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The Problem and Treatment of DC Offsets in FDTD
Simulations
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and Carl H. Durney, Fellow, IEEE

Abstract—This paper discusses the causes of and some solutions
to the commonly observed problem of dc field offsets in fi-
nite-difference time-domain (FDTD) simulations. DC electric and
magnetic field offsets are shown to be valid calculated responses
of the modeled systems, resulting from interaction between the
turn-on characteristics of the source and the properties of the
models. The dc offsets may be avoided in the time domain by
tailoring the source waveforms or in the frequency domain by
post-processing the FDTD output.

Index Terms—Finite-difference time-domain (FDTD) methods.

I. INTRODUCTION

I
N recent years, the finite-difference time-domain (FDTD)

method has become a popular tool for solving problems in-

volvingMaxwell’s equations [1]. Although the method is versa-

tile and conceptually straightforward, an FDTD simulationmust

be carefully designed in order to yield meaningful results. In

particular, if a highly conducting model has a closed current

path, physically correct dc currents that do not decay appre-

ciably with time may be induced by the time-varying source

fields. These nonoscillating currents produce a constant mag-

netic field in the near field of the object, which may lead to in-

terpretation errors in both the time and frequency domains [2].

II. EXAMPLE OF DC OFFSET FOR AN INFINITE CIRCULAR

METAL CYLINDER

A dc magnetic field offset can be observed in the results of

an FDTD analysis of a perfectly conducting infinite circular

cylinder illuminated by a plane wave. The cylinder is 7.5 cm

(20 Yee cells) in diameter, modeled with a square cell size of

0.375 cm ( at 4 GHz) in a two-dimensional (2-D) model

space of 56 56 cells. Each time step is 6.25 ps. Fig. 1 shows

time histories of the calculated fields at a point four cells in front

of the cylinder (for a frontally incident plane wave source). For

case (a), the time dependence of the electric field of the source

is a raised cosine pulse with a 2 V/m peak and a 4-GHz band-

width (half-width half-maximum); for case (b) the source is an

unramped 4-GHz continuous wave (CW), with 1 V/m peak.
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(a)
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Fig. 1. The fields calculated by FDTD at a point one-fifth of a wavelength in
front of a perfectly conducting circular cylinder illuminated from the front by
a TM-polarized plane wave with time history of (a) raised cosine pulse and (b)
single frequency (CW) unramped sine wave. The coordinate system is oriented
such that the x-axis is in a direction tangential to the cylinder’s surface at the
front, and the y-axis is normal to the front surface. The z-axis is parallel to the
axis of the cylinder.
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Fig. 2. Circuit model of an ideal voltage source across an inductor used to
explain dc-offset phenomena in lossless FDTD simulations.

A dc offset in the tangential magnetic field is observed

for the cylinder illuminated by a TM-polarized plane wave [in

which the incident electric field is oriented in the axial direc-

tion]. This offset occurs with both pulsed and CWTM-polarized

excitation, as shown in Fig. 1(a) and (b). The offset is not ob-

served in any field component for TE-polarized excitation nor

for TM polarized waves incident on a nonconducting cylinder.

The reason is that the TM-polarized plane wave induces a per-

manent axial dc current in the perfectly conducting cylinder, but

such an axial current will not be set up with a TE-polarized

source, and will not survive in an imperfectly conducting ob-

ject.

III. CIRCUIT THEORY ANALOG TO DC OFFSETS

To illustrate how dc offsets may be induced, consider a simple

circuit composed of an ideal voltage source exciting an inductive

load as shown in Fig. 2. The current through the inductor is given

by

(1)

For sine excitation , (1) gives

(2)

Assuming the initial condition , (2) shows that a dc

offset is present in the circuit response. Further analysis shows

that the dc offset is not required when loss is present in the

system. It is reasonable to expect that similar phenomena may

occur in FDTD simulations. The relationship between the cir-

cuit in Fig. 2 and the TM-illuminated cylinder is demonstrated

in the next section.

IV. AVOIDING DC OFFSETS IN THE TIME DOMAIN

For pulsed excitations, the dc offset may be avoided by using

a bipolar pulse with equal positive and negative values. This

causes the dc offset that is established by the positive portion

of the pulse to be removed by the negative portion of the pulse.

For CW computations, we have also found (in all our test

cases) that the offset may be eliminated by multiplying the sinu-

soidal excitation by an appropriate ramp function. An example

is , where is either a linear ramp or a

raised cosine (RC) ramp given by

(3)

where is the period of the sine function, and is the number of

sine wave cycles during the ramp duration . This excitation

has the desirable properties that both the function and its first

derivative start at zero and are continuous for all values of . The

choice of ramp function can be evaluated by the simple circuit

analogy of an ideal voltage source across an inductor. For the

linear ramp this gives

(4a)

and for the RC ramp

(4b)

The first terms in (4a) and (4b) give the value of the dc current

offset for each excitation. Note that although the excitation func-

tion and its first derivative start at zero and are continuous, the dc

offset is zero only for particular values of . Fig. 3 shows these

dc values for the linear and RC ramps, normalized to the magni-

tude of the offset produced by a step function as a function

of the ramp duration parameter . As expected, the magnitude

of the offset decreases as the ramps get longer. The RC ramp

produces less offset than the linear ramp for values of greater

than about 1.5. Also, the dc offset is identically zero for certain

values of .

To test the similarity of this circuit model to the results for

the TM-illuminated perfectly conducting cylinder, the FDTD

simulations for the cylinder were repeated using the linear- and

RC-ramped sine excitations. The normalized magnitude of the

resulting dc offset in the circumferential magnetic field compo-

nent are superimposed as dots in Fig. 3. There is excellent agree-

ment (less than 5% difference) between the FDTD data and the

results for the inductive circuit of Fig. 2; the change in sign of

the offset is also predicted correctly. The results demonstrate a

strong similarity between these two models, and show clearly

how the dc offset may be controlled by the choice of excita-

tion ramp function in FDTD simulations. A dc offset will not,

of course, persist when a resistive loss is added to either model.

V. REMOVAL OF DC OFFSETS IN THE FREQUENCY DOMAIN

For CW excitation, the dc offset appears in the zero-fre-

quency term only, so it is easily separated from the higher

frequency terms in the frequency domain. For pulsed simula-

tions, the FDTD simulation is stopped when the output pulse

converges (after time steps), and this is often before

the discrete Fourier transform (DFT) summation has been

completed ( time steps). Without a dc offset this does not

cause any problems; the fields are assumed to be zero after

the simulation is stopped, and the remaining terms in the DFT

summation are zero. However, when the pulse has a dc offset

[as shown in Fig. 1(a)], stopping the summation before it is
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Fig. 3. Variation of normalized magnitude of the dc offset of magnetic field caused by linear and raised-cosine ramp envelopes on a sin(!t) source. Values are
plotted as functions of the ramp duration parameter a. Solid and dashed lines are for the inductive circuit model of Fig. 2. Discrete points are FDTD results for the
TM-illuminated perfectly conducting cylinder.

completed gives erroneous results. An efficient way to handle

complete the summation is to divide the Fourier sum into two

summations

(5)

The first term in (5) is the summation over the time-varying por-

tion of the pulse, , up to the time the FDTD simulation

is completed, . The second term is the summation over

the dc portion of the pulse up to time the DFT summation

has been completed .

The second term can be written as a finite geometric series

and summed to get

(6)

The first summation is updated along with the FDTD simula-

tion. The second term, which represents the summation over the

dc portion of the pulse, is now a single term and is subtracted

after the simulation is completed.

VI. CONCLUSION

This paper has demonstrated the occurrence of dc offsets in

FDTD simulations. These offsets are shown to be due to the

physical response of the modeled system to certain sources.

These offsets may be avoided in the time domain by tailoring

the incident waveform, for example, by using a bipolar pulse for

broad-band simulations or a ramped sine wave for CW simula-

tions. DC offsets may also be filtered from frequency-domain

data by post processing the FDTD output.
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