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Resonant above-threshold ionization at quantized laser intensities
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We argue that quantum electrodynamics dictates resonance phenomena in multiphoton processes as the laser
intensity varies. A perturbation theory is developed in which the coupling between an electron and the second
quantized laser mode is treated nonperturbatively. As an example, we predict that the above-threshold ioniza-
tion rate can exhibit resonance at intensities with integer ponderomotive parameter. Such quantum effects may

be exploited to calibrate laser intensities.

PACS number(s): 32.80.Wr

INTRODUCTION

In the literature on multiphoton processes of charged par-
ticles, the strong laser field is usually treated as a nondy-
namic, classical background [1,2]. However, according to
quantum electrodynamics (QED), the fundamental theory for
electromagnetic interactions, the radiation field is composed
of dynamical oscillator modes, specified by their wave vector
and frequency. All the modes have discrete levels in terms of
photons with definite energy and momentum. Being dynami-
cal, the photon number in the laser mode interacting with a
charged particle fluctuates due to (intensity-dependent)
stimulated interactions. Though the fluctuations are ex-
tremely tiny compared to the total photon number, at appro-
priate intensities the absolute magnitude of their energy can
be in resonance with the equally tiny level spacing of the
laser mode. When this happens, one expects to see resonance
phenomena in intensity dependence due to the quantum na-
ture of the radiation field.

As an example, let us examine the above-threshold ion-
ization (ATI) of neutral atoms, say hydrogen or xenon, in the
focus of a monochromatic, elliptically polarized single-mode
laser (with wave vector Kky). Even if the photon energy 7w
is merely a fraction of the ionization energy E, , at high laser
intensity a bound electron can absorb simultaneously a num-
ber of, say ten to twenty, photons to become ionized with
kinetic energy appreciably higher than the threshold value.
Before the photoelectron exits from the focus, it has very
strong stimulated interactions with the laser. Previously in
the Keldysh-Faisal-Reiss theory [3] for ATI, the states of the
ionized electron were described by the Volkov states in a
classical plane wave background [4]. However, according to
QED, before the ionized electron leaves the focus, the inter-
mediate states should be described by eigenstates of the com-
bined electron-laser-mode system, called quantum field
Volkov states (QFVS) [5,6].

In contrast to ordinary Volkov states, QFVS incorporates
the reaction of the laser mode to the electron, i.e., the fluc-
tuations in photon number due to stimulated emission and
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absorption. These fluctuations lead to an extra contribution to
the total energy and momentum lying on the light cone [5,6]
(also see below):

U

= U0, P,=u,k,. (1)

Here u,= 27e*l/m ehcw?J (with I laser intensity, m, electron
mass); we call it the ponderomotive parameter, since U » can
be identified with the ponderomotive energy for an electron
in the light field. We suggest to interpret U, and P, as aris-
ing from a fluctuating laser photon cloud that dresses the
electron, and to identify u, as the average number of laser
photons in the dressing cloud (a distinctive concept of QED).
Then it is natural to interpret P, as the ponderomotive mo-
mentum accompanying the ponderomotive energy [7]. An
exit process for the photoelectron to leave the laser field is
naturally included in the transition matrix derived by Guo,
Aberg, and Crasemann (GAC) [8] [see Eq. (13) in this paper]
from the standard formal theory of scattering [9]. An adia-
batic switching on and off of the interacting field is assumed
in the scattering theory. In the transition matrix element of
GAC, the Volkov states, in the same energy level of the
initial and the final states, act as intermediate states; while an
electron-photon plane wave acts as the final state. Upon ex-
iting from the laser field, the photoelectron has to undress the
dressing photon cloud, with both energy and momentum
conserved. GAC’s exit process obtained firm experimental
verification in standing-wave multiphoton ionization, which
was well-known as the half Kapitza-Dirac effect, performed
by Bucksbaum et al. [12,13]. But in the single-mode multi-
photon ionization case, GAC’s transition matrix element en-
countered a serious difficulty. With the single-mode assump-
tion, the conservation laws would forbid processes unless u »
is an interger, anticipating a resonance phenomenon [8].

To account for nonzero ATI rate at u,# integer, in this
paper we develop a theory for QED at high laser photon
density, by including nonlaser radiation modes and treat their
couplings to the electron as perturbation. With the help of
emission of a nonlaser photon, now it is easy to balance both
energy and momentum at noninteger u, . However, at inten-
sity with integer u,, , the energy U, of the intermediate dress-
ing photon cloud matches the level spacing of the laser
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mode. Thus we predict that the ATI ionization rate should
exhibit resonance peaks at quantized intensities with integer
u,=N:

P

ﬁmecwg )
[=NIy=N——"
N 0 N 27762 > ( )

with N=1 an integer. Note that /, is proportional to the cube
of the laser frequency w(. This and similar intensity depen-
dent, resonating quantum effects of the light field in other
multiphoton processes may be experimentally exploited to
calibrate laser intensities in approriate range.

PERTURBATION THEORY FOR QED

To properly deal with photon number fluctuations, we
need to second quantize the radiation field, but still treat the
electron quantum mechanically, ignoring pair production,
vacuum polarization, and other relativistic corrections for the
electron as well, if the laser intensity is not too high.

In the Schrodinger picture, the Hamiltonian of the
electron-radiation system is (with A=c=1)

H= : [—iV—eA(r) >+ > olN,, 3)
k

2m,

with N, = a,ta « 1 1/2. Here the photon field operator is given
by the time-independent vector potential in the radiation
gauge (V-A=0):

A(r)=§ Ak(r)E§ gi(€ae™ +He.), (4)

with k labeling the photon modes, including the wave vector
k and transverse polarizations described by e:

e=[€,cos(&/2) +ie, sin( £12)1€'92. (5)

Here g, = (2w, V,) 2 with w,= k|, and V., the normaliza-
tion volume of the radiation field. a; and az are photon an-
nihilation and creation operators.

Now let us separate the laser modes, say a single mode
labeled by k(, from other photon modes: A=Ak0+A’, and

try to first treat the electron-laser-mode interactions nonper-
turbatively, then add the coupling of the electron to nonlaser
modes as perturbation. Thus, we are led to split H=H,+V
+V', with
)2
H0=( 2;7) +woNg+ >, o'N’,
e K #kg

Ay, (1)
——©

2m

Vz—mieAkO(r)-(—iV)—ir

e

e A () A'(D)
V= A (i)

e

with the A’? term neglected.
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For an electron in the laser field, we choose Hy+ V as the
unperturbed Hamiltonian. The eigenstates of N’ are simply
the Fock states for the nonlaser mode. For the electron-laser-
mode subsystem, almost exact eigenstates has been obtained
before [5,6], which are labeled by a momentum p and an
integer n, denoted as \Ifgn. They are the nonrelativstic limit
of the exact solutions [5] to the Dirac equation coupled to the
quantized laser mode. They form a complete, orthogonal set
of states, called quantized field Volkov states (QFVS), which
are the QED analog of the classical Volkov states [4]. Their
nonrelativistic limit is verified [10] to satisfy the
Schrodinger-like equation. In practice, we need only to con-
sider their large photon-number limit, n— o, 8k,—0 and

\/};gko—d&, with the QFVS simplified to

W, =V, "2 X expli[ P+(z—j)ko] 1}
Jj=—n

X\jj(ﬂ’é’P’QSP)*eXp{_i‘quP}|n+j>’ (7)

where there is no dipole approximation involved. Here u,
=e?A?/m,w, is the ponderomotive parameter, |1) a laser-
mode Fock state and

1 2]e|A
7= upcos§,  Lp=

|P-e

k]

m,wq

(+m, if P{0).

P 3
= -1 —y —
¢p=tan ( P, tan 2

The J; is compounded from Bessel functions J,,, :

T le-ndp)= 2 Tu()d—jan(lp)e? ™% (8)

m=—

The energy and momentum (py=—iV+N K Ko) eigenvalues
of the QFVS are given by, respectively,

Eo(P,n)=P*2m,+ (n+1/2) g+ u,w,,

€)
Po(P.n) =P+ (n+1/2)kg+ 1, ky.

The QFVS is a superposition of Fock states in the laser
mode with different photon number; this implies that the
electron in the laser field is dressed by a coherent photon
cloud which has a nonzero component in each Fock state
specified by photon surplus (or deficit) j. By intepreting the
first two terms in Eq. (9) as contributions from the electron
and the background photons, each being on shell, it is natural
to identify the third term or the ponderomotive energy and
momentum given by Eq. (1), as arising from the dressing
photon cloud.

By using the QFVS as unperturbed states, we can develop
a perturbation theory for the electron-radiation system, in
which the electron-nonlaser-mode coupling V' is treated as
perturbation. Then the eigenstate for an electron in the laser
field is the perturbed QFVS, ¥y, , =|Pn,n')+|Pn,n’)’,
with
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(Pn,n'|V'|Pn,n")

P}’l,n’ '= ﬁ”?,ﬁ’ —_~— ~,
| ) 2 | >6'(Pn,n’)—£’(Pn,n’)

(10)

where |Pn,n'y=W$ |n'), with |n') a Fock state in a non-
laser mode; EPn,n')=E (P,n)+(n'+1/2)w’. Note that
there is no energy shift up to first order.

CALCULATION OF THE ATI RATE

Now we apply the above perturbative formalism to ATI.
We want to calculate the ionization rate and angular distri-
butions etc., and study their intensity dependence.

Let us start with the following initial state for the elec-
tron-radiation system: the electron in a bound state ®;, the
laser mode in the Fock state |n;), and the nonlaser modes in
the vacuum state (with n/=0 photons), denoted by
|®,,n;,0). In the final state of the ATI, denoted as
|Pf,n 1o jﬁ), the electron is in a free state with momentum Pf
outside the laser beam, the laser mode in the state |nf) and at
most one, say k', of the nonlaser modes in |n }Q: 1) (to first
order). All previous treatments did not include the possibility
of having a nonlaser photon in the final state, but in QED this
allows the photoelectron to emit a photon to balancing en-
ergy and momentum upon exiting from the laser field.

To calculate the transition amplitude at the u,# integer
case, we include spontaneous-emission modes in the scatter-
ing matrix element of GAC [8], where the interaction due to
spontaneous-emission modes is only up to the first order in
perturbation theory. As usual we ignore the effects of the ion
potentials on the ionized electron. With the intermediate
states on the energy shell of the system only, according to
the GAC’s theory, we obtain

Tfi: E <Pf’nf’n}|\1,Pn,n’>

’
p.n.n

X(Wpy e |[VH+V'[D;,1,0), (11)
where the summation of intermediate states is subject to
EPn,n")=E=—E,+(ni+3)ot 50,

=&=P;2m,+ (n;+112)wy+(n;+12)0’, "

with E, the binding energy in the initial state ®;, while both
n' and n f' are either O or 1, up to first order.

We note that the product structure of the terms in Eq. (11)
verifies that the ATI is indeed a two-step process [2]. (1) The
electron is first ionized into the laser field, so the intermedi-
ate state of the system is a QFVS given by Egs. (7) and (10)
(2) Then it exits out of the laser beam becoming a free elec-
tron. Previously no theoretical formalism has accounted for
the exiting except [8].

Inspection shows only the following terms are nonzero:

Pn,0)(Pn,0

TOZPE <Pf’nf’0 V|q)l',l/li,0>, (13)
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Ty=3 (Brnpd[Pr 1) (P 1|V |®;.n,0).
P.n

Ty= > (Prnpl|Pr,1)(Pr1| VD, 0,00,  (14)

P,n

T3:E <Pf,nf,1|Pn,0>'<Pn,O|V|(I)l ,f’li,0>.
P.n

The zeroth order term T, has been calculated years ago [8].
T, and T,, as well as T, contribute only at u,=integer,
while T5 contributes at arbitrary u, . We are interested in the
cases with noninteger u,, SO we focus on T;.

After a lengthy calculation, introducing j=n;—n, j’

=n;~n and g=n;—n;, we finally obtain

e ) j—u

Ty=—V; P®,(P;— gkytk')e'1%' > ——
m, jl Mp—]

X‘Z’({P]n n’(ﬁPf)*eiij qSPf‘jj(ng+k’ ’777¢’Pf+k’)

X el Pprwf [Pr+(j—g—u,kol-€*

it i b
XJq*jﬂ"(fk')@l(q AR
+eAe*-e’*Jq,jﬂ.,Jr1(gk,)ei(qu+j’+1)¢k,+i®/2

TeAe 6/*Jq7j+j,71(§k,)ei(q—j+j',1)¢kr7i®/2}-

(15)

A careful study shows that the kinetic energy difference
for the photoelectron before and after exiting out of the light
field is of the order of relativistic corrections. Therefore, we
neglect the kinetic energy difference under the nonrelativistic
conditions. Thus energy conservation implies a quasidiscrete
spectrum, the usual ATI peaks, for the free photoelectron:

o' ~[u,—(j—q)]o,,
(16)
Pi/2m,~jwy—E,—u,w,=>0.

The physical interpretation is clear: the electron is ionized by
absorbing j photons simultaneously and, upon exiting out of
the laser field, completely shakes off its ponderomotive en-
ergy (or the dressing photon cloud), by emitting j-g laser
photons and a nonlaser photon with the remaining pondero-
motive energy.

We express the energy delta function 8(&;— &) as

(ﬂ) P[Py (2m,w) (g €, )]

209 (g—e—n)'"? -7

where €,=Ep/w,, v=w'lwg=u,—j+q, and P=|P].
Then one obtains the total ATI rate by

vV,
W=f —| T2 78(E— &) d’Pd’K, 18
6(277)6| 3l ( )d Py, (18)
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FIG. 1. Total ATI photoelectron count, collected in the laser
polarization direction vs laser intensity for xenon in a single-mode,
linearly polarized laser at 1064 nm.

while the angular distribution for a given ATI peak is

292
e“w

d*w B
dZQPdeQk, (2m)"(2m)?
J

(= er—u)"”

X(j—u,)? > (uy—j+q)
q
X|®,(P—gko+k')|*| T,(Pr k)%, (19)

where J,(P; k") is defined as

1 i,
T,(PrK )= —T(Lp k.1, bp srer )€ oK

x>

i Up
X{=[Pi+(j—g—uyk]-€*

qu_j+j,(§k,)et(q—1+1 )i

1 "
.,‘7j’(§Pf’ 7, ¢Pf»)*eilj ¢Pf
—j . .

teANe*-€ T,y i1(Lxr)

Xei(q*j+j’+1)¢kr+i®/2
tele-€*J, ;i 1(Lkr)

xei(q7j+j’71)¢kr—i®/2}‘ (20)

RESONANT ATI RATE VERSUS INTENSITY

One sees from Eq. (15) that the amplitude 75 becomes
very large if u, is sufficiently close to an integer, because
then one of the terms in the sum can have a very small
denominator j'—u,,. Thus, we predict the emergence of
resonances in ATI rate or angualr distribution at quantized
intensities given by Eq. (2). As example, in Fig. 1 we show
the numerical result for the total photoelectron counts col-
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lected in the direction of polarization [i.e., Eq. (19)] summed
over j’s and integrated over the direction of k', for xenon in
a linearly polarized laser beam with wavelength 1064 nm. It
clearly demonstrates the resonances at intensties that are in-
tegral multiple of 7,=1.10X 10" Wem ™2,

Such intensities have been experimentally available for
more than a decade. Why did the resonances not show up in
previous data? We note that the widths of the resonances in
Fig. 1 are rather narrow, so they could have been smeared
out by the spatial and temporal intensity inhomogeneities in
the laser focus and particularly by the instability in intensity
from (laser) burst to burst. The test might be a great chal-
lenge to experimentalists.

How come these resonances have evaded the correspon-
dence principle argument, which is usually used to justify the
classical description of the laser field? This is because the
Plack constant in the real world is finite, the correspondence
principle argument is merely an approximation that can
break down in certain situations even with high photon den-
sity. We have found one such situation, i.e., at intensities
corresponding to integral ponderomotive parameter. Away
from these intensities, we expect to see a smooth background
grossly dictated by the classical field picture, as indeed
shown in our Fig. 1.

We have used the Fock states as the basis for the laser
mode. If one uses Glauber’s coherent states to describe the
initial and final states of the laser field, the ATI amplitude
can be easily derived by superposing our amplitudes. This
gives rise to a spread in background photon number n; and
ny. But the corresponding spread in u, is expected to be
very small. So our prediction of the ATI resonances is unaf-
fected.

Our ATI rate diverges at exactly integral u,. This prob-
lem is easy to remedy by including an imaginary part (a
finite width) in the QFVS energy £(Pn,0) in Eq. (10), which
arises from possible decay through spontaneous emission of
nonlaser photons via the coupling V'. A more thorough
treatment of ATI also requires including the atomic potential
and intermediate bound states, which we have ignored. Be-
cause of no good reason to believe these interaction effects
could completely wash out the resonances we have pre-
dicted, we leave their study to future research.

OTHER INTENSITY-DEPENDENT
QUANTUM EFFECTS

Our argument for the resonance effects in the electron-
laser system is very general, based only on the intensity de-
pendent stimulated interactions and the discrete photon struc-
ture of the laser mode. So we expect to see them in other
multiphoton processes, and our approach to QED at high
laser photon density is applicable as well.

One example is a slow electron transversing a single-
mode laser beam. Classically, the ponderomotive energy acts
as an effective repulsive potential, so at high intensities the
electron can hardly get into the laser beam. But according to
our argument, the stimulated electron-laser interactions will
give rise to a photon cloud dressing the electron, which can
be resonant with the laser mode. So we predict that when the
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laser intensity is close to the quantized values N/, there will
be resonance peaks for the penetration probability for slow
electrons transversing the laser beam. Our perturbation
theory is applicable to make quantitative predictions.

It is easy to generalize our approach to more than one
laser modes, since the corresponding QFVS have been ob-
tained before [11]. For example, one may consider electrons
scattered by a standing wave formed by two laser modes.
Previously, Bucksbaum er al. [12] has experimentally dis-
covered a dramatic peak splitting in the angular distribution
of the scattered electron. This has been theoretically ex-
plained in Ref. [13] using the QFVS states, which could not
deal with the angular region inside the splitting angle. Our
perturbation theory can be employed to deal with the angular

PHYSICAL REVIEW A 61 043406

region in between the peaks, and is expected to reveal a
characteristic variation in the peak separation as I/1; changes
near an integer. These and similar intensity-dependent quan-
tum effects of the light field, if experimentally verified,
would be used to provide a natural calibration of the laser
intensity and to generate photoelectrons with higher effi-
ciency.
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