
S 3( m , K cu) =  a ( l - m ) D - i ( l , K cu)

/  cf2)V V 
(2)/ 
y \

,(2)(-y v
,(2)( -y \

,(2)(-a v 
„(2) /

+  1 -  K Cy)  ^  
+  2 — K Cy)

c u ~\~ R  ~  K e  y ) /

(30)

from which we can easily solve for {a(l ) ,  a (2 ), • • • i 
general, we obtain more accurate estimation performance by 
choosing R, >  K a .

B. Mixed-MA Est imator

The estimation of the rest of the unknown parameters explic
itly utilizes the estimated values of the AR coefficients. Two 
sets of auxiliary variables are first calculated using the auxiliary 
filters marked D and S in Fig. 1. The first set of variables are 
defined as

Given measurements of the cumulant values in the above range, 
we can create an overdetermined set of linear equations in 
the unknown parameters 7 2 c ( K cu, K cu). • • •. 7 2 c ( K cy , K cu) 
by choosing R, >  K cy -  K cu +  1 equations. Recall that 
c ( i , j )  =  0 if i <  j ,  and thus, only the parameters explicitly 
involved in (30) are nonzero and need to be estimated. Solving 
for 7 2 c(-, K r„) is straightforward.

b) Est imat ion o f  7 3 / 7 2 -' The following relationship is es
tablished in Appendix C:

(24)

(25)

72

x a(3 )f i — i, L - i ) \ / D 3( K cu, (31)

where a(0) =  —1 for all three definitions. In a similar manner, 
we define three new sets of auxiliary variables as linear combi
nations of D 2, D 3 and T) \ as follows:

where L  is such that D 3( K CU, L )  /  0. The right-hand side of 
(31) involves quantities available from previous steps.

c) Calculat ion o f  7 2 &(-^c«), 7 4 /7 2  and  7 5 / 7 2 -' The rest 
of the calculations in the initialization module are performed 
in a similar way. The following equations are derived in 
Appendix C and can be used directly to estimate the three 
remaining quantities.

cu) — D 2 , Kcy - .  - ,  ,

(32)

(27)

(28)

(33)

and

75 1

K cv
L > K cu, m  = K cu, K cu- 1 . . .  (29)

We are now ready to estimate the remaining parameters. The 
mixed-MA estimator contains an initialization module and a 
main module. These modules are described separately next.

1) Initialization Module:  The initialization module esti-

a) Computat ion o f  ~f2 c { - , K cu): The following system of 
linear equations is derived in Appendix C:

Kcv

K cv

(34)

2) Main  Module:  The main module involves [ ( K cu) / ( 2)] 
recurrent steps, where [(.)] denotes the largest integer smaller 
than or equal to (.). During the m th step, we estimate the mth 
and ( K cu -  m )th columns of C, b (m )  and b ( K cu -  m ) .  The 
input variance 72 is also estimated in the main module. At the
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recursions, all the unknown parameters areend of [ K c. 
estimated.

Foreach m  =  1 , 2 , . . . ,  [(A', „ )/(2)], the computations in this 
module are organized into three stages. In what follows, we out
line the steps involved in each of the stages. All the derivations 
are given in Appendix C.

Stage 1: The first stage utilizes a linear system of equations to 
determine the following set of parameters during the mill step:

1) the m th column of C of length K cy -  m  +  1, denoted by
i) )T ;

2) the first m  entries of the ( K cu -  to) th column of C scaled 
by the input variance. We denote these parameters as

72ck cu_TO =  (7 2 c(Kcu- m ,  K cu — m ) , . . .  
t 1 : K cu to ) ) . (35)

3) a linear combination of the remaining terms of the K cu -  
to  column c '2k m with the last column of C ,  c Kru of 
length — K cu +  1 and given by

K Cy Key

x ^ 2  c(®> f i  ^ 2  j  ~ K c u + r f i

x | ( i  —K cu +  m  — n,  m  — n , s  +  m  — n) +  c ^ \ K cu—i)

j  — K cu +  rn) +  c ( j  - K cu+  rn, j  - K cu+  rn) —
72

X c ( n , j  — K cu +  — n. s +  m  — n) .  (39)

The matrix F  has dimensions R  x K cy — m  +  1. The (-s 1. .s2) 
element of F , with 1 <  < R  and I <  .s2 <  K cy -  rn +  1, 
is given by the expression

4) The scalar quantity

m  ̂ ) y 2 T'2 ( ’ ) (37)

The computation of the parameters in items 1-4 is performed 
by solving an overdetermined system of linear equations of the 
form

Key
+  72 y ^ c ( n , K cu)

Kcv

( F  G  P  Q )  | 72> - =  E (38)

where the vector of the unknown parameters contains 2 K cy -  
K cu +  3 elements, and the right-hand-side vector E  has length 
R  >  2K cy — K cu +  3. The s-th element of this vector is

K r,, '

+  ^ 2  a ( i  -  K cu +  rn ) y2 

x ^   ̂ K cu)cy  ̂(i ti, K cu s ri) 

:  ̂ KCV ; ; "
- 7 *  J 2

Key
x c (n J  ~  K cu +  rn)

+  73 ^ 2 c ( n , K cu)c (jf') ( n - K cu +  l - s 2, s 1 -  s 2 +  1)

^LCy * . . . ,

Key
+  V is  "^2 c(n,  K cu) c (y \ K cu +  Si -  n)

+  1 3 ^ 2  C(n -K c f i

’ K cy

+  2/72 "^2 c i n ^ c ^ c ^ i K c u - n . K c u  +  S i - n ) .

(40)

x a f  (to — n,  s  +  to  — n) — j 2
x ,

The matrix G  has size R  x rn, and its (« i , s2)th entry is

81,82 =  cl f \ m  +  1 — "S2 j — S2 +  TO +  1). (41)
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The matrix P  has T> x K cy -  K,  „ +  1 entries given by

P s i , s 2 =  ~  s '2- S1 _  s 2 +  ! ) •  (4 2 )

Finally, the vector Q has R  entries given by

I<r K c.

K c

<ls

r{rn)  =  b(rn) —  +  7 2 c(m, m ).
72

74 I \ . 73_ I s— c(m ,m )H -----y  > c [n , rn )
^2 ^7 2

73b ( j  -  K cu +  m )  H----- c ( j  -  K cu +  m ,  j  -  K cu +  m )
. 72

x c ( n , j  — K cu +  m ) c ^ p ( i  — K cu +  m  — n , m  — n)

K c

! =  72 Y  c(*! K cu)c(y \ K cu +  .Si -  i) .  (43)

- 7 3  X ]  c^ ! K cu) Y  c(n,  m ) 4 2) (i -  K cu +  m  -  n)

K K cy

+  Y  a (* -  K cu +  rn)7 2  ^  c(n,  K cu)c^'1 (i  -  n)

Stage 2:  The second stage determines b(rri) and 7 2 . Recall 
from (37) that

(44)

Suppose rri =  rri* is the first integer for which c(m *, rri*) ^  0. 
Then, for every m  <  m* ,  (44) gives b{m)  =  r (771)7 2 / 7 3 . Thus, 
all b{m)  for 777 <  m*  are determined. Next, suppose m  =  rri*. 
It is shown in Appendix C that b{rn) and 72 also satisfy a linear 
equation of the form

Kcu (  K c

S:s(Kcu -  rri, K cu) -  72 ^  b(J) +  y Y c 1̂' ^

cy
X +  m,) c ^ ( m  — n )  — 72

x | 1 : /\ : • // £  - i . K ,

+  72  3 7 3c ( K cu, K cu)c ( m ,  rn) +  c ( m , 777)72

(45)

We note that all quantities in the above equation except b(rri) 
and 72 are either measurable statistics of the output signal or 
parameters that have been estimated in previous steps. Conse
quently, we can solve the system of two linear equations (44) 
and (45) to estimate b (m )  and 7 2 . The determinant of the ma
trix associated with the two equations is

c ( r n , m ) c ( K cu, K cu) ^ 7 4  -  —  J  . (46)

Since c ( m , m )  /  0 for m  =  m * , the assumptions stated in Sec
tion II ensure that the determinant does not vanish. Therefore, 
b(rn*) and 72 are uniquely determined. The remaining parame
ters 6 ( 7 7 7 ) for m  > m*  are readily computed from (44).

Stage 3: This stage completes the estimation of the ( K cu — 
to)th column of C . It also estimates b ( K cu -  m ) . Recall that we 
estimated the product of 72  and the first m  entries of the ( K cn — 
rri) th column of C  in step 2 of Stage 1. Since we computed 72 
in Stage 2 of the recursion, it is now straightforward to estimate 
the first rn elements of the ( K cu -  m )th column of C . Similarly, 
we note that we estimated

d m =  72c|-cu_ m +  b(r (47)

in step 3 of Stage 1. Since all variables except in have 
been estimated at this time, we can solve for the entries of the 
( K cu — m)th column that were not computed earlier from the 
above equation. The only other parameter that is estimated in 
the mill recursion is b ( K cu -  rn). This parameter is estimated 
from the auxiliary sequence S 2 and the expression

(-  m ) =  S 2(K cu -  m )  -  y y 2 ^  c(i ,  K cu -  m.)

K c
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X c ( j , j ) — K cu +  m )  +  (74  +  7 !)

x c ( j  -  K cu +  m , j  — K cu +  m )  +  2/73

Key
x y  c ( n , j - K c u + m )

Key
x c(n , j  -  JsTcu +  to)

- 7 2  5 3  5 3

Key
x 5 3  c ( n , j  -  K c u +r r i )

X 4 2 )(* -  i f cu +  to -  n ) .

C =

/  0.1 0 0 \
0 -0 .0 5  0
0 0 0.3

\ - 0 . 1  0.05 0 . 1 /

TABLE I
True and Estimated Parameters for a PRBS Input Sequence of 

16383 Samples (100 Monte Carlo Runs)

Parameters True Value Mean Variance

o(l) -0.1 -0.0976 4.58 1(T7

o(2) 0.02 0.0225 4.41 10“7

6(1) -0.4 -0.3801 6.57 10“4

c(l , l ) 0.1 0.0999 1.67 10-4

c( 2,1) 0 -0.0032 2.14 10“5

c(3,l) 0 -0.0015 8.88 10"7

c(4,l) -0.1 -0.1063 4.22 10“5

c( 2,2) -0.05 -0.0267 6.92 10“5

c( 3,2) 0 0.0121 4.61 10“5

c(4,2) 0.05 0.0594 3.97 10“5

c(3,3) 0.3 0.2741 4.08 10“4

c(4,3) 0.1 0.0911 4.47 10“5

72 3.24 3.4946 4.78 10“2

(48)

This completes the set of calculations necessary to perform the 
blind estimation of the bilinear system parameters.

V. Simulation Results

In this section, we present the results of a simulation experi
ment illustrating the performance of the algorithm. The method 
is applied to a bilinear system of the form

2 1 
y ( n ) =  a ( i ) y ( n  — i) +  b ( i )u (n  — i )

3 4

where K a =  2, =  1, K cu =  3, and K cy =  4, with a  =  
[-0 .1  0.02], b  =  [1 -  0.4], and

The input sequence u(n )  is a pseudorandom binary sequence 
(PRBS) generated by a linear feedback shift register. The char
acteristic polynomial of the register is a primitive polynomial. 
To reduce the realization dependency, the parameter estimates 
were averaged over 100 Monte Carlo runs. For each experiment, 
a new PRBS input is generated of length 214 — 1. The mean and 
the variance of the estimated parameters against the true ones 
are shown in Table I.

VI. Concluding Remarks

This paper dealt with the blind identification of bilinear 
systems with measurements corrupted by Gaussian noise. The 
excitation is non-Gaussian white noise. The parameters are 
determined via a sequence of linear systems involving cumulant 
slices of orders less than four. Simulations validating the 
proposed method were supplied. One issue that should be 
pointed out with regard to this work is the need for good 
experiment design conditions. This, in our case, translates to 
inputs with good white characteristics in higher order cumulants. 
Recent work in this direction utilizing dual BCH sequences, 
Gold sequences, and sequences generated by modulo 2 addition 
of maximal length sequences of relatively prime periods is 
reported in [16].

Appendix A 
Basic Properties of Input Output Cumulants

In this appendix, some basic properties of input-output cu
mulants are derived. They are heavily used in the derivation of 
the blind estimation algorithm.

Propert y 1: Let z i ( n — 1), Z2(n — 1 ) , . . . ,  Zk(n— 1) be func
tions of u{ n  — i)  and y ( n  — i) for i >  1. Recall that u{n)  and 
y ( n )  are the input and output signals, respectively, of the bilinear 
system and that u(n )  is a higher order white sequence with zero 
mean value. Then

cum[u(n),zi(n -  l ) ,Z 2 (n -  1 ) , . . . , z k {r =  0. (49)

Proof:  The conclusion follows immediately from the fact 
that u(n )  is white.



492 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

Property  2:  Let z i ( n  — 1). z 2(n — 1 ) . . . . ,  z k {n — 1) be as 
defined in Property 1. Then

cum [«(n), u ( n ) , . . . ,  u (n ) ,  z \ ( n  — 1) 
z 2(n -  I z k { n -  1)] =  0. (50)

Proof:  If a random variable X  is independent of the 
random variables Y'i. Y> ■■ ■ ■ ■ V’/,, then [34]

(51)

Since u(n) is independent of z \ ( n —l ) , . . . .  z k( n - 1), the result 
follows.

Propert y 3: For the same set of definitions of the signals as 
in Property 1

cum['(/(rt), u(n ) ,  z \ (n  — 1), z^ri — 1 ) , . . . ,  Zk{n — 1)] =  0. (52) 

Proof:  Let

. Ka ' ' ' ' Kb ' ' ' '

(53)

so that the bilinear expression becomes

y(n) =  u{n) +  z k+i (n  -  1) +  v(n). (54)

Substituting (54) for y(n)  in the cumulant expression gives

cum[u(n), u(n), z \ ( n — 1), .22(n — 1 ) , . . . ,  z k{ri — 1)] 

+cum[i;(?7,), u(n), z i (n  — 1), z2(n — 1 ) , . . . .  zk(ti — l)\. (55)

All terms on the right-hand side are zero due to Properties 1 
and 2 and independence assumptions of v(n)  and u(n). This 
completes the proof. Multilinearity of cumulants [34] leads to 
the following straightforward generalization of the above result:

Propert y 4:  Let y(n)  and v i  n ) be the output and input of the 
bilinear system in (5). Then

Proof:  Suppose first that N  =  P  =  1, and let y(n)  =  
u(n )  +  z k+ i ( n  -  1) +  v ( n ) ,  as in (54). Substituting for y (n )  
and employing Property 1, we get

cum[y(n) ,u(n)] =  cum [«(n), u{n)] +  c u m ^ + i (n — 1), u{n)\

Multilinearity of cumulants proves the generalization given as 
Property 4. Properties 1-4 in combination with the Leonov- 
Shiryaev theorem [28] form the main tools for the computation 
of the output statistics.

Appendix B 
Derivation of Output Cumulant expressions

We establish (13)-(15) and Proposition 1 in this Appendix. 
Using (5) and the multilinearity of cumulants, we obtain

4 2H k )  = c u m [ y ( n ) , y ( n  -  k ) ]
K a

=  ^  a(*)cum[y(n — i ) ,  y ( n  — /1)]

Kb
+  ^  &(*)cum[«(n -  i ) , y ( n  -  Zi)]

y  c ( i , j ) c u m [ y ( n  — i ) u ( n  — j ), y ( n  — Zi)] 

+  cum['u(ri), y ( n  — Zi)]. (59)

The last term on the right-hand-side of (59) is zero since v (n )  
and y ( n  -  / |)  are independent variables. Application of the 
Leonov-Shiryaev theorem [28] and the zero mean assumption 
of the input signal to the third term on the right-hand side of 
(59) give

cum[y(n — i ) u ( n  — j ) , y ( n  — Zi)] =  cum[t/(n — h )  

y { n  — i ) , u ( n  — j )] +  yc um [y (n  — h ) ,  u {n  — j)]. (60)

Substituting the above result into (59) and making use of the 
cross-cumulant definitions in Section IV result in (13). A similar 
approach is used to derive (14). Thus

c ^ \ h , l 2) = c u m [ y ( n ) , y ( n  -  h ) , y ( n  -  l2)

(57)

where y ( n )  appears N  times, and u(n )  appears P  times in the 
above expression.

=  a ( i ) cu m[ y (n  — *). y ( n  — l i ) , y ( n  — l2)\

K h
+  ^ 6 (i)cum [u(n — i ) , y ( n  — h ) , y ( n  — l2)]

+  E  E  c(i ,  j)cum [y(n — i)

x u ( n  -  j ) , y ( n  -  k ) ,  y ( n  -  l 2)}

+  cum[u ( n ) , y (n  -  h ) , y ( n  -  l2)]. (61)
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Applying the Leonov-Shiryaev theorem to the third term on the 
right-hand side gives

cum[r/(n — i ) u (n  — j ), y ( n  — 1i) , y ( n  — I2 )]

=cum [j/(n — 11), y ( n  — i ) , y ( n  — l2 ) , u ( n  — j )]
+  cum[y(w — i ) , y ( n  — l2)}cwa[y(n — l \ ) , u ( n  — j ) \

+  ycam [y(n  -  h ) , y ( n  -  l2) , u ( n  -  j)} .  (62)

Substituting the above result and the cross-cumulant definitions 
in (61), along with the use of the independence property of cu- 
mulants, we obtain (14). Equation (15) is derived in a similar 
manner.

Next, we turn to Proposition 1. First, we present a lemma 
describing the recursive structure of the cross-cumulant se
quences. The proof of the proposition is a direct consequence 
of the lemma.

Lemma 1: The following recursions hold.

Ka ' .

■ E  0

+2/72 E  E  c(*, 

m i > 0

, 0 : m i < 0

■ E  K ' ) s ( 0
Kcu

+74 E C(.j;:j)b(m i - j y > ( r

m  1 >  m,2 >  0 
0; m  1 >  0, m 2 =  0

s 0; 777,1 > m 2 <()

7-2- j )

Ka ' . ' ■ . ■

k cu
„(3)

+  E ^

( ) ( ' * ' 

x S ( m 3 - i )

K ru K
+73 E  E  c(m)42)(

(65)

and

(63)

+ r a  E  c ( i ,m 3) # ( m i - m 2)

m 2 >  m 3 , m 3 >  0 
0 ; m i > 0 , rn2 > 0.  m 3 =  0

„ 0 ; m i >  777,3 , m 2 > 777,3 , 777,3 <  0

E  a(*).94(mi— m2—*, m3—i, m,4—i)
I<c

+  E  c!('<,m4)[724 4)

X (m i —i, rri2 — i, m j - i )  
■*, 777.3 — i)

+73 c(3)̂ m 3 —* J
(66)

(64)

(2)^ *) ( )

m 2 >  Wi4 , m 3 >  777.4 , 
m4 >  0

0 ; m i > 0 , m 2 > 0 , m . 3 > 0 ,

0; m i >  iri4, m 2 > TO4 ,
, m 3 > m 4, m4 <  0 .

Proof: We start by proving (63). Property 1 ensures that 
.91(777-1) =  0 for 777,1 <  0. The initialization stage .91 (0) =  
72 follows directly from Property 4. Substituting the bilinear 
equation (5) into the definition of c/i gives

.91( ^ 1) =cum[r/(?7,), 7/(71 — m-i)]

=  5 3  a ( * ) C U m [?Xn  —  ®): W' ( n  —  m l )
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K b
+  &(*)cum[?x(r?, — *). u ( n  — m i)]

c(i, j ) c u m [y (n  — i ) u ( n  — j ) , u ( n  — m i)]

+  cum [ v (n ) ,u (n  — m i)] ; m i  > 0. (67)

Since v(n) and u ( n  -  rrii) are independent, the last term on 
the right-hand side of the above expression is zero. Using the 
Leonov-Shiryaev theorem on the third term of the right-hand 
side yields

cum[j/(n — i )u {n  — j ) , u ( n  — m i)] =  cum[j/(n — i)

(68)

Among the terms of the form cum[j/(n—*), u { n —j ), u ( n - m !)], 
with 1 < j  < K cu and j  < i < K cy, only the term cum [//( ;/ -  
m i) , u (n -m ,i) ,  u ( n  — m i )] is nonzero due to Property 1. When
i =  j  =  rrii, Property 4 implies that cum[(/(ri — m i ) , u ( n  — 
m i ) , u ( n  -  m i)] =  73 . Applying these results along with the 
fact that 11( 71) is white leads to (63).

Next, we prove (64). Properties 1 and 3 ensure that 
.92( ^ 1, m 2) =  0 for m,i >  m 2 <  0. The initialization 
.92(0 , 0 ) =  73 follows directly from Property 4. Substituting 
the bilinear equation (5) into the definition of g2 gives

9 2( I = c u m [ y (n ) ,y (n  — r n i ) , u ( n  — 'i

Kb
73 Y j ~  i)S (m 2 -  i)

k cu k c

c.(i, j )cvm[y(n — i), u ( n —j ) , y ( n  — m i ) ,  u (n  — m 2)]

K cu K cy

+ E E c('«')

x cum[y(n — i ) , y (n  — mi)]cum[w(n — j ) , u ( n  — m 2)]

+ z i E c(*̂ ')
x cum[y(n — i), u(n — rn2)]cum[u(n — j ) ,  y(n — mi)]

+  V E E  c( i , j )cum[u(n—j) ,  y (n — m  1), u(n — m 2)]. (71)

Arguing as before, we find that cum[t/(n -  i ) ,u(n  -  j ) , y ( n  -  
m i ) , u ( n  — m 2)] =  0 for j  ^  m 2 and any i. Moreover, for 
j  =  m 2, the only nonzero term occurs when i =  j  =  m i  =  m 2. 
Hence, the first term becomes

I<CU • (72)

In a similar manner, we can show that the second term is

72 (73)

a(i)cvm [y (n  — i ) , y ( n  — r r i i ) .u (n  — rri2 )]
=̂1

Kb
+  6(i)cum[u(n —*), y (n  —m i), u ( n  — m 2)]

+  'Y j c(i,j)cu m [y(n - i ) u ( n - j ) ,
3=1

y(n  — m i) . u (n  — m,2)]

m i > m 2 > 0. (69)

The last term on the right-hand side of the above equation is 
zero. Let us focus now on the second term in the right-hand side 
of the same equation. For any m 2 >  0, m i > m 2 and i < m 2, 
cum[«(n -  -i), y ( n  -  m i ) , u ( n  -  m 2)\ =  0 because of Property
2. If i >  m 2, the above cumulant is again zero due to Property
1. Hence, the second term becomes

(70)

and is nonzero only when 0 < m 2 < Kb and m i =  m 2 =
i. Using the Leonov-Shiryaev theorem, the third term can be 
expanded as

and that the third term is

Recall that for the calculations of interest here, i >  j ,  and m 1 >  
m 2 . Since .91 ( m i )  =  0 for m,  1 <  0, the only nonzero term 
results when i =  j  =  rn t =  m 2. Hence, the previous term 
becomes

72c(m 2,m 2)£(m i -  m 2). (75)

Reasoning as before, the last term of (71) becomes

y i ' i  Y  c (h j)S (r r i i  -  j ) S ( m 2 -  j ) .  (76)

Substituting the above results in (69) and making use of the 
cross-cumulant definitions, we obtain (64). Similar arguments 
are employed to establish (65) and (66).

APPENDIX C 
MIXED-MA ESTIMATOR

Initialization Module
We begin the derivations by considering the relationship for 

c f \ h M )  for h  =  K cu and l2 =  L  >  K cu. Using the simpli
fications possible through Lemma 1, we get

r‘(3) I

K cv
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We observe from the definition of T)-> (/ | . U) in (25) that

(78)

 ̂ Kc y
+  272 5 ]  c ( i , K cu) c ^ ( K c u - i ) .  (84)

Substituting this result in (77) gives

K cv

Finally, (34) follows from (15) with h  =  l2 =  h  =  K cu. 
Then

Successive evaluation of (78) for R  >  K cy -  K cu +  1 values 
of L leads to (30).

To derive (31), we evaluate (15) for li =  K cu, l> =  K cu, and 
h  =  L >  K cu. Applying Lemma 1 to the various terms in (15) 
for these choices of the parameters, we get

I<a

Kcy . ■ . . 

+373 j r  c ( i , K cu) c ^ ( K cu- i ) .  (85)

K c

+  7.3 5 3  c ( i , K cu) c £ \ L  -  *). (80)

Substituting the definitions for D i ( K cu, K cu, L )  from (26) and 
the expression for D 3( K CU, L)  from (78) in (80) results in

(81)

This completes the derivation of the initialization module. 
Main Module
We first substitute (24) in (13) and apply Lemma 1 to get

Kcv, (  Kcy

£>2(o  =  5 > c ?  -  o  U ( j ) +  / / 5 3 r,;'--/:

We then multiply both sides of (86) by a,(I -  to) and add the 
result over I in the range m  < Z < K cu. This operation gives

The expression for 73/ 7 2 in (31) follows from this result.
Next, we consider (13) for l\ =  K cu. Again, using Lemma

1, we get

. ■ . Ka ' . . ’ . ,

Kcu K cu

=  -  5 3  -  m ) 5 3 g id  ~ \ b( j ) + v  5 3  ■?))

0 < m  <  K cu. (87)

Substituting for D> ( K, „ ) from (24) in the above equation and 
rearranging the terms gives

If we change the order of summations in the first term of the 
right-hand side, we have

Kr Kcu A „ Kcv

* ^  (83)
which is identical to (32).

In a similar manner, (33) follows from (14) for the case when 
h  = h  = K cu. Then

l=r

Kcu I<CV J

Key

j —m  \  i —j  /  V  l — m  /

Kcu /  Key \  /  j—m \

= 5 3  w + y - £ c(M )  _ 5 3 a (n ) s i ( j - m ~ n )
n=0

(88)
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Substituting (63) for // i on the right-hand side of the above equa
tion transforms this term to

i= j  "

: ^ 2  c ( l , j  — rn)

(89)

Likewise, by changing the order of summations in the second 
term of the right-hand side of (87), we find that

b=m j=l v=j

j = m  ^  fc=m ' ' ^

^ 2  X! c(®> f i  a ( ' f i v 2(®_m_ r t> J _ m _ n ) j  •

(90)

Applying (64) to the above equation, its right-hand side 
becomes

' ' ' Kcv '

+ y i3  ^ 2  c (l ’j - rn)
l—j  — m

+72 Y 2  ci< ^ f i  Y l  c { l , j

(91)

If we substitute (89) and (91) into (87), we get

K c

! J2 C(1̂ - '1
h=j—m

K c

i — rn)

h=j—m

K CU K cy K cy

+ 1 2 ^ 2 ^ 2  c { i , f i
j=m  r= j+ 1 k=j^m

Using a similar approach, we next derive expressions for 
S 3(rn, K cu) and S ^rr i ,  K cu, L ) .  We only outline the derivation 
of S 3( m , K cu) below. Application of Lemma 1 to (14) for 
l2 =  K cu gives

K a
43) (l .Kcu)=J2 a(*)43) (I -  i, Kcu- i)

Kh ' , '

iz ' (} (

/ 1 i=j
(93)

Substituting for D ll.  K cu) from (25) into the above equation 
results in

A'c„ ^   ̂ /' .

(94)

Multiplying both sides of (94) with a(l -  rn) and adding the 
results over I in the range rn < I < K, „ gives

S3( m , K cu) =
K

b=tn
Kcu K cu K c

0 <  rn <  K cu. (92)

h=m i—j

K cu K cu K ^ y . .  ̂ . .

h=m j=l i=j
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I<c K c

0 < m  < K cu. (95)

Kc

Applying (64) to the above expression results in

Kc„ /  Kcv \ Kc

l=Kc

K cv
+2/74 E Z  c(l-,Kcu-m)

l=Kc

X

Substitution of (97)-(99) into (95) gives

S3(m, ,Kcu) =

As was done before, we change the order of the summations in 
the first term of the right-hand side for (95), and we obtain

K cu I<cy

i= i  ,  

f  j —m

-  E Z  a (n )9 2 ( K cu -  m - n , j - m - n )  .  (96)

72 Z  y ' i  ' l - i  J Y l c l̂^ ~ m ĉ<y ) K̂cu~ m ~ 1̂

, Kcy , 
i=Kcu

7 2 2 ^  I t A D + y 2 _ !',;'••/•'
j=m y fcg

E Z  ' ' ' ' ' ( } ' '

Kc.

'  i=Kcu '

+1/73 E Z  c(l’ K cu-rn)
Kc

(97)

In a similar manner, we can show that the second term of the 
right-hand side of (95) is equal to

72 E E  E  c ( i , j ) c ( l , j - m ) c (jf'>( i - m - L K cu- m - l )
j= m  i=j h=j—m  

j=m  m

+73 E ]  E  < i i , K cu) c { L K cu- m ) c f ]{ i - ' m - l )  
i=Kcu l=Kcu—rn

l=Kcu—m  j= m  i=j

Kcu K c y K c y
+ 72EZEZ EZ c ( i - j ) c ( ^ j ~ m ) c yi '>( i ~ r n ~ ^ K c u - r n - l )  

j=m  i=j l=j—rn

' Kcu Key '

j=m  fc=/—m

+ 7 3  EZ EZ c(i;Kcu)c(l,Kcu- m ) c ^ \ i - m - l )
i^=Kcu h=Kcu—m

+2/74

A'

b=Kcu—m
I< Kcy

fc=ra i=K
(100)

(98)

Similarly, the third term of the right-hand-side of (95) becomes

j=m j=j

(99)

A similar analysis leads to the following expression for

AVu /

72 EZ &(i)+^EZc(*’̂
7'=m+l \  

h=j—m
Key

‘ ^ i=Kcu ^
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K c

K cu K  c y K  c y

+72 J 2 J 2 Y 1

c ^ ( i - m , - l ,  K cu — m — l, L — m — l)
 ̂ K cu K  cy  ̂  ̂  ̂ '

j= j7?+l k=j—m

+73 E  E  c(i, K cu)c(l, K cu — m)
i=Kcu h=Kcu—m

cS^(i — rn — l, L — m — l)

l=Kcu—rn
K cu K cy K cy

+ 72 E  Y 1  Y 1  c{ i , j ) c{ l , j - rn)
j= ra - |- l i=j fc=j—m

+ - « £ £ E
j=m. i=j I—j —m

Kcu

0+  E  c^ - K c

Key '
-H773 E  c( h K cu- m )

i ~ m )

b=Kcu—m

n i=j

K  K cy

- y a { l - m ) l 2  E  c ( i , K cu) c f \ l - i , L - i )
k=m, i=Kcu

0 < m < K cu. (101)

The substitution rn -—  K, „ —m  in (101), (100), and (92) leads 
to (38), (45), and (48).
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