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Excitations in photonic crystals infiltrated with polarizable media
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Light propagation in a photonic crystal with incomplete band gap, infiltrated with polarizable molecules is 
considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and 
polaritonic frequency dispersion gives rise to alternative propagating excitations, or photonic-crystal-polaritons 
(PCP), with intragap frequencies. We derive the PCP dispersion relation and show that it is governed by two 
parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that 
of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into 
two subgaps by the PCP branches and find that each defect creates two intragap localized states inside each 
subgap.
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I. INTRODUCTION

Photonic crystals and, in particular, photonic band-gap 
(PBG) materials [1,2], have recently attracted much attention
3,4 due to their rich physics and possible applications. In 

these systems the dielectric function is periodically modu­
lated and, as a result, their optical properties are dominated 
by light diffraction effects. When Bragg diffraction condi­
tions are met then light scattering is very strong, so that 
within certain frequency intervals near the resonances light 
propagation is inhibited.

Since the subject of photonic crystals was introduced 
[1 ,2 , one of the main goals of photonic band-structure cal­
culations has been to engineer structures with a com plete  
band gap, i.e., with no propagating solutions of Maxwell's 
equations within a certain forb idden  gap.  The pursuit of this 
goal has generated a stream of studies that are too numerous 
to be cited here; early works are reviewed in Refs. 3,4 . 
Here we only mention that a complete band gap in two di­
mensions (2 D  was theoretically predicted [5,6] and experi­
mentally demonstrated [5] for an array of dielectric rods. In 
the quest for a structure having a complete PBG in three 
dimensions 3D , the diamond lattice was shown 7 to be 
more promising than a simple face-centered-cubic fcc lat­
tice [7,8].

The frequency gap in the photonic spectrum sets a stage 
for a number of physical effects. The prime effect, namely 
the inhibition of spontaneous emission for an emitter with 
transition frequency within the gap, was already suggested in 
the pioneering works [1,9,10]. Furthermore, since light 
cannot leave the emitting atom, a coupled atom-field in-gap 
state is formed, in which the atomic level is ‘‘dressed’’ by its 
own exponentially localized radiation field [9,11]. It was also 
demonstrated that although a single photon cannot propagate 
inside the gap, nevertheless, a nonlinear medium embedded 
inside the photonic crystal gives rise to multiphoton bound 
states [1 2 , or gap solitons [ 1 3  that result in self-induced 
transparency. Yet another consequence of PBG is the modi­
fication of cooperative emission with frequency close to the 
band edge. In particular, the PBG was shown to change the 
rate of superradiant emission from an ensemble of emitters 
[10,14]. Lastly, PBG structures facilitate strong Anderson

localization of photons 15 because the sharp density of 
states within the gap spectral range necessitates a reinterpre­
tation of the Ioffe-Regel criterion 2 .

PBG structures with a defect constitute a separate area of 
study initiated by the classical works in Refs. 5,16 . These 
structures are important since the defects cause localized in­
tragap states. For these states, the PBG sample acts as a 
resonator with a very high quality factor. This property was 
recently used for designing a low-threshold PBG defect­
mode laser 17 .

Another class of materials with a forbidden gap for light 
propagation is spatially homogeneous, but frequency- 
dispersive media. The energy gap in these systems has a 
polaritonic origin, i.e., it is formed due to the interaction of 
light with the medium polarization 18 . This energy gap can 
be viewed as the result of anticrossing between the photonic 
and excitonic dispersion relation branches. Some nontrivial 
manifestations of the polaritonic gap were recently explored 
in Refs. [19,20]. In these papers a general model of two-level 
systems interacting with elementary electromagnetic excita­
tions with a gap in the spectrum was solved by means of the 
Bethe ansatz technique. Within this model a very rich exci­
tation spectrum was found 19,20 , consisting of ordinary 
solitons, single-particle impurity bound states, and massive 
pairs of confined gap excitations and their bound complexes 
—  dissipationless quantum gap solitons.

Most of the available photonic crystals nowadays, how­
ever, have incomplete PBGs; this means that light propaga­
tion is forbidden only along certain directions inside the 
crystal. A prominent example is opals, representing self­
assembled monodispersed silica balls 21 arranged in a fcc 
type lattice. Although opals have only an incomplete PBG, 
the voids between the balls can be infiltrated by various me­
dia, which brings about nontrivial physics. In particular, the 
medium may contain polarizable molecules. Infiltrated opal 
with polarizable molecules combines therefore polaritonic 
and Bragg-diffractive properties. Obviously, both effects co­
exist independently when the Bragg (w =  &>B) and polari­
tonic (w =  &>T) resonances are well separated in frequency. A 
completely different situation occurs when B T . This 
may be easily achieved in infiltrated opals that gives rise to a
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peculiar interplay  between various frequency dispersions. 
This interplay is the subject of the present paper.

Our most important finding pertains to the case when the 
polaritonic gap of the polarized molecules infiltrating the 
opal lies within the opal PBG. We demonstrate that such an 
overlap gives rise to massive p ropaga t ing  excitations having 
frequencies inside the Bragg gap, which we refer to as 
photonic-crystal-polaritons (PCPs). In other words, the 
Bragg gap splits  into two subgaps, so that the PCP branches 
are isolated from the rest of the spectrum. We found that the 
PCP dispersion relation is very sensitive to the frequency 
detuning between B and T and to the relative width of the 
polaritonic gap or, alternatively Rabi frequency and the 
Bragg gap.

The principal assumption we adopt here is that the Bragg 
gap, A (aB, is narrow compared to coB; this is actually the 
case in opals. The small value of A o>B/o>b <  1 enables us 
then to obtain analytical results. In addition, we also study 
the phase slip related intragap defect states for coB^ c o T. In 
the absence of polaritonic effect, the underlying physics of 
the defect-induced intragap states was already discussed in 
the original PBG paper [1], An analogy was drawn between 
a defect state and a localized mode in a distributed feedback 
resonator, which originates from a phase slip. We extend this 
picture to incorporate the polarizable medium and show that 
when the Bragg gap splits into two subgaps, then an existing 
phase slip gives rise to two  localized states with frequencies 
within each  of the subgaps.

Our paper is organized as follows: In order to introduce 
the notations, we separately review in Sec. II the derivation 
of the PBG and polaritonic spectra using the second quanti­
zation representation. In Sec. III we consider the combined 
Hamiltonian in the second quantization representation and 
diagonalize it by a unitary transformation. This yields the 
dispersion relations for the two excitations outside the gap, 
or Bloch-like waves, and the two intragap branches, or PCP 
excitations. The properties of these excitations are analyzed 
in Sec. IV. We use them in Sec. V to determine the intragap 
frequencies of the defect-induced localized states. Conclud­
ing remarks are presented in Sec. VI.

II. SECOND QUANTIZED PBG 
AND POLARITONIC HAMILTONIANS

The Hamiltonian of the system under study is the sum 
of three terms

A. Incomplete PBG

The general form of the Hamiltonian ph is

1
tph_8"7T.^ P h = ^ - I d r [ s { r ) E 2 +  H 1], (2)

where E  and H  are, respectively, the electric and magnetic 
fields. For a constant dielectric function, g ( r ) ^ g 0, the sec­
ond quantized form 22 of the Hamiltonian 2 reduces to a 
sum over oscillators representing plane waves with frequen­
cies ook= c k / J e 0 ,  where k is the wave vector. Modulation of 
s  (r) causes light diffraction, so that the plane-wave solutions 
are no longer the correct eigenfunctions of the Hamiltonian 
(2). Below we consider a photonic crystal with an incom­
plete PBG along the z  axis. A particular example is opals, 
which are self-assembled photonic crystals made of silica 
balls. The gradient of the refractive index is small enough 
[21] so that the width of the incomplete PBG is relatively 
small. Thus, the situation can be adequately approximated by 
a one-dimensional modulation of e (r) along the z direction, 
with only a single harmonics taken into account:

z  0 cos z  . 3

n = n Vh+H m - n ,m-ph • 1

Here Se ( ^ e 0) is the modulation amplitude, a = 2 i r / d , 
where d  is the modulation period, and is the dielectric 
modulation phase. We assume for simplicity that the electro­
magnetic field propagates along the z  direction and is homo­
geneous in the x y  plane. In this case light polarization is 
irrelevant. Generalization to arbitrary propagation direction 
is straightforward. The Fourier components of (z ) in Eq.
3 couple the original photon oscillators with momenta k 

and k . These coupled oscillators form an infinite series 
that is constructed by successive addition subtraction of . 
However, if 0 and the wave-vector domain is restricted 
to the vicinity of the first Bragg resonance at k ^  cr/2, then 
the Hamiltonian 2 can be truncated. In this case, only the 
coupling to the near-resonance backscattered photons with 
momenta ( a — k ) ^ a / 2  must be retained, so that the Hamil­
tonian 2 takes the form

'ttph= ^  {w(q)aX(q)a->(q) +  <o(_ q)a + ( - q ) a ^ ( - q )  
q

+ n B[ e !<̂ aX(q) a^(_ q) +  e _!<̂ a+( —q)a_>(q)]}.

4

Here, we introduced the notations q =  k -  a /2 ,  a ( q  ) =  a k 

and a _̂( — q ) =  a k^,x for k^cr/2, where a k is the usual pho­
ton annihilation operator. In the notations introduced in Eq. 
(4), the frequencies of the photonic branches are given by

The first term Wph describes the photons in a photonic crys­
tal. The second term m is the Hamiltonian of the polariz- 
able medium; Wm-ph describes the photon-medium coupling. 
In this section we review two limiting cases: i no polariz- 
able medium (% m =  0), and (ii) no modulation of the dielec­
tric constant.

c ( q  +  a / 2) j 2 q
™(q) =  V -  =<o b \ 1 +  — I.a 5

where ooB= c a / ( 2 f s 0 )  is the Bragg frequency. We define 
the coupling constant, B , as the half-width of the Bragg 
gap, i.e., f l  B=  2 A coB . It can be shown that f l  B is related to
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the amplitude of the dielectric function modulation: A B 
=  (aBS s / ( 2 s 0). The summation in Eq. (4) is performed over 
the k domain | q \ <  a / 2.

It is straightforward to diagonalize the Hamiltonian in Eq.
(4) with the use of the following unitary transformation:

a ^ ( q )  =  cos 0/3^ q )  +  sin 0el<̂ /32(q ), 

a ^ ( - q ) =  - s i n  0e ^ l4>f i ^ q )  +  cos 0/S2(q) , (6)

where

cos 2
q q

(7)

The new operators B 1 and B 2 describe the creation (annihi­
lation of pairs of Bloch waves that consist of forward and 
backscattered photons near the Bragg frequency. The diago- 
nalized Hamiltonian ( 4  takes the form

H ph= J ,  q ) £ K q ) 0  1(q )  +  4 2)( q ) # ( q ) & ( q ) ,
q

(8)

where the dispersion relations of the two photonic branches 
are given by

1
<»b ’ (q )=

: V ( w ( q ) -  o j ( - q ) ) 2 +  4 flB]

B
2 B

a
q  2+ n 2B. (9)

As mentioned above, the width of the PBG from Eq. 9 is
2 B .

B. Polarizable medium

The Hamiltonians H m of the polarizable medium and 
H m-ph of light-polarization interaction in Eq. (1) can be writ­
ten in the second quantization form as

^  +  Wm-ph= « t 2  b t b k + f l p ^  [ b t a k + a l b k ], 
k k

(10)

where b is the annihilation operator of the medium excita­
tions e.g., excitons or optical phonons , which we assume 
here to be dispersionless having frequency o>T; A P denotes 
the light-medium coupling strength that is proportional to the 
Rabi frequency. In the absence of the Bragg scattering term 
( f lB=  0), the complete Hamiltonian (1) reduces to the con­
ventional polaritonic Hamiltonian TLpol, given by

'Hpo^^^j M k a ta k + o > T ^ j  b ^ b k  +  f l p ^  [ b * ^  +  a * b ^ , 
k k k 11

with eigenstates representing the mixture of light and me­
dium excitations

a k =  c o s ie s -  ̂  k) +  sin i f / s2( k ) , 

b k =  — sin s ^k) +  cos if)s 2(k ) , 12

where

(x?k COt j
cos 2 $ =  j= = =  ( a > k = c k H s 0). (13)

V ( ^ - ^ )  2+ 4 A p

With the new operators s  1 and s 2, the Hamiltonian (11) is 
diagonalized:

K p o i = ^ j  m (P \ k ) ^ k ) + 2  wP2)( k ) , 
k k

(14)

where the frequencies of the polaritonic branches are given 
by

,(1,2) 1
(k) -  2  ̂Mk+  M T ± A ( Mk ^  m T> 2 +  4 A p ] . (15)

The Rabi splitting at resonance, i.e., at k T is 2 P . 
Equation 15 allows one to express the phenomenological 
parameter f l P through the observables. Namely, f l P 
= \Imt ml t /2, where o > o > T is the transverse-longitudinal 
splitting.

We note that the above description is valid only for wave 
numbers k in the vicinity of ‘‘crossing’’ of the excitation 
branches, where k T . It does not capture, however, the 
correct behavior 18 of the polaritonic branches for k 0. In 
this limit an additional term of the type a kb _ k+  c.c. should 
be taken into account in Eq. (11). Under the same condition, 

k T , the dispersion relation Eq. 15 can also be derived 
from the wave equation with the frequency-dependent di­
electric function.

III. DIAGONALIZATION OF THE FULL HAMILTONIAN

Now let us consider the full Hamiltonian 1 with both 
Bragg scattering and light-medium interaction included,

2  [w(q)a^, (q)a_(q)  +  « ( - q ) a ^ ( - q ) a ^ ( - q ) ]  
q

+  A B2  [ e l̂ f l i ( ^ f l V ( - ^ r i#f l ^ - ^ f l ^ ( q ) ]  
q

+  o > t2  [b±,(q)bL(q) +  b t ( - q ) b _ ( - q ) ]  
q

+  f l P2  [ b i ( q ) a _ ( q )  +  a i ( q ) b _ ( q )  
q

+  b ^ (  — q ) a ^ (  — q)  + a ^ {  — q ) b ^ (  — q)  ], (16)
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where we have again truncated the ‘‘Bragg’’ Hamiltonian in 
Eq. (1) by including only near-resonance terms. If a column 
of operators c =  { a ^ (q ) , a _̂( — q ),b_>(q ) , b _̂( — q )} is intro­
duced, then the Hamiltonian (16) can be formally rewritten 
in a matrix form Ti = c + H c , where

H =

/ (o(q) Be i P
°

t l B e - * q 0 ftp

f t P 0 T 0

\ 0 P 0 M j j

(17)

The four H  eigenvalues yield the dispersion relations of the 
fo u r  excitation branches, whereas the eigenvectors determine 
the unitary transformation diagonalizing Ti.

The characteristic equation for the eigenvalues of the 
matrix H  reads

(« ( q )  —« ) ( « (  — q) —« )  — OB 

&>(q) +  &>( — q )  — 2 (a

(tiT— Cl) ( <x>T — )2 +  ftp  — 0.

(18)

If the light-matter coupling is absent, i.e., O P= 0, then the 
roots of Eq. 18 reduce to two pure medium excitations with 
unperturbed frequency (o T propagating in the forward and 
backward directions along z, and two purely photonic exci­
tations with dispersion relation given by Eq. 9 that results 
from the Bragg scattering. If, on the other hand, the Bragg 
scattering is absent, i.e., O B =  0, then the roots of Eq. (18) 
reduce to two pairs of polariton branches with the dispersion 
relation given by Eq. (15).

It appears that the unitary transformation in fo u r ­
dimensional space diagonalizing the Hamiltonian Ti can be 
parametrized by two  angles:

j  a ^ { q )  \ 1 cos # cos$ sin sin $ cos sin $

a ^ { - q ) sin # cos$ cos sin $ sin sin $

/ L i q ) cos # sin $ sin cos$ - c o s  # cos $

\  b ^ ( - q ) ) \  sin # sin $ cos cos$ sin cos$

s i n # cos^ \ 

- cos # cos$  

sin # sin $  

cos  9  sin $

I & \
32

\ B  1

(19)

where 3 1, 3 1, J 2, and 3 2 are new operators that annihilate mixed light-matter states. The angle # in Eq. (19) is precisely the 
‘‘Bragg’’ rotation angle introduced in Eq. (7) [for simplicity we set ^  =  0 for the modulation phase in Eq. (19)]. The second 
angle, $  is defined by the following relation:

cos 2 $ =
\ / [ « ( q ) - « ( - q ) ] 2 +  4 0 B - 2 ( « t ~  “>b ) 

a/{2( <x>t— ®b) V[ w(q) — — q)] 2 +  4ftB} 2 +  16ft p
20

Naturally, for f t B =  0 the angle $  reduces to the polaritonic 
rotation angle in Eq. 13 . In the presence of the Bragg 
scattering, however, this rotation angle also depends on the 
‘‘Bragg’’ parameters (oB and f t B . Therefore it is the angle $  
that characterizes the interplay between the polaritonic and 
diffraction effects.

IV. PCP EXCITATIONS

In order to analyze the solutions of Eq. 18 , it is conve­
nient to introduce the following dimensionless variables. We 
measure frequencies from the Bragg frequency B and 
express them in units of the Bragg gap 2 B :

A = 21

In analogy with Eq. 21 , we introduce the dimensionless 
frequency detuning, <5, of « T from the Bragg frequency (oB, 
where

S =
T B  
2 ft  B '

22

As seen from Eq. 9 , the natural unit for the wave-vector 
deviation, q, from the Bragg wave vector, cr/2, is <rftB /<aB . 
Hence, we introduce the dimensionless parameter

Q =
(Ob

B
q . (23)

With the new notations, the excitation spectrum determined 
by Eq. 18 can be rewritten in a more concise form

Q

,,2 \ 2

A - 5
1
4 ’

24

where P /(2  B) characterizes the relative strength of 
the Bragg and polaritonic couplings. Expression 24 is our 
main result. It clearly demonstrates that the Bragg and po- 
laritonic dispersion relations compete  with each other.
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FIG. 1. Dispersion of mixed photonic-medium excitations for 
various coupling strengths: a = 0,0.35,0.57. (a) <5=0; (b) <5=0.3. 
The shaded area represents the two forbidden subgaps at 0.35.

Consider for simplicity the case of exact resonance, i.e., 
0. It is seen from Eq. 24 that in the absence of light- 

matter coupling ( a  =  0 ), the first term in the brackets gives 
rise to the conventional PBG. It is also seen that with in­
creasing a  (or, flp),  the decay length Im Q ~ 1 increases, and 
for sufficiently small A we find that Q  becomes rea l . This 
manifests the emergence of the allo w ed  photonic states, or 
PCP excitations, inside the PBG (see Fig. 1). The PCP 
branches in the excitation dispersion relations are described 
by the operators and 3 2. They occupy the frequency 
ranges A =  [0 ,± 4 ( \ /1  + 1 6 a 2- 1)]. For small a  (a<s1),  
the PCP frequency interval reduces to ( 0 , ± 2 a 2). We note 
that due to the finite value the Bragg gap broadens. 
Namely, the band edges of the branches described by the 
operators 1, 2 are, respectively, given for S = 0  by A 
=  ± 1( \ / 1 +  16a2 +  1) (compare to A =  ±  1/2 for a =  0). The 
dispersion relations A( Q ) calculated using Eq. (24) are 
shown in Fig. 1 a for different values of in the case of 
exact resonance coB= c o T , or 5 = 0 .

FIG. 2. The effective mass for various excitations in units of 
‘‘free’’ Bragg mass M B= M B  ̂=  Mg2 at « = 0 )  is plotted vs cou­
pling strength: solid lines are for 8= 0 , where M e ^ M e2, M3

M  ; dashed lines are for 0.3.2

Moderate frequency detuning 0 does not qualitatively 
change the above picture as seen in Fig. 1 b . The major 
effect of frequency detuning is that the PCP branches 1 , 2 
acquire an asymmetry since they are ‘‘pinned’’ by coT. Fig­
ure 1 also shows that the Bragg-like photonic branches 1 , 

are affected by coupling or detuning only weakly.
To quantitatively describe the PCP dispersion relation, we 

consider two characteristics: i dimensionless effective mass 
M  near the band edges that is defined from Eq. 24 by the 
relation

A =  A Q = 0~ _Q_
2 M  ’

25

and (ii) the density of states, N (A). Expanding Eq. (24) in Q 
yields the following effective masses for the PCP excita­
tions:

M

M

1 2

V(1 —2 S)2 +  16a2

1 2

V ( 1 + 2 5 ) 2+ 1 6 a 2

26

(27)

These masses are plotted in Fig. 2 versus the coupling 
s tren g th . For a ^ -0 , we have M 31, M 32^ oc, reflecting the 
fact that at 0 the PCPs reduce to dispersionless medium 
excitations that are not coupled to light. With the light-matter 
interaction switched on, the PCP effective mass rapidly de­
creases the width of the in-gap branches increases .

The one-dimensional density of states N ( ) is given from 
Eq. 24 by

1

12
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FIG. 3. Density of states for mixed photonic-medium excita­
tions. Left panel is for the symmetric case (£=0),  for a =0.35 
solid line , and 0.57 dashed line . Right panel is for 0.3 

and 0.35. The thin solid vertical lines indicate the band edges.

d Q
i ^ A ) * -  =

A - 8 a"

2 2

4

1 ( A - 8 ) 2 ’

28

and shown in Fig. 3 for different values of and detuning, 
. The density of states of the PCP branches inside the gap 

exhibits conventional 1D square-root singularities at the
band edges A =  S  and A =  ! ±  \ / ( 5 ± i ) 2 +  4 a 2].

As mentioned above, the upper and lower Bragg-like pho­
tonic branches 1 , 2 are only slightly affected by the cou­
pling and/or detuning. In particular, their effective masses

1 2
m b  1~

M n  = 1

V( 1 + 2 S )2+  1 6 a 2

1 2

V( 1 —2 S )2+  1 6 a 2

29

30

change only by a factor of 2 as varies from zero to infinity
see Fig. 2 .

V. INTRAGAP LOCALIZED STATES

We now turn our attention to the localized photonic states 
caused by a phase-slip-like defect. Note that in the absence 
of the polarizable medium, a structure with one-dimensional 
modulation 3 of the dielectric function can be viewed as a 
distributed feedback resonator 1 first considered by 
Kogelnik and Shank 23 in 1972. Later it was realized that a 
phase slip 24 in the modulation

z  0 cos z  z  ,

where

z
1 , z  0, 

2, z  0

31

32

results in a localized state inside the PBG. Within the second 
quantization formalism of Sec. II, the emergence of such a 
state can be established as follows. Consider the eigenstate 
annihilation operators of the Hamiltonian 4 ,

Pi

J l l

cos

sin i
sin e i

cos
33

It follows from Eq. 33 that the absolute value of the 
amplitude ratio of the left and right propagating waves con­
stituting the eigenstates /31, f$2 is either X =  tan 0, or X 

tan 1 . These expressions are actually equivalent to the 
appropriate choice of the sign of square root:

X± (A) =  2 | A ± V A 2- ^ | , 34

where we used the definition 7 of the rotation angle .
In the presence of a phase slip 32 , the continuity condi­

tion at z  0 reads

X_(A)e_i* 2= \ * ( A  ) e - i4> 1. 35

As is well known 25 , Eq. 35 has a unique in-gap solution, 
, for an arbitrary phase discontinuity 1 2,

where

A/ =
2

1 2

cos ,

, 1 2 0, 

, 0 <<f>1~  <f>2<TT.

36

37

Generalization of the above consideration to include the po- 
larizable medium is straightforward. It reduces to the follow­
ing modification of the parameter in Eq. 35 :

, , 2 A - S " V
„2 2

A - 8

Then condition 35 yields the gap state solution ,

1
A ' =  2 1S +  2 c o s x ± S -  ^ o s  x  +  4 a

38

39

where is defined by Eq. 37 . For 0 we return to the 
in-gap state 36 . Remarkably, we note that for nonzero cou­
pling parameter , when the Bragg gap is divided into two 
subgaps as in Fig. 1, the two values of determined by Eq. 
(3 9  are located in eac^ of the corresponding subgaps. In 
Fig. 4 the frequencies of the localized in-gap states are 
shown versus the magnitude 1 2 of the phase slip for 
zero detuning 0.

In the case of opal photonic crystals, the phase slip con­
sidered above models a stacking fault. In fact, stacking faults 
are the most common defects in these structures 26 .

2

1

1

2
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FIG. 4. The frequencies of localized intragap states vs the 
phase-slip magnitude: Dj, D2 are defect levels inside the Bragg gap 
(a  = 0, dashed line); D  1; D 1 are defect levels inside the lower 
subgap, and D 2, D 2 are defect levels inside the upper subgap (S  
= 0, a = 0.35, solid line). Thin solid and dashed lines represent the 
band edges of the two forbidden gaps and of conventional Bragg 
gap in the absence of coupling , respectively.

VI. DISCUSSION

The band structure of a photonic crystal with frequency- 
dependent dielectric function was recently studied numeri­
cally in Ref. 27 , using the plane-wave method. In this work 
the photonic crystal was modeled as a two-dimensional array 
of GaAs rods. Frequency dispersion was introduced through 
the transverse-longitudinal splitting of the optical phonons. 
The authors 27 see also Ref. 28 observed that numerous 
branches of the band structure calculated for B T be­
come almost dispersionless at frequencies close to the fre­
quency T . One-dimensional realization of the situation 27 
was considered in Ref. 29 and exhibited similar behavior.

In the context of the present work, this weakening of dis­
persion can be understood from Eqs. 26 and 26 that de­
scribe the effective masses of the PCP branches 1 , 2. 
These masses rapidly increase as the coupling parameter 
decreases. A more detailed comparison is impossible, since 
in order to show numerous dispersion curves, the authors of 
Refs. [27-29] choose a wide frequency scale that does not 
allow for identification of PCP branches.

It is important that our results are applicable for an ob­
lique incidence at the arbitrary angle . Indeed, in a photonic 
crystal with incomplete band gap, the general Bragg reso­
nance condition is kz =  a / 2, where k z is the component of the 
wave vector k  inside the photonic crystal along the modula­
tion direction z  [Eq. (3 ] . If the interface is perpendicular to 
the modulation direction e.g., parallel to the 111 plane of 
opal, which is the case in many experiments , then the wave- 
vector component parallel to the interface, k sin , is fixed by 
boundary conditions. In this case, the Hamiltonians, Eq. (4) 
and Eq. 16 , correctly describe propagation along the z  di­
rection if q =  k z — a / 2  and the Bragg frequency and coupling

are appropriately modified as o>B(/?) =  <xc[2 Vs0_  sin2# ]-1 , 
and O B(/?) =  « B( /3)£e[2(e0- s i n 2/3)]-1. Correspondingly, 
all the results of this paper remain valid at the arbitrary in­
cident angle if  B( ) and B( ) are used in the definitions 
of dimensionless parameters.

This opens an opportunity for experimental verification of 
the results. It was shown 26 that the absorption coefficient 
in self-assembled opal photonic crystals is as small as 
1 cm-  1. The only region of strong absorption is in the close 
vicinity of medium resonance frequency T . However, the 
width of this region is of the order of o>l t ^ O p , 0 B . Thus 
the existence of the propagating in-gap exitations and two 
forbidden gaps can be directly observed in measurements of 
transmission or reflection. The prime experimental manifes­
tation of the PCP excitations derived in the present paper can 
be summarized as follows. Away from the resonance B 

T , the polaritonic peak in the reflectivity spectrum oc­
curs at T regardless of the incident angle . However, 
the variation of the Bragg peak frequency B with may 
lead to the resonance condition B( ) T . At these angles 
Bragg-diffracted  photons couple to the medium excitations 
resulting in the formation of the PCP branches. We predict 
that instead of a single Bragg reflection peak at the resonant 
condition, tw o  reflection peaks may be observed that corre­
spond to the two subgaps in the excitation spectrum. The 
frequencies of the tw o  reflection bands become sensitive to 
the incident angle , so that the angle-dependent reflectivity 
spectra will look as if the polar lton lc  peak blueshlfts with 
increasing . Note also that at exact resonance, namely when 
m b(/?) =  <aT , the two reflection peaks would be the mirror 
images of each other.

Signatures of the behavior described above can be found 
in the numerical calculations of Ref. 30 . In that work, 
transmission spectra of a photonic crystal identical to that of 
Ref. 27 were calculated within the transfer-matrix formal­
ism. T w o  minima in the transmission spectra were found 
instead of the usual single  minimum that is caused by the 
Bragg diffraction in nondispersive photonic crystal. In light 
of the theory developed in the present work, these two 
minima can be identified with the two forb idden  subgaps  in 
the excitation spectrum Figs. 1 and 3 . As we have demon­
strated Fig. 3 , in the presence of light-matter coupling there 
are two spectral regions with zero density of states. Corre­
spondingly, the transmission coefficient within these fre­
quency regions must be low if  the sample is sufficiently 
thick.

A very different realization of periodic polarizable struc­
tures was the subject of extensive theoretical studies during 
the last decade [31,32]. The structures are multiple quantum 
wells separated by wide-gap semiconductor barriers. The 
width d  of each barrier was assumed to be close to 0/2, 
where 0 is the wavelength corresponding to the intrawell 
exciton resonance frequency T . The condition d  0/2 im­
plies that the Bragg frequency o>B is close to o>T . Since the 
quantum wells with strong frequency dispersion at T 
had thickness much smaller than d , then a real Bragg gap in 
the structures [31,32] was lacking. However, under the con­
dition T B , the dispersion law of light propagating along
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the principal axis was shown to have a gap within a fre­
quency range | « — taT\ =  ( 2 r 0« T1 t t ) 112= 1 ! (eff). HereF0 de­
notes the radiative rate for an exciton in a single well. In 
other words, f l (eff) plays the role of the ‘‘effective’’ Bragg 
gap in the structures 31,32 . Remarkably, a physical picture 
completely analogous to the multiple-quantum-well struc­
tures emerged from consideration of an optical lattice formed 
by laser-cooled atoms 33 . Correspondingly, the light dis­
persion relation derived in Ref. 33 has the same form as in 
Refs. [31,32]. Note that as was recently pointed out [34], a 
detuning ( B T) (eff) gives rise to a band of propagat­
ing states within the ‘‘effective’’ Bragg gap of the multiple- 
quantum-well structures.

Yet another realization of a system combining Bragg and 
polaritonic properties was studied in Ref. 35 . Similarly to 
Refs. [31,32,34], the polarizable medium in Ref. [35] was

A. YU. SIVACHENKO, M. E. RAIKH, AND Z. V. VARDENY

restricted to a system of layers. In contrast to multiple 
quantum wells, the dispersive layers were immersed into the 
Bragg lattice. The presence of the two lattices in Ref. 35 
makes the dispersion relation sensitive to their relative phase. 
Naturally, the excitation spectrum 35 is very different from 
Eq. 24 . In particular, the authors of 35 observe only a 
single propagating in-gap excitation branch positioned asym­
metrically with respect to the Bragg frequency.
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