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Chapter 1: Introduction

Overview
Consider the dance of science — the dance that obsesses us so.

It’s said that in viewing the night sky, the present is illusion. The stars are so dis
tant that I see them as they were millions or billions of years ago, when their light rays 
began the voyage to my eye. It’s said that I am infinitesimally small and transient; the 
stars will not miss the light my eyes have stolen. They will not notice that they have 
joined me in the dance.

Technique and style are the framework of dance. Techniques of science are generally the easy 
part; many are deliberately and systematically taught. For example, throughout our many years of 
schooling we refine skills such as fact gathering and mathematical analysis. We learn other scien
tific techniques — such as statistics, deductive logic, and inductive logic — in classes that lack the 
perspective of scientists’ needs.

Some techniques are more intangible: critical thinking and analysis, pattern recognition, and 
troubleshooting of experimental technique. Scientists are not merely technicians; an equally crucial 
part of the dance is style: how do scientists combine rationality and insight, or skepticism and inno
vation; how do scientists interact, and what motivates their obsession? These skills seldom are 
taught explicitly. Instead, they are implicit in the scientific apprenticeship, an excellent but often 
incomplete educational process.

Who of us has mastered all of the techniques of science? I certainly have not; researching and 
writing this book have shown me that. Of course, when I recognize that an aspect of my scientific 
methods is deficient, I am enough of a professional to seek a remedy. More often, I, like Konrad 
Lorenz’s [1962] water-shrew, am not even aware of what is missing:

The water shrew dashes through its territory at incredible speed, by following the 
familiar path. “To them, the shortest line is always the accustomed path.” Lorenz de
cided to explore the extent of this habit by removing a stone from a water-shrew’s 
path. When it came racing along, it jumped over the nonexistent stone. It paused in 
bafflement, backed up and jumped ‘over’ it again, then finally reconnoitered the 
anomaly.

How often do we leap missing stones?
*  *  *

Consider the science of science. Let’s turn our gaze on our lives, looking beyond the surface 
interplay of experiment and theory. What are we scientists doing, and what tools are we using?

W e’ve left such introspection to philosophers, but their goals differ from ours. They deal in 
abstracts: what rules do scientists follow, and how should the process of science change? We sci
entists generally prefer the more pragmatic approach of just doing, not talking about doing. Are we 
too busy, or too confident in our established routines, to analyze what we are doing? Why are virtu
ally all of the books on scientific methods written by philosophers of science, rather than by scien
tists?
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“It is inevitable that, in seeking for its greatest unification, science will make itself 
an object of scientific investigation.” [Morris, 19381

*  *  *

This book was originally intended as ‘How to do science’, or ‘How to be a scientist’, providing 
guidance for the new scientist, as well as some reminders and tips for experienced researchers. 
Such a book does not need to be written by the most expert or most famous scientist, but by one 
who likes to see the rules of play laid out concisely. It does need to be written by a working scien
tist, not by a philosopher of science. The first half of the book, called ‘Scientist’s Toolbox’, retains 
this original focus on what Jerome Brumer called the structure of science -  its methodologies and 
logic.

This objective is still present in the second half of the book, ‘Living Science’. In researching 
that section, however, I was fascinated by the perspectives of fellow scientists on ‘What it is like to 
be a scientist.’ Encountering their insights into the humanity of science, I found resonance with my 
already intense enjoyment of the process of science. Gaither and Cavazon-Gaither [2000] provide 
many additional scientific quotations on the experience of science.

*  *  *

Consider the process of science.
Knowledge is the goal of science: basic research seeks reliable knowledge, and applied research 

seeks useful knowledge. But if knowledge were our primary goal as scientists, we would spend 
much of our available time in reading the literature rather than in slowly gathering new data. Science 
is not static knowledge; it is a dynamic process of exploring the world and seeking to obtain a 
trustworthy understanding of it. Everyone practices this process, to some extent. Science is not the 
opposite of intuition, but a way of employing reality testing to harness intuition effectively and pro
ductively.

As we explore the scientific process in this book, we will attempt to answer some of the follow
ing questions.
* History: What are the essential elements of scientific method?
* Variables: How can I extract the most information from my data?
* Induction and pattern recognition: If I cannot think of an experiment to solve my problem, how 
can I transpose the problem into one more amenable to experimental test? How can I enhance my 
ability to detect patterns? Where is the boundary between correlation and causality?
* Deduction: How large a role does deduction really play in science? What are some of the more 
frequent deductive fallacies committed unknowingly by ‘logical’ scientists?
* Experimental techniques: What seemingly trivial steps can make the difference between an in
conclusive experiment and a diagnostic experiment? What troubleshooting procedures have proven 
effective in all branches of science?
* Objectivity: How much do expectations influence observations? In what ways is objectivity a 
myth? How can we achieve objective knowledge, in spite of the inescapable subjectivity of individu
als?
* Evaluation of evidence: When I think I am weighing evidence rationally, what unconscious val
ues do I employ? How much leverage does prevailing theory exert in the evaluation of new ideas?
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* Insight: What are the major obstacles to scientific insight, and how can I avoid them?
* The scientist’s world: What issues affect the scientist’s interactions with fellow scientists and 
with society?
* The scientist: What are the essential characteristics of successful scientists?

*  *  *

Thumbnail History of Scientific Methods
What are the essential elements of 

scientific method, and what are the inci
dentals? Let’s ask history. We can use 
the Method of Difference (described in 
Chapter 3): examine changes in the vital
ity of science as scientific methods 
evolved. We need to avoid a pitfall: mis
taking coincidence for causality (see 
Chapters 3 and 4).

To many scientists, the field of his
tory offers little interest. A gap separates 
the ‘two cultures’, scientific and literary, and prevents each from appreciating the contributions of 
the other [Snow, 1964], Yet even a brief history of the development of scientific methods demon
strates compellingly that:
* communication, particularly access to previous writings, is critical for vitality of science;
* an individual can have a remarkable impact on science -  as an actor or as a mentor;
* we exaggerate our links to the Greeks and to the Italian Renaissance; and
* our 20th century intellectual chauvinism is not justified.

This narrative, like history itself, seems at times to be a string of related, adjacent events rather 
than an upward evolution toward some objective. Over the past 2500 years, many ingredients of the 
scientific method ebbed or flowed. More than once, almost all of these elements came together, but 
they failed to transform because some catalyst was missing.

Fowler [1962] provides a more comprehensive but still concise history of these developments.
*  *  *

In 399 B.C., a jury of 500 Athenians sentenced Socrates to death. The charges: religious heresy 
and corrupting the morals of the youth. His crimes: asserting that there is only one God and that 
people should personally evaluate the meaning of virtue. Perhaps he could have recanted and lived, 
but the seventy-year-old man chose drinking hemlock over refuting his life’s teachings.

His student, Aristocles (Plato), must have been devastated. Plato left Athens and traveled exten
sively for twelve years. His anguish over the trial ripened into a contempt for democracy and for 
democratic man:

“He lives from day to day indulging the appetite of the hour;...His life has nei
ther law nor order; and this distracted existence he terms joy and bliss and freedom; 
and so he goes on.” [Plato, ~427-347 B.C., a]

[Harris, 1970]
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Finally (and fortunately for the future of Western science) Plato did return to Athens. He taught 
philosophy just as his mentor had done. One of his students, Euclid, wrote Elements of Geometry, 
the foundation of geometry for the next twenty-two centuries. Another student, Aristotle, taught 
Alexander the Great, who fostered the spread of Hellenic science throughout his new empire. The 
seeds sown by Alexander in Asia flowered throughout Europe more than a thousand years later, 
catalyzing the ‘birth’ of the modem scientific method.

Why do I begin this brief history of scientific methods with the death of Socrates and with 
Plato’s response? From Pythagoras to Ptolemy, many individuals built Hellenic science. Yet the 
heart of this development may be the remarkable mentor-student chain of Socrates-Plato-Aristotle- 
Alexander. The focal point was not a panorama of historic events, but the response of an individual, 
Plato, when faced with a choice: should I follow the example of Socrates or should I react against 
the injustice of society?

Science and the scientific method were not born in Greece. Two criteria for the existence of 
science -  scientific observation and the collection of facts -  thrived in several pre-Hellenic cultures. 
Ancient astronomy is the most obvious example: the Mesopotamians in about 3500 B.C., as well as 
other agricultural cultures at other times, gradually evolved from star-gazing to using the stars and 
sun for predicting the seasons and eclipses. If technology implies science, should we trace science 
back to the first use of fire or the first use of tools?

A remarkable number of the key ingredients of scientific methodology were discovered during 
the Hellenic period:
* Pythagoras, and later Plato, advocated what has become the fundamental axiom of science: the 
universe is intrinsically ordered and can be understood through the use of reason. Socrates stressed 
that human intelligence and reason can discover the logical patterns and causal relationships under
lying this order. This axiom cannot be proved; we accept it because it is so successful (Killeffer, 
1969). Previously, most cultures had interpreted order and law as human concepts that were largely 
inapplicable to nature.
* Pythagoras identified the relationship between musical notes and mathematics. The Pythagoreans 
educed that mathematical laws could describe the functioning of nature and the cosmos. Although 
they did invent geometry, they were unable to develop the mathematical techniques needed to exploit 
this insight.
* The Hellenic culture, founded on intellectual freedom and love of nature, created a science both 
contemplative and freer from religious dogma than the preceding and following millennia. The sys
tematic Hellenic investigation of nature, as seen in their geometry, mathematics, astronomy, geogra
phy, medicine, and art, may be responsible for our modern Western perception that science had its 
roots in ancient Greek civilization (Goldstein, 1988). Then, as now, science tested the limits of in
tellectual freedom. The death of Socrates is proof.
* Aristotle firmly steered Greek science towards rational thought and classification. He honed the 
blunt tool of deductive logic into the incisive instrument of syllogism. Aristotle also attempted to 
classify and systematize biological samples that Alexander sent back to him.
* Aristotle also fostered the development of induction, the inference of generalizations from obser
vation: “Now art arises when from many notions gained by experience one universal judgement 
about a class of objects is produced.” [Aristotle, 384-322 B.C.]
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Greek science in general, and Aristotle in particular, developed many of the elements of modern 
scientific method. Yet they neglected verification. Aristotle often succumbed to the rational pitfall of 
hasty generalization; for example, he claimed that all arguments could be reduced to syllogisms. 
Greek forays into experimentation and verification, though rare, were sometimes spectacular. In 
about 240 B.C., for example, Eratosthenes estimated the diameter of the earth, with an error of less 
than 4%, by measuring the angle of a shadow at Alexandria, when the sun was vertical at Syene. 
More frequently, however, Greek science ignored experiment and focused instead on the ‘higher’ 
skill of contemplative theorizing. Almost two millennia passed before European cultures discarded 
this bias and thereby embarked on the scientific revolution. Although Aristotle swung the pendulum 
too far, imparting rigidity to Greek science (Goldstein, 1988), he revealed the potential of deduction 
and induction.

Science is the Greek word for knowledge. Yet the gift of the Greeks to future science was more 
a gift of techniques than of facts. Science survived the transition from Greek to Roman culture and 
the move to Alexandria. But what more can be said of Roman science beyond the observation that 
its greatest discoveries were the arch, concrete, and improved maps?

*  *  *

Repeated incursions by nomadic tribes into the boundaries of the Roman Empire eventually 
overwhelmed the urban Roman civilization. At the same time the appeal of Christian teachings, 
which provided explanation and solace in the face of increasingly difficult conditions, eventually 
caused much of the population to embrace the idea that the world of the senses is essentially unreal. 
Truth lay in the inscrutable plan of God, not in the workings of mathematics. The accompanying 
eclipse of scientific knowledge and methods went virtually unnoticed. This world-view excluded 
science, because science requires love of nature and confidence in the world of the senses.

“The Gothic arms were less fatal to the schools of Athens than the establishment 
of a new religion, whose ministers superseded the exercise of reason, resolved to treat 
every question by an article of faith, and condemned the infidel or skeptic to eternal 
flame.” [Gibbon, 17871

The scientific nadir came in about 389 A.D.: “In this wide and various prospect 
of devastation, the spectator may distinguish the ruins of the temple of Serapis, at Al
exandria. The valuable library of Alexandria was pillaged, and near twenty years af
terwards the appearance of the empty shelves excited the regret and indignation of 
every spectator whose mind was not totally darkened by religious prejudice. The 
compositions of ancient genius, so many of which have irretrievably perished, might 
surely have been excepted from the wreck of idolatry, for the amusement and in
struction of succeeding ages.” [Gibbon, 17871

Augustine (354-430 A.D.) was the most eloquent and influential proponent of the new attitude 
toward science:

“It is not necessary to probe into the nature of things, as was done by those whom 
the Greeks call physici; nor need we be in alarm lest the Christian should be ignorant 
of the force and number of the elements - the motion, and order, and eclipses of the 
heavenly bodies; the form of the heavens; the species and the natures of animals, 
plants, stones, fountains, rivers, mountains; about chronology and distances; the signs 
of coming storms; and a thousand other things which those philosophers either have 
found out or think they have found out...It is enough for the Christian to believe that 
the only cause of all created things, whether heavenly or earthly, whether visible or in
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visible, is the goodness of the Creator, the one true God.” [St. Augustine, 354-430 
A.D., a]

Augustine was probably the major influence on European thought for the next seven centuries. 
Like other religious mystics before and after him, he turned attention away from rationalism and the 
senses and toward concern for religion. If the three pillars of wisdom are empiricism, rationalism, 
and faith (or intuition), then Augustine turned the focus of intellectual thought to the third and pre
viously most neglected of these pillars: intuition, the direct realization of truth by inspiration 
(Chambliss, 1954). Augustine achieved his insights with the aid of purgation, expecting ‘less- 
disciplined’ individuals to accept these insights as dogma. Scientific insights, in contrast, are tested 
before acceptance. Yet even today scientific insights, once accepted by scientists, are presented to 
the public as dogma.

In 529 A.D. the Emperor Justinian closed the School of Athens; European science had begun to 
wane long before. During the long European medieval period of the next six hundred years, tech
nological change virtually ceased. Because technology is an inevitable outgrowth of science, the lack 
of medieval technological change implies an absence of science.

Augustine had distinguished two types of reason {ratio)', sapientia, the knowledge of eternal 
things, is the ratio superior, while scientia, the knowledge of temporal things, is the ratio inferior 
[Fairweather, 1956]. Almost all records from the European medieval period are from the Church, an 
institution that still followed Augustine’s anti-scientific lead. For example, Isidore of Seville’s book 
Etymologies, an early 7th century compilation of knowledge, was influential for 500 years, yet Bre- 
haut [1912] comments on Isidore’s ‘knowledge’:

“The attitude of Isidore and his time is exactly opposite to ours. To him the su
pernatural world was the demonstrable one. Its phenomena, or what were supposed to 
be such, were accepted as valid, while no importance was attached to evidence offered 
by the senses as to the material.”

*  *  *

Arabs, not Europeans, promoted science throughout the first millennium A.D. Alexander had 
begun the eastward spread of Greek science. When intellectual freedom waned in the Mediterra
nean, some scientists and scholars moved to Persia, where it was still encouraged. In the 7th and 8th 
centuries, the Bedouin tribes of the Arabian Peninsula promulgated Islam throughout the region 
from Spain to India; they also spread a culture that was remarkably fertile for science.

The Muslim armies were religiously single-minded. They were also tolerant of cultural varia
tions and willing to absorb the heterogeneous cultures that they encountered and conquered. 
Among the knowledge assimilated were Indian and Babylonian mathematics and the Greek manu
scripts. At a time when medieval Europe was turning away from the harshness of worldly affairs, 
the Muslim were embracing nature’s diversity and surpassing the Greeks in applied knowledge. 
The Arabs adopted Greek scientific methods and knowledge, then added their own observations and 
came to fresh conclusions. The Arabs were the first to counter the Greek emphasis on contempla
tion and logic with an insistence on observation.

By the 12th century, Arab science included inexpensive writing paper, medical care (including 
hospitals), major advances in optics, significant advances in observational astronomy, a highly sim
plified numeric system, and the equation. The latter two were crucial scientific building blocks. Al- 
Khwarizmi and other Muslim mathematicians had taken the Babylonian sexagesimal (60-based, e.g. 
seconds and minutes) and Indian decimal systems and further simplified them into a powerful
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mathematical system. This ‘Arabic system’ included the mathematical use of zero and positional 
numbers indicating units. Al-Khwarizmi's ‘al-jebr’ (literally the reducing and recombining of 
parts), with the simple procedure of changing both sides of the equation by the same amount, al
lowed complex relationships to be quantified and unknown variables ( ‘x ’) to be determined in 
terms of other variables. At last, Pythagoras’ dream of a mathematical description of nature was 
realizable.

These cumulative accomplishments marked the zenith of Arab science. In the 12th century, 
Muslim science was smothered by the growing consensus that all worthwhile knowledge can be 
found in the Koran. Science survived through serendipity: after nourishing the flame of science 
throughout the millennium of anti-science ‘Dark Ages’ in Europe, the Muslim passed it back to 
Europe just when a cultural revival there was beginning to crave it.

*  *  *

The medieval cultural revival of the 12th century began a rediscovery of the most basic scientific 
foundations. The Catholic Church, sole source of schools and learning, was the epicenter. For ex
ample, Peter Abelard used religious reasoning to rediscover the connection between nature and hu
man logic: the universe is logical and ordered because God made it that way; humans were created 
in God’s image so they can decipher the universe’s logic. In his book Sic et Non [1122 A.D.], he 
argued against religious dogmatism and for personal critical evaluation:

“All writings belonging to this class [of scriptural analysis! are to be read with 
full freedom to criticize, and with no obligation to accept unquestioningly . . . These 
questions ought to serve to excite tender readers to a zealous inquiry into truth and so 
sharpen their wits. The master key of knowledge is, indeed, a persistent and frequent 
questioning. . . By doubting we come to examine, and by examining we reach the 
truth.”

The scientific renaissance began in the 12th-century cathedral schools, particularly the School 
of Chartres [Goldstein, 1988], By the early 13 th century, the surge of knowledge had moved to the 
first universities, such as those in Paris, Oxford, and Salerno. Yet, in the brief period surrounding 
the construction of the cathedral of Chartres, its school made several impressive innovations:
• establishment of the natural sciences as areas of study at least as important as liberal arts;
• creation of the first substantial library of science since Roman times, with a particular emphasis on 
collecting ancient scientific writings;
• reintroduction of the Pythagorean idea of a mathematically ordered structure of the universe; and
• search for causality throughout nature, based on the idea that “nature is intelligible for the human 
mind precisely because both proceed according to the same inherent rational law” [Goldstein, 
1988],

The architects of the new science at the School of Chartres were Thierry of Chartres and his 
student William of Conches. Thierry laid the groundwork by establishing religious justifications 
for the study of nature. He asked, “Given God, how do we prove it?” and he encouraged scientific 
contribution to this goal. William of Conches [—1150 A.D.] was less cautious:

“To seek the ‘reason’ of things and the laws governing their production is the 
great task of the believer and one which we should discharge together, bound by our 
curiosities into a fraternal enterprise.”
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Inevitably, this fundamental modification of perception aroused the fear and anger of conserva
tives. Inevitably, conservatives attempted to use the Church to prevent the change, by arguing that 
this altered perception violated fundamental principles of the Church. The battle that began then -  
as a conflict between two religious views of nature — continues even today, couched as a conflict 
between science and religion.

“Science and religion, religion and science, put it as I may they are two sides of 
the same glass, through which we see darkly until these two, focusing together, reveal 
the truth.” [Buck, 19621

The enemy of science then and today is not religion, any more than the enemy of science during 
Plato’s day was democracy. Both the Christian religion and democratic laws had seemed threaten
ing when they were introduced. Later, each became the weapon wielded by conservatives to protect 
themselves from the fear engendered by scientific change. Unlike the conservatives and religious 
zealots, scientists greet claims of ‘absolute truth’ with skepticism. Revelation is eventually seen as 
naivete, for all understandings evolve and improve.

The status quo will always be used to challenge scientific change.
*  *  *

At about the same time that the School of Chartres was rediscovering Greek knowledge with 
their own pitifully small library, Europeans encountered the entirety of Greek and Arab scientific 
knowledge on several fronts. In Spain the long civil war between Christians and Muslims led to 
capture of Muslim cities, and the Christian king Alfonso VII established a center in Toledo for the 
study of Islamic science. The Crusaders also found libraries rich in Greek manuscripts, particularly 
during the capture of Constantinople in 1204. When the emerging European spirit of scientific en
quiry encountered potential answers in the form of Greek and Arab scientific writings, translators 
were kept busy for more than a century.

Eight hundred years later as I write this, war between Western Christians and Arab Muslims 
has flared again, and the Arab gift to the west of practical applied science is returning to Iraq in the 
form of high-technology weapons.

Much of the Arab science was not fully absorbed by the Europeans for centuries. Scientific 
knowledge was only a part of the Islamic gift to the Europeans. The Islamic pleasure and curiosity 
in observing nature’s diversity spearheaded a 12th-century cultural and scientific renaissance of 
intellectual and sensual liberation [Goldstein, 1988], This renaissance was exemplified by Robert 
Grossteste (1175-1253), once chancellor of Oxford, and his student Roger Bacon (1214-1294 
A.D.). Grossteste gave the first relatively complete description of modern scientific method, in
cluding induction, experimentation, and mathematics [Crombie, 1953], Bacon argued that it is nec
essary to combine mathematical analysis with empirical observation and that experiments should be 
controlled. More than two centuries before the technological insights of Leonardo da Vinci, Roger 
Bacon [~1270 A.D.] foresaw the potential technological results of scientific method:

“Great ships and sea-going vessels shall be made which can be guided by one 
man and will move with greater swiftness than if they were full of oarsmen. It is possi
ble that a car shall be made which will move with inestimable speed, and the motion 
will be without the help of any living creature. . . A device for flying shall be made 
such that a man sitting in the middle of it and turning a crank shall cause artificial 
wings to beat the air after the manner of a flying bird. Similarly, it is possible to con
struct a small-sized instrument for elevating and depressing great weights . . .  It is pos
sible also that devices can be made whereby, without bodily danger, a man may walk 
on the bottom of the sea or of a river.”
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Grosseteste and Bacon were prophets, not flag-bearers, of the coming new science. Their em
phasis on observational, empirical science was overshadowed by a prevailing respect for authority 
that fostered acceptance of the ancient writings [Haskins, 1927], The scholastic Albertus Magnus 
[~1250 A.D.] responded with the still-familiar rebuttal: “experience is the best teacher in all such 
things.” Their contemporary Thomas Aquinas was more persuasive; he created a mainstream 
scholastic attitude that empiricism and rationalism should have the more limited scope of serving 
religion.

The scholastic approach of combining rea
son and faith was more scientifically effective 
than the Islamic approach of accepting diverse 
perspectives without requiring intellectual con
sistency among them. By the beginning of the 
14th century, the young European science had 
already surpassed its Greek and Arab parents, 
partly because earlier Christian theological ar
guments had fostered a rationalist, logical style 
of evaluating abstract concepts. Yet a strong 
tradition of mysticism was able to exist side- 
by-side with the rationalist school of the Scho
lastics. The mystic tradition was less scientifi
cally efficient than more rational science, be
cause it encompassed research on invisible 
powers. Yet the centuries of alchemical research 
encouraged creativity and patient observation 
and eventually gave birth to modem chemistry.

In the 15th and 16th centuries, an Italian 
Renaissance gained momentum and the pace of 
change increased. Begun as a revival of interest 
in Greek and Roman literature, it rejected the otherworldly traditions of the previous millennium and 
embraced the love of nature and study of nature, at first through art and later also through science. 
Leonardo da Vinci (1452-1519) exemplifies the intimate relationship of art to science in this period, 
as well as the age’s spirit of curiosity. The synergy of curiosity about nature, medieval rationalism, 
and empiricism led to an age of exploration and to the scientific revolution.

“The scientific revolution began in curiosity, gained momentum through free in
quiry, [andl produced its first fruits in knowledge of the material universe.” [Cham
bliss, 19541

“The condition most favorable to the growth of science in the sixteenth and sev
enteenth centuries was the increasing number of men who were drawn into intellectual 
pursuits. Genius is like a fire; a single burning log will smolder or go out; a heap of 
logs piled loosely together will flame fiercely. . . But the establishment of strong gov
ernments, insuring at least domestic peace, the accumulation of wealth followed by the 
growth of a leisure class, the development of a secular, sanguine culture more eager to 
improve this world than anxious about the next, and above all, the invention of print
ing, making easier the storing, communication, and dissemination of knowledge, led 
naturally to the cultivation and hence to the advancement of science.” [Smith, 19301

There were scientific setbacks in these centuries, but the acceleration of science could not be 
stopped. In 1543, European science took a quantum leap forward into the scientific revolution, as 
the result of publication of three remarkable books:



1 0

* Archimedes’ book on mathematics and physics was translated from the Greek and became widely 
read for the first time;
* The Structure of the Human Body, a book of Andreas Vesalius’ anatomical drawings, provided 
the first accurate look at human anatomy;
* The Revolution of the Heavenly Spheres, by Nicolaus Copernicus, presented the concept of a he
liocentric cosmology and set the scientific revolution in motion, as its author lay on his deathbed.

Giordano Bruno (1473-1543) advocated this Copemican universe and was burned at the stake. 
A century later Galileo strongly argued for a Copernican universe. He was tried by the church and 
threatened with excommunication, he was forced to recant, and he spent the rest of his life under 
house arrest. Later scientists, particularly Kepler and Newton, concluded the battle with less adverse 
personal impact. Bronowski [1973] calls Galileo the “creator of the modern scientific method” 
because in 1609-1610 he designed and built a 30-power telescope, used it for astronomical obser
vations, and published the result. I see Galileo not as the creator but as one who exemplifies an im
portant phase in the evolution of modern scientific method.

Galileo valued experimental verification of ideas. In the 17th century, Francis Bacon, Rene Des
cartes, and others succeeded in steering science away from mysticism and confining scientific re
search to topics that are verifiable, by either the senses or deduction. Indeed, even the 17th-century 
scientific genius Isaac Newton devoted part of his life to alchemy. When researchers adopted the 
pragmatic attitude of giving priority to what is observable with the senses, they took one of the final 
steps in development of modem scientific method.

*  *  *

The early 17th century saw a watershed collision of two philosophies of scientific method: de
duction and experimentation. Rene Descartes’ [1637] book Discourse on Method emphasized 
mathematical deduction and laid out the following four principles of his scientific method:
* “never accept anything as true if I had not evident knowledge of its being so. . .
* divide each problem I examined into as many parts as was feasible...
* direct my thoughts in an orderly way; beginning with the simplest objects.. .
* make throughout such complete enumerations that I might be sure of leaving nothing out.”

In contrast, Francis Bacon’s [1620] book Novum Organum sought to establish a new empirical 
type of science. He argued compellingly that science cannot be confined to either deduction or ob
servation; one must use a combination of experiment and hypothesis, testing hypotheses empiri
cally.

“All true and fruitful natural philosophy hath a double scale or ladder, ascendent 
and descendent, ascending from experiments to the invention of causes, and de
scending from causes to the invention of new experiments.” [Bacon, 1561-16261

Both approaches had strengths and weaknesses, and both contributed to modern scientific 
method. Bacon, who was not a working scientist, failed to realize the importance of intuition in cre
ating hypotheses and of judgment in rejecting most hypotheses so that only a subset need be tested. 
Descartes sought to confine science to those areas in which mathematics could yield ‘certainty’:

“Science in its entirety is true and evident cognition. He is no more learned who 
has doubts on many matters than the man who has never thought of them; nay he ap
pears to be less learned if he has formed wrong opinions on any particulars. Hence it
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were better not to study at all than to occupy one’s self with objects of such difficulty, 
that, owing to our inability to distinguish true from false, we are forced to regard the 
doubtful as certain; for in those matters any hope of augmenting our knowledge is 
exceeded by the risk of diminishing it. Thus . . .  we reject all such merely probable 
knowledge and make it a rule to trust only what is completely known and incapable 
of being doubted.” [Descartes, ~1629]

This deductive dogmatism is incompatible with almost all of modem science; even theoretical 
deductive physics begins with unproven premises. In the 17th century, however, the outcome of the 
battle over the future direction of science could not be predicted.

Antoine Amauld [1662], in an influential book on logic, presented a pragmatic approach to sci
entific and other judgment: rational action, like gambling, is based not on Cartesian certainty but on 
consideration of the probabilities of the potential outcomes. Isaac Newton [1687] reinforced the 
Cartesian perspective on science with his book Principia Mathematica. Considered by some to be 
the most important scientific book in history, Principia established a new paradigm of the physics 
of motion, drawing together a very wide suite of observations into a rigorous mathematical system. 
Newton was primarily a theoretician, not an empiricist, but he eagerly used data collected by others.

Eventually, the conflict was resolved: with the edges of the road defined, a middle way could be 
trod. John Locke argued persuasively that experimental science is at least as important as Cartesian 
deduction. Locke became known as the ‘father of British empiricism.’ ‘Champion of empiricism’ 
is probably a more appropriate epithet, however, for Locke made no important scientific discoveries. 
Locke provided the needed scientific compromise: certainty is possible in mathematics, but most 
scientific judgments are based on probable knowledge rooted in controlled experiments. Each per
son must evaluate open-mindedly the evidence and make a personal judgment.

“The mechanical world view is a testimonial to three men: Francis Bacon, Rene 
Descartes, and Isaac Newton. After 300 years we are still living off their ideas.”
[Rifkin, 19801

Isaac Newton [1676] wrote to Robert Hooke, “If I have seen a little further it is 
by standing on the shoulders of Giants.”

Bernard of Chartres [~1150] wrote, “We are like dwarfs sitting on the shoulders 
of giants; we see more things, and things that are further off, than they did — not be
cause our sight is better, or because we are taller than they were, but because they raise 
us up and add to our stature by their gigantic height.”

*  *  *

Remarkably, scientific method has changed very little in the last three centuries.
Archimedes [-287-212 B.C.], emphasizing the power of the lever, boasted, “Give me a place to 

stand on and I can move the earth.” Of course, no lever is that strong. Even the 300-ton blocks of 
Egyptian and Middle American pyramids were beyond the strength of individual, rigid levers; recent 
research suggests the possibility that many flexible bamboo levers could have shared and distrib
uted each load [Cunningham, 1988].

Three hundred years ago, the suite of scientific levers was completed. The world began to move 
in response.

*  *  *
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Myth of a Scientific Method
“The unity of science, which is sometimes lost to view through immersion in spe

cialist problems, is essentially a unity of method.” [Russell, 19381

“But on one point I believe almost all modem historians of the natural sciences 
would agree. . .There is no such thing as the scientific method.” [Conant, 19471

Our brief examination of the history of science suggests that trial and error have refined the 
following elements of modem, successful scientific method:

Facts are collected by carefully controlled experiments. Based on these facts, veri
fiable hypotheses are proposed, objectively tested by further experiments, and thereby 
proven or discarded.

This view of scientific method was universally embraced in the 19th century, and it is still 
popular. Most scientists would probably comment that this two-sentence description is necessarily 
a bit simplistic but is about right. They would replace the word ‘facts’, however, by ‘observations’, 
because they recognize that science is too dynamic for any data or ideas to be considered as im
mortal facts.

Philosophers of science universally reject this view of scientific method. They emphasize that 
objectivity is a myth, that experimental observations are inseparable from theories, and that hypothe
sis tests seldom cause rejection of a hypothesis and cannot prove a hypothesis. Furthermore, it is 
impossible to define a single scientific method shared by all scientists; the sciences and scientists 
are far too heterogeneous. Most philosophers of science conclude that the term ‘scientific method’ 
should be abandoned.

“Scientists are people of very dissimilar temperaments doing different things in 
very different ways. Among scientists are collectors, classifiers, and compulsive ti- 
diers-up; many are detectives by temperament and many are explorers; some are art
ists and others artisans.” [Medawer, 19671

Both scientists and philosophers seek universal concepts, but scientists often settle for less: an 
idea may still be considered useful even if it does not fit all relevant data. We scientists can abandon 
the idea of 'the scientific method’ but still embrace the concept of ‘scientific methods’ -  a suite of 
logical techniques, experimental techniques, principles, evaluation standards, and even ethical stan
dards. Unlike Francis Bacon and Rene Descartes, modem scientists can select from this suite with
out rejecting the constructs of those who choose to use different methods. We must, however, know 
the limitations of both our methods and theirs.

*  *  *

Scientific Methods
Two of the most fundamental tools in the scientific toolbox are data and concepts. So basic is 

the distinction between the two, that nearly all publications confine data and interpretations to sepa
rate sections. Clearly, interpretations depend on data; less obviously, all data collection involves 
concept-based assumptions (Chapter 6).
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Explanatory concepts can be given different labels, depending on our confidence in their reli
ability. A law is an explanation in which we have the greatest confidence, based on a long track 
record of confirmations. A theory, for most scientists, denotes an explanation that has been con
firmed sufficiently to be generally accepted, but which is less firmly established than a law. An 
axiom is a concept that is accepted without proof, perhaps because it is obvious or universally ac
cepted (e.g., time, causality) or perhaps to investigate its implications. A hypothesis is an idea that 
is still in the process of active testing; it may or may not be correct. Models are mathematical or 
conceptual hypotheses that provide useful perspectives in spite of recognized oversimplification. 
Whereas laws and theories are relatively static, hypothesis formation, testing, and evaluation are the 
dynamic life of science.

Laws, theories, and hypotheses also differ in generality and scope. Theories tend to be broadest 
in scope (e.g., the theories of relativity and of natural selection); most provide a unified perspective 
or logical framework for a variety of more specific and more limited laws and hypotheses. All three 
are generalizations; rarely do they claim to predict the behavior of every particular case, because 
they cannot encompass all variables that could be relevant. Most laws are expected to be universal in 
their applicability to a specified subset of variables, but some are permitted exceptions. For example, 
the geological law of original horizontally states that nearly all sediments are initially deposited 
almost horizontally. Hypotheses have not fully bridged the gap between the particular and the uni
versal; most are allied closely with the observations that they attempt to explain.

Researchers do not take these terms too seriously, however. The boundaries between these three 
categories are flexible, and the terms may be used interchangeably.

Hypotheses, theories, and laws are explanations of nature, and explanations can be qualitative or 
quantitative, descriptive or causal (Chapter 3). Most explanations involve variables — characteristics 
that exhibit detectable and quantifiable changes (Chapter 2) -  and many explanations attempt to 
identify relationships among variables (Chapter 3).

All scientific concepts must be testable -  capable of confirmation or refutation by systematic 
reality checking. Uncertainty is inherent not only to explanatory concepts, but also in the terms de
scribing concept testing: confirmation, verification, validity, reliability, and significance. Scientific 
confirmation does not establish that an idea must be correct, or even that it is probably correct. Con
firmation is merely the demonstration that a hypothesis is consistent with observations, thereby 
increasing confidence that the hypothesis is correct.

Some concepts can be tested directly against other, more established concepts by simple logical 
deduction (Chapter 4). More often, we need to investigate the hypothesis more indirectly, by identi
fying and empirically testing predictions made by the concept. D ata are the experimental observa
tions, or measurements, that provide these tests.

The interplay between hypothesis and data, between speculation and reality checking, is the 
heart of scientific method. Philosophers of science have devoted much analysis to the question of 
how hypothesis and data interact to create scientific progress. In the latter half of the twentieth cen
tury, the leading conceptualization of the scientific process has been the hypothetico-deductive 
method. Popper [1959,1963],Medawer [1969], Achinstein [1985], and many others have provided 
perspectives on what this method is and what it should be. Most suggest that the gist of this 
method of hypothesis is the following:

Scientific progress is achieved by interplay between imagination and criticism. 
Hypotheses are the key, and hypothesis formation is a creative act, not a compelling 
product of observations. After developing a hypothesis, the scientist temporarily as
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sumes that it is correct, then determines its logical consequences. This inference may 
be deductive, a necessary consequence of the hypothesis, or inductive, a probable im
plication of the hypothesis. To be fruitful, this inference must generate a testable pre
diction of the hypothesis. An experiment is then undertaken to confirm or refute that 
prediction. The outcome affects whether the hypothesis is retained, modified, or re
futed.

This method of hypothesis is the crux of scientific method, but scientific progress need not be 
quite as linear as shown. Hypotheses can be generated at any stage. Most die virtually immediately, 
because they are incompatible with some well-established observations or hypotheses. A single 
hypothesis may yield multiple predictions: some useless, many testable by a brief search of pub
lished experiments, some requiring an experiment that is infeasible, and few leading to actual ex
periments.

The insistence on verifiability, or its converse — falsifiability, limits the scope of science to the 
pursuit of verifiably reliable knowledge. Reliability is, however, subjective (see Chapters 6 and 7), 
and hypothesis tests are seldom as conclusive as we wish. Though a hypothesis test cannot prove a 
hypothesis, some scientists (especially physicists) and many philosophers claim that it can at least 
disprove one. This argument, however, holds only for deductive predictions. More often, the test is 
not completely diagnostic, because assumptions buffer the hypothesis from refutation. Many hy
potheses are abandoned without being refuted. Others are accepted as reliable without proof, if they 
have survived many tests; we cannot work effectively if we constantly doubt everything.

*  *  *

Is there a scientific method? The answer depends on whether one is a lumper or a splitter. Cer
tainly the method of hypothesis is central to nearly all science, but scientific techniques and style 
depend both on the problem investigated and on individual taste.

For some, like Francis Bacon or Thomas Edison, experimentation is exploration; interpretations 
will inevitably follow. Trial and error, with many trials, is the method used by Edison, the medieval 
alchemists, and modem seekers of high-temperature superconductors. Others, like Aristotle, employ 
the opposite approach: develop an idea, then experimentally demonstrate its validity. A few, like 
Rene Descartes or Immanuel Kant, deduce the implications of premises. Many more, like Galileo, 
make predictions based on a hypothesis and empirically test those predictions. For most, each of 
these approaches is sometimes useful.

Research style is also fluid. At one extreme is Leonardo da Vinci, fascinated by everything he 
saw. Mohammad Ali, in describing himself, also described this research style: “Dance like a butter
fly; sting like a bee.” At the other extreme is the Great Pyramid style -  systematically and possibly 
laboriously undertake multiple experiments in the same field, until the final foundation is unshake- 
able. Charles Darwin used this strategy for establishing his theory of evolution, except that he com
piled evidence rather than experiments.

The scientific method is both very liberal and very conservative: any hypothesis is worthy of 
consideration, but only those that survive rigorous testing are incorporated into the framework of 
reliable knowledge. The scientific method is incredibly versatile, both in the range of knowledge 
amenable to its investigation and in the variety of personal scientific styles that it fosters and em
braces. Invariably, however, it demands an intriguing and challenging combination: creativity plus 
skepticism.
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Chapter 2: Variables
A variable is a characteristic that exhibits detectable changes, either regionally or temporally. 

Implicit in this concept of change is influence by something else: Newtonian dynamics show us that 
movement in itself does not imply an external force — change in movement does. Thus scientists are 
seldom concerned with a single variable; more often we seek patterns among variables. This chapter 
focuses on one variable at a time, thereby setting the stage for considerations in the next chapter of 
relationships among variables.

Variables, measurements, and quantification are related components of the foundation of sci
ence. Characterizing a variable requires measurements, and measurements require prior quantifica
tion. Each variable has an associated measurement type:
• N om inal measurements classify information and count the frequency of observations within 
each class. An example is tabulation of the numbers of protons and neutrons in an atom.
• O rd inal measurements specify order, or relative position. Ordinal scales may be objectively 
determined (e.g., the k, I, and m electron shells), subjectively determined but familiar (e.g., youth, 
young adult, adult, old age), or subjectively invented for a particular experiment (e.g., social science 
often uses scales such as this: strongly agree (+2), agree (+1 ), not sure (0), disagree (-1), strongly 
disagree (-2)).
• Interval and ra tio  scales permit measurements of distance along a continuum, with determin
able distance between data. The scales involve either real (fractional) or integer (counting) numbers. 
They differ in that only ratio scales have a true, or meaningful, zero, permitting determination of ra
tios between data measurements. For example, temperatures are measured with an interval scale, 
whereas length is a ratio scale. To refer to one temperature as twice that of another is pointless, 
whereas it is valid to say that one object is twice as long as another.

The initial quantification of any variable is challenging, for we seek a scale that is both measur
able and reliable. Soon, however, that quantification is taken for granted. Finding a way to quantify 
some variable tends to be more of a problem in the social sciences than in the physical sciences.

*  *  *

Statistics
Statistics are pattern recognition transformed, from a qualitative guess about what may be, into a 

quantitative statement about what probably is.

A decade ago, scientific statistics usually required either complex number crunching or simpli
fying approximations. Since then, computers have revolutionized our approach to statistics. Now 
standard statistical techniques are available on most personal computers by simply choosing an op
tion, and programs for even the most sophisticated statistical techniques are available from books 
such as Numerical Recipes [Press et al., 1988]. With easy access comes widespread misuse; one 
can use various statistical routines without learning their assumptions and limitations.

Statistics help us both to solve single-variable problems (this chapter) and to accomplish multi
variate pattern recognition (next chapter). Neither chapter is a substitute for a statistics course or 
statistics book; no proofs or derivations are given, and many subjects are skipped. Statistics books
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present the forward problem of looking at the statistical implications of each of many groups of ini
tial conditions. The scientist more often faces the inverse problem: the data are in-hand, and the re
searcher wonders which of the hundreds of techniques in the statistics book is relevant.

Efficiency is a key to productive science. Statistics and quantitative pattern recognition increase 
that efficiency in many ways: optimizing the number of measurements, extracting more information 
from fewer observations, detecting subtle patterns, and strengthening experimental design. Statistics 
may even guide the decision on whether to start a proposed experiment, by indicating its chance of 
success. Thus, it is a disservice to science to adopt the attitude of Rutherford [Bailey, 1967]: “ I f  
your experiment needs statistics, you ought to have done a better experiment.”

These two chapters introduce some of the statistical methods used most frequently by scientists, 
and they describe key limitations of these techniques. Rather than an abridged statistics book, the 
chapters are more an appetizer, a ready reference, an attempt at demystifying a subject that is an es
sential part of the scientific toolbox.

*  *  *

Errors
All branches of science use numerical experimental data, and virtually all measurements and all 

experimental data have errors -  differences between measurements and the true value. The only 
exceptions that I can think of are rare integer data (e.g., how many of the subjects were male?); real 
numbers are nearly always approximate. If a measurement is repeated several times, measurement 
errors are evident as a measurement scatter. These errors can hide the effect that we are trying to 
investigate.

*  *  *

Errors do not imply that a scientist has made mistakes. Although almost every researcher occa
sionally makes a mathematical mistake or a recording error, such errors are sufficiently preventable 
and detectable that they should be extremely rare in the final published work of careful scientists. 
Checking one’s work is the primary method for detecting personal mistakes. Scientists vary con
siderably in how careful they are to catch and correct their own mistakes.

How cautious should a scientist be to avoid errors? A scientist’s rule of thumb is that interpre
tations can be wrong, assumptions can be wrong, but there must be no data errors due to mis
takes. The care warranted to avoid errors is proportional to the consequences o f mistakes. A  
speculation, if labeled as such, can be wrong yet fruitful, whereas the incorrect announcement of a 
nonprescription cure for cancer is tantamount to murder.

Physicist George F. Smoot set a standard of scientific caution: for 1 1/2 years he 
delayed announcement of his discovery of heterogeneities in the background radia
tion of the universe, while his group searched avidly for any error in the results. He 
knew that the discovery provided critical confirmation of the Big Bang theory, but he 
also knew that other scientists had mistakenly claimed the same result at least twice be
fore. Consequently, he made the following standing offer to members of his research 
team: to anyone who could find an error in the data or data analysis, he would give an 
air ticket to anywhere in the world. [5/5/92 New York Times]

I imagine that he was also careful to emphasize that he was offering a round-trip 
ticket, not a one-way ticket.

Both scientists and non-scientists have recognized the constructive role that error can play:
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“Truth comes out of error more readily than out of confusion.” [Francis Bacon,
16201

“The man who makes no mistakes does not usually make anything.” [Phelps,
18991

Incorrect but intriguing hypotheses can be valuable, because the investigations that they inspire 
may lead to a discovery or at least show the way toward a better hypothesis (Chapter 7). Humphrey 
Davy [1840] said, “The most important of my discoveries have been suggested by my failures.” 
More rarely, incorrect evidence can inspire a fruitful hypothesis: Eldredge and Gould’s [1972] 
seminal reinterpretation of Darwinian evolution as punctuated equilibrium initially was based on 
inappropriate examples [Brown, 1987].

Errors are most likely to be detected upon first exposure. Once overlooked, they become almost 
invisible. For example, if an erroneous hypothesis passes initial tests and is accepted, it becomes 
remarkably immune to overthrow.

“One definition of an expert is a person who knows all the possible mistakes and 
how to avoid them. But when we say that people are ‘wise’ it’s not usually because 
they’ve made every kind of mistake there is to make (and learned from them), but 
because they have stored up a lot of simulated scenarios, because their accumulated 
quality judgments (whether acted upon or not) have made them particularly effective 
in appraising a novel scenario and advising on a course of action.” [Calvin, 1986]

*  *  *

Errors arise unavoidably: unrecognized variations in experimental conditions generate both so- 
called ‘random’ errors and systematic errors. The researcher needs to know the possible effects of 
errors on experimental data, in order to judge whether or not to place any confidence in resulting 
conclusions. Without knowledge of the errors, one cannot compare an experimental result to a theo
retical prediction, compare two experimental results, or evaluate whether an apparent correlation is 
real. In short, the data are nearly useless.

*  *  *

Precision > Accuracy > Reliability
The terms precision, accuracy, reliability, confidence, and replicatability are used interchangea

bly by most non-scientists and are even listed by many dictionaries as largely synonymous. In their 
scientific usage, however, these terms have specific and important distinctions.

Errors affect the precision and accuracy of measurements. Precision is a measure of the scatter, 
dispersion, or rep licatab ility  of the measurements. Low-precision, or high-scatter, measurements 
are sometimes referred to as noisy data. Smaller average difference between repeat (replicate) meas
urements means higher precision. For example, if we measure a sheet of paper several times with a 
ruler, we might get measurements such as 10.9", 11.0", 10.9", and 11.1". If we used a micrometer 
instead, we might get measurements such as 10.97", 10.96", 10.98", and 10.97". Our estimates 
show random variation regardless of the measuring device, but the micrometer gives a more precise 
measurement than does the ruler. If our ruler or micrometer is poorly made, it may yield measure
ments that are consistently offset, or systematically biased, from the true lengths. Accuracy is the 
extent to which the measurements are a reliable estimate of the ‘true’ value. Both random errors and 
systematic biases reduce accuracy.
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R eliability  is a more subjective term, referring usually to interpretations but sometimes to 
measurements. Reliability is affected by both precision and accuracy, but it also depends on the va
lidity of any assumptions that we have made in our measurements and calculations. Dubious as
sumptions, regardless of measurement precision and accuracy, make interpretations unreliable.

*  *  *

Random and Systematic Errors
Random errors are produced by multiple uncontrolled and usually unknown variables, each of 

which has some influence on the measurement results. If these errors are both negative and positive 
perturbations from the true value, and if they have an average of zero, then they are said to affect the 
precision of replicate measurements but they do not bias the average measurement value.

If the errors average to a nonzero value, then they are called systematic errors. A constant sys
tematic error affects the accuracy but not the precision of measurements; a variable systematic error 
affects both accuracy and precision. Systematic errors cause a shift of individual measurements, and 
thus also of the average measured value, away from the true value. Equipment calibration errors are 
a frequent source of systematic errors. Inaccurate calibration can cause all values to be too high (or 
low) by a similar percentage, a similar offset, or both. An example of a systematic percentage bias is 
plastic rulers, which commonly are stretched or compressed by about 1%. An example of an offset 
bias is using a balance without zeroing it first. Occasionally, systematic errors may be more compli
cated. For example, a portable alarm clock may be set at a slightly incorrect time, run too fast at first, 
and run too slowly when it is about ready for rewinding.

Both random and systematic errors are ubiquitous. In general, ‘random errors’ only appear to 
be random because we have no ability to predict them. If either random or systematic errors can be 
linked to a causal variable, however, it is often possible to remove their adverse effects on both pre
cision and accuracy.

One person’s signal is another person’s noise, I realized when I was analyzing 
data from the Magsat satellite. Magsat had continuously measured the earth’s mag
netic field while orbiting the earth. I was studying magnetism of the earth’s crust, so I 
had to average out atmospheric magnetic effects within the Magsat data. In contrast, 
other investigators were interested primarily in these atmospheric effects and were 
busily averaging out crustal ‘contamination.’

Random errors can be averaged by making many replicate, or repeat, measurements. Replicate 
measurements allow one to estimate and minimize the influence of random errors. Increasing the 
number of replicate measurements allows us to predict the true value with greater confidence, de
creasing the confidence lim its or range of values within which the true value lies. Increasing the 
number of measurements does not rectify the problem of systematic errors, however; experimental 
design must anticipate such errors and attenuate them.

*  *  *

Representative Sampling
Most experiments tackle two scientific issues — reducing errors and extrapolating from a sam

ple to an entire population -  with the same technique: representative sampling. A representative 
sample is a small subset of the overall population, exhibiting the same characteristics as that popu
lation. It is also a prerequisite to valid statistical induction, or quantitative generalization. Nonrepre
sentative sampling is a frequent pitfall that is usually avoidable. Often, we seek patterns applicable 
to a broad population of events, yet we must base this pattern recognition on a small subset of the
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population. If our subset is representative of the overall population, if it exhibits similar characteris
tics to any randomly chosen subset of the population, then our generalization may have applicability 
to behavior of the unsampled remainder of the population. If not, then we have merely succeeded in 
describing our subset.

Representative sampling is essential for successful averaging of random errors and avoidance of 
systematic errors, or bias. Random sampling achieves representative sampling. No other method is 
as consistently successful and free of bias. Sometimes, however, random sampling is not feasible. 
With random sampling, every specimen of the population should have an equal chance of being in
cluded in the sample. Every specimen needs to be numbered, and the sample specimens are selected 
with a random number generator. If we lack access to some members of the population, we need to 
employ countermeasures to prevent biased sampling and consequent loss of generality. Stratifica
tion is such a countermeasure.

Stratification does not attempt random sampling of an entire population. Instead, one carefully 
selects a subset of the population in which a primary variable is present at a representative level. 
Stratification is only useful for assuring representative sampling if the number of primary variables 
is small. Sociologists, for example, cannot expect to find and poll an ‘average American family’. 
They can, however, investigate urban versus rural responses while confining their sampling to a few 
geographical regions, if those regions give a stratified, representative sample of both urban and rural 
populations.

For small samples, stratification is actually more effective in dealing with a primary variable than 
is randomization: stratification deliberately assures a representative sampling of that variable, 
whereas randomization only approximately achieves a representative sample. For large samples and 
many variables, however, randomization is safer. Social sciences often use a combination of the two: 
stratification of a primary variable and randomization of other possible variables [Hoover, 1988]. 
For example, the Gallup and Harris polls use random sampling within a few representative areas.

In 1936, the first Gallup poll provided a stunning demonstration of the superior
ity of a representative sample over a large but biased sample. Based on polling twenty 
million people, the Literary Digest projected that Landon would defeat Roosevelt in 
the presidential election. The Literary Digest poll was based on driver’s license and 
telephone lists; only the richer segment of the depression-era population had cars or 
telephones. In contrast, George Gallup predicted victory for Roosevelt based on a rep
resentative sample of only ten thousand people.

The concept of random sampling is counterintuitive to many new scientists and to the public. A 
carefully chosen sample seems preferable to one selected randomly, because we can avoid anoma
lous, rare, and unusual specimens and pick ones exhibiting the most typical, broad-scale character
istics. Unfortunately, the properties of such a sample probably cannot be extrapolated to the entire 
population. Statistical treatment of such data is invalid. Furthermore, sampling may be subcon
sciously biased, tending to yield results that fulfill the researcher’s expectations and miss unfore
seen relationships (Chapter 6). Selective sampling may be a valid alternative to random sampling, if 
one confines interpretations to that portion of the population for which the sample is a representa
tive subset.

Even representative sampling cannot assure that the results are identical to the behavior of the 
entire population. For example, a single coin flip, whether done by hand or by a cleverly designed 
unbiased machine, will yield a head or a tail, not 50% heads and 50% tails. The power of random 
sampling is that it can be analyzed reliably with quantitative statistical techniques such as those de
scribed in this chapter, allowing valid inferences about the entire population. Often these inferences
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are of the form ‘A probably is related to B, because within my sample of N  specimens I observe that 
the A{ are correlated with

*  *  *

Replication and Confirmation

The terms replicatability and reproducibility are often used to refer to the similarity of rep
licate measurements; in this sense they are dependent only on the precision of the measurements. 
Sometimes replicatability is used in the same sense as replication, describing the ability to repeat an 
entire experiment and obtain substantially the same results. An experiment can fail to replicate be
cause of a technical error in one of the experiments. More often, an unknown variable has different 
values in the two experiments, affecting them differently. In either case the failure to replicate trans
forms conclusions. Identifying and characterizing a previously unrecognized variable may even 
eclipse the original purpose of the experiments.

Replication does not imply duplication of the original experiment’s precision and accuracy. In
deed, usually the second experiment diverges from the original in design, in an attempt to achieve 
higher precision, greater accuracy, or better isolation of variables. Some [e.g., Wilson, 1952] say 
that one should not replicate an experiment under exactly the same conditions, because such ex
periments have minor incremental information value. Exact replication also is less exciting and less 
fundamental than novel experiments.

If the substantive results (not the exact data values but their implications) or conclusions of the 
second experiment are the same as in the first experiment, then they are confirmed. Confirmation 
does not mean proved; it means strengthened. Successful replication of an experiment is a confir
mation. Much stronger confirmation is provided by an experiment that makes different assumptions 
and different kinds of measurements than the first experiment, yet leads to similar interpretations 
and conclusions.

In summary, precision is higher than accuracy, because accuracy is affected by both precision 
and systematic biases. Accuracy is higher than reliability, because reliability is affected not just by 
measurement accuracy but also by the validity of assumptions, simplifications, and possibly gener
alizations. Reliability is increased if other experiments confirm the results.

*  *  *

Probability
Probability is a concern throughout science, particularly in most social sciences, quantum 

physics, genetics, and analysis of experiments. Probability has a more specific meaning for mathe
maticians and scientists than for other people. Given a large number of experiments, or trials, with 
different possible outcomes, probability is the proportion of trials that will have one type of out
come. Thus the sum of probabilities of all possible outcomes is one.

Greater probability means less uncertainty, and one objective of science is to decrease uncer
tainty, through successful prediction and the recognition of orderly patterns. Induction (Chapter 3), 
which is a foundation of science, is entirely focused on determining what is probably true. Only by 
considering probability can we evaluate whether a result could have occurred by chance, and how 
much confidence to place in that result.

“Looking backwards, any particular outcome is always highly improbable” [Calvin, 1986]. For 
example, that I am alive implies an incredibly improbable winning streak of birth then reproduction
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before death that is several hundred million years long. Yet I do not conclude that I probably am not 
alive. The actual result of each trial will be either occurrence or nonoccurrence of a specific out
come, but our interest is in proportions for a large number of trials.

The most important theorem of probability is this: when dealing with several independent 
events, the probability of all of them happening is the product of the individual probabilities. For 
example, the probability of flipping a coin twice and getting heads both times is the
chance of flipping a coin and a die and getting a head plus a two is 1/2*1/6=1/ i 2 - If one has already 
flipped a coin twice and gotten two heads, the probability of getting heads on a third trial and thus 
making the winning streak three heads in a row is 1/2 , not ll2mll lmll2=ll%- The third trial is inde
pendent of previous results.

Though simple, this theorem of multiplicative probabilities is easy to misuse. For example, if the 
probability of getting a speeding ticket while driving to and from work is 0.05 (i.e., 5%) per round 
trip, what is the probability of getting a speeding ticket sometime during an entire week of com
muting? The answer is not .05*.05*.05*.05*.05=.0000003; that is the probability of getting a 
speeding ticket on every one of the five days. If the question is expressed as “what is the probabil
ity of getting at least one speeding ticket” , then the answer is l-0.955=0.226, or 1 minus the prob
ability of getting no speeding tickets at all.

Often the events are not completely independent; the odds of one trial are affected by previous 
trials. For example, the chance of surviving one trial of Russian roulette with a 6-shot revolver is % ; 
the chance of surviving two straight trials (with no randomizing spin of the cylinders between trials) 
is 5/6*4/5=2/3.

Independence is the key to assuring that an undesirable outcome is avoided, whether in a scien
tific research project or in everyday life. The chance of two independent rare events occurring si
multaneously is exceedingly low. For example, before a train can crash into a station, the engineer 
must fail to stop the train (e.g., fall asleep) and the automatic block system must fail. If the chance 
of the first occurring is 0.01 and the chance of the second occurring is 0.02, then the chance of a 
train crash is the chance of both occurring together, or 0.01*0.02=0.0002. The same strategy has 
been used in nuclear reactors; as I type this I can look out my window and see a nuclear reactor 
across the Hudson River. For a serious nuclear accident to occur, three ‘independent’ systems must 
fail simultaneously: primary and secondary cooling systems plus the containment vessel. However, 
the resulting optimistic statements about reactor safety can be short-circuited by a single circum
stance that prevents the independence of fail-safes (e.g., operator panic misjudgments or an earth
quake).

Entire statistics books are written on probability, permitting calculation of probabilities for a 
wide suite of experimental conditions. Here our scope is much more humble: to consider a single 
‘probability distribution function’ known as the normal distribution, and to determine how to as
sess the probabilities associated with a single variable or a relationship between two variables.

*  *  *

Sampling Distribution for One Variable
Begin with a variable which we will call X, for which we have 100 measurements. This dataset 

was drawn from a table of random normal numbers, but in the next section we will consider actual 
datasets of familiar data types. Usually we have minimal interest in the individual values of our 100 
(or however many) measurements of variable X; these measurement values are simply a means to an
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end. We are actually interested in knowing the true value of variable X, and we make replicate meas
urements in order to decrease the influence of random errors on our estimation of this true value. 
Using the term ‘estimation’ does not imply that one is guessing the value. Instead ‘estimation’ re
fers to the fact that measurements estimate the true value, but measurement errors of some type are 
almost always present.

Even if we were interested in the 100 individual values of X. we face the problem that a short or 
prolonged examination of a list of numbers provides minimal insight, because the human mind can
not easily comprehend a large quantity of numbers simultaneously. What we really care about is 
usually the essence or basic properties of the dataset, in particular:
* what is the average value?
* what is the scatter?
* are these data consistent with a theoretically predicted value for XI
* are these data related to another variable, F?

With caution, each of the first three questions can be described with a single number, and that is 
the subject of this chapter. The engaging question of relationship to other variables is discussed in 
Chapter 3.

Histograms
The 100 measurements of X  are more easily visualized in a histogram than in a tabulation of 

numbers. A histogram is a simple binning of the data into a suite of adjacent intervals of equal 
width. Usually one picks a fairly simple histogram range and interval increment. For example, our 
100 measurements range from a minimum of -2.41 to a maximum of 2.20, so one might use a plot 
range of -2.5 to 2.5 and an interval of 0.5 or 1.0, depending on how many data points we have. The 
choice of interval is arbitrary but important, as it affects our ability to see patterns within the data. 
For example, Figure 1 shows that for the first 20 values of this dataset:
* an interval of 0.2 is too fine, because almost every data point goes into a separate bin. The eye 
tends to focus mainly on individual data points rather than on broad patterns, and we cannot easily 
see the relative frequencies of values.
* an interval of 0.5 or 1.0 is good, because we can see the overall pattern of a bell-shaped distribu
tion without being too distracted by looking at each individual point.

Figure 1. Three histograms of the same rand20a dataset, with binning intervals of 0.2 (A), 0.5 (B), and 
1.0 (C). A longer binning interval helps to show that these data are from a normal distribution.
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When we have 50 or 100 measurements instead of 20, we find that a finer histogram-binning 
interval is better for visualizing the pattern of the data. Figure 2 shows that an interval of about 0.5 
is best for 100 measurements of this data type.

121— i— i— i— i— i— i— i— i— i—  30r

Figure 2. Histograms of two 50-point datasets (randSOa & rand50b) and a combined 100-point dataset 
(rand 100). Although all data are drawn from a table of random normal numbers, randSOb appears to be 
non-normally distributed. Based on these histograms and Figure 1, a dataset must have more than 50 
points for reliable visual determination of whether it is normally distributed.

* * *

Normal Distribution
The data shown in Figures 1 and 2 have what is called a norm al d is tribu tion . Such a distri

bution is formally called a Gaussian distribution or informally called a bell curve. The normal dis
tribution has both a theoretical and an empirical basis. Theoretically, we expect a normal distribution 
whenever some parameter or variable X has many independent, random causes of variation and sev
eral of these so-called ‘sources of variance’ have effects of similar magnitude. Even if an individual 
type of error is non-normally distributed, groups of such errors are. Empirically, countless types of 
measurements in all scientific fields exhibit a normal distribution. Yet we must always verify the 
assumption that our data follow a normal distribution. Failure to test this assumption is scientists’ 
most frequent statistical pitfall. This mistake is needless, because one can readily examine a dataset 
to determine whether or not it is normally distributed.

Mean and Standard Deviation

For any dataset that follows a normal distribution, regardless of dataset size, virtually all of the 
information is captured by only three variables:

N: the number of data points, or measurements;
X: the mean value; and

a: the standard deviation.

The mean ( X), also called the arithmetic mean, is an average appropriate only for normal distribu
tions. The mean is defined as:
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N

X  =  2 x ^ / N  =  ( x 1+ x 2+ . . . x n _1+ x n ) /N  

i=l

or, in shortened notation, X = 2xj/N. The mean is simply the sum of all the individual measure
ment values, divided by the number of measurements.

The standard  deviation (a) is a measure of the dispersion or scatter of data. Defined as the 
square root of the variance (tJ2), it is appropriate only for normal distributions. The variance is de
fined as:

a 2 = 2(xi- X)2/N.

Thus the variance is the average squared deviation from the mean, i.e., the sum of squared devia
tions from the mean divided by the number of data points. Computer programs usually avoid han
dling each measurement twice (first to calculate the mean and later to calculate the variance) by us
ing an alternative equation: a 2 = N_12(xi2)- X2.

The standard deviation and variance are always positive. The units of standard deviation are the 
same as those of the x  data. Often one needs to compare the scatter to the average value; two handy 
measures of this relationship are the fractional standard deviation (a/ X) and percentage standard 
deviation (100a/ X).

Normal Distribution Function

The norm al d istribu tion  function,
or ‘normal error function’, is shown in 
Figure 3. This probability distribution 
function of likely X  values is expressed 
in terms of the ‘true mean’ M  and stan
dard deviation a  as:

f(x) = (l/a(2jt)°'5)e-(x-M)2/2o2,

For data drawn from a normal distribu
tion, we can expect about 68.3% of the 
measurements to lie within one standard 
deviation of the mean, with half of the 
68.3% above the mean and half below.
Similarly, 95.4% of the measurements 
will lie within two standard deviations of 
the mean (i.e., within the interval X-2a <
Xj < X+2a), and 99.7% of the measurements will lie within three standard deviations of the mean. 
These percentages are the areas under portions of the normal distribution function, as shown in 
Figure 3. All statistics books explain how to find the area under any desired portion of the curve, 
i.e., how to find the expected proportion of the data that will have values between specified limits. 
Of course, for the finite number of measurements of an individual dataset, we will only approxi
mately observe these percentages. Nevertheless, it is well worth memorizing the following two ap
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proximations: two thirds o f data lie within one standard deviation o f the mean, and 95% lie within 
two standard deviations.

Although calculation of both the mean and standard deviation involves division by N, both are 
relatively independent of N. In other words, increasing the number of data points does not system
atically increase or decrease either the mean or the standard deviation. Increasing the number of data 
points, however, does increase the usefulness of our calculated mean and standard deviation, be
cause it increases the reliability of inferences drawn from them.

Based on visual examination of a histogram, it may be difficult to tell whether or not the data 
originate from a normally distributed parent population. For small N  such as N= 20 in Figure 1, 
random variations can cause substantial departures from the bell curve of Figure 3, and only the 
coarsest binning interval (Figure lc) looks somewhat like a simple normal distribution. Even with 
iV=50, the two samples in Figure 2 visually appear to be quite different, although both were drawn 
from the same table of random normal numbers. With iV=100, the distribution begins to approxi
mate closely the theoretical normal distribution (Figure 3) from which it was drawn. Fortunately, the 
mean and standard deviation are more robust; they are very similar for the samples of Figures 1 and 
2.

The mean provides a much better estimate of the true value of X  (the ‘true mean’ M) than do 
any of the individual measurements of X, because the mean averages out most of the random errors 
that cause differences between the individual measurements. How much better the mean is than the 
individual measurements depends on the dispersion (as represented by the standard deviation) and 
the number of measurements (N); more measurements and smaller standard deviation lead to 
greater accuracy of the calculated mean in estimating the true mean.

Our sample of N  measurements is a subset of the parent population of potential measurements 
of X. We seek the value M  of the parent population (the ‘true mean’). Finding the average X  of 
our set of measurements (the ‘calculated mean’) is merely a means to that end. We are least inter
ested in the value xt of any individual measurement, because it is affected strongly by unknown and 
extraneous sources of noise or scatter. I f  the data are normally distributed and unbiased, then the 
calculated mean is the most probable value o f the true average o f the parent population. Thus the 
mean is an extremely important quantity to calculate. Of course, if the data are biased such as would 
occur with a distorted yardstick, then our estimate of the true average is also biased. We will return 
later to the effects of a non-normal distribution.

Just as one can determine the mean and standard deviation of a set of N  measurements, one can 
imagine undertaking several groups of N  measurements and then calculating a grand mean and 
standard deviation of these groups. This grand mean would be closer to the true mean than most of 
the individual means would be, and the scatter of the several group means would be smaller than the 
scatter of the individual measurements. The standard deviation of the mean (a  £), also called the 
standard  error of the mean, is: a  -=a/N"'5. Note that unlike a sample standard deviation, the 
standard deviation of the mean does decrease with increasing N. This standard deviation of the 
mean has three far-reaching but underutilized applications: weighted averages, confidence limits for 
the true mean, and determining how many measurements one should make.
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A weighted mean is the best way to average data that have different precisions, if we know or 
can estimate those precisions. The weighted mean is calculated like an ordinary mean, except that 
we multiply each measurement by a weighting factor and divide the sum of these products not by N  
but by the sum of the weights, as follows:

X = 2wjXj / 2wj where wt is the weighting factor of the ith measurement. If we use equal weights, 
then this equation reduces to the equation for the ordinary mean. Various techniques for weighting 
can be used. If each of the values to be averaged is itself a mean with an associated known variance, 
then the most theoretically satisfying procedure is to weight each value according to the inverse of 
the variance of the mean: Wj = 1/a2 ^  = N /a2 j. The weighted variance is: a 2 ^ = l /2 ( l / a 2 ^  ) =
1/2 Wj.

For example, suppose that three laboratories measure a variable Y and obtain the following:

Weighted Mean

N mean 0 0 _ (=aN~0'5) Wj
lab 1 : 2 0 109 1 0 2.24 0 .2

lab 2 : 2 0 105 7 1.57 0.41
lab 3: 50 103 7 0.99 1 .0 2

Then X =(0.20*109 + 0.41-105 + 1.02-103)/(0.20+0.41+1.02) = 104.2. The variance of this 
weighted mean is a 2 ^ = 1/(0.20+0.41+1.02) = 0.613, and so the standard deviation of the 
weighted mean is a  ^ = 0.78. Note that the importance or weighting of the measurements from Lab
2 is twice as high as from Lab 1, entirely because Lab 2 was able to achieve a 30% lower standard 
deviation of measurements than Lab 1 could. Lab 3, which obtained the same standard deviation as 
Lab 2 but made 2.5 times as many measurements as Lab 2, has 2.5 times the importance or 
weighting of results.

95% Confidence Limits on Mean

Usually we want to use our measurements to make a quantitative estimate of the true mean M. 
One valuable way of doing so is to state the 95% confidence limits on the true mean, which for con
venience we will call CX9 5 . Confidence limits for the true mean M  can be calculated as follows:

95% confidence limits: 0 .9 5 = 0  x't95 X-0.95 < M < X+CI95

99% confidence limits: 0 .9 9 = 0  - ^ 9 9  X -a99 < M < X +a99

Just multiply the standard error of the mean by the ‘t-factor’, finding the t-factor in the table below 
for the appropriate number of measurements.

By stating the mean (our best estimate of the true mean M) and its 95% confidence, we are 
saying that there is only a 5% chance that the true mean is outside the range X ± a 9 5 . One’s desire 
to state results with as high a confidence level as possible is countered by the constraint that higher 
confidence levels encompass much broaden ranges of potential data values. For example, our ran- 
dom-number dataset (N=100, a  x=0.095. X=0.02) allows us to state with 95% confidence that the 
true mean lies within the interval -0.17 to 0.21 (i.e., X ± CX95, or 0.02 ± 0.19). We can state with
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99% confidence that the true mean is within the interval -0.23 to 0.27. Actually the true mean for 
this dataset is zero.
Table 1. Values of the t distribution for 95% and 99% confidence limits (two-tailed) and for differ
ent sample sizes [Fisher and Yates, 1963].___________________________________________
N: 2 3 4 5 6 7 8 9 10 11

t95: 12.71 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228
tgg: 63.66 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169

N: 1 2 13 14 15 16 17 18 19 2 0 2 1

tgs: 2 .2 0 1 2.179 2.160 2.145 2.131 2 .1 2 0 2 .1 1 0 2 .1 0 1 2.093 2.086
t99: 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845

N: 2 2 23 24 25 30 40 60 80 1 0 0 00

t95: 2.080 2.074 2.069 2.064 2.045 2.023 2 .0 0 1 1.990 1.984 1.960
t99: 2.831 2.819 2.807 2.797 2.756 2.713 2.662 2.640 2.627 2.576

Selection of a confidence level (CX95, « g g .  etc.) usually depends on one’s evaluation of which 
risk is worse: the risk of incorrectly identifying a variable or effect as significant, or the risk of 
missing a real effect. Ts the penalty for error as minor as having a subsequent researcher correct the 
error, or could it cause disaster such as an airplane crash? If prior knowledge suggests one outcome 
for an experiment, then rejection of that outcome needs a higher than ordinary confidence level. For 
example, no one would take seriously a claim that an experiment demonstrates test-tube cold fusion 
at the 95% confidence level; a much higher confidence level plus replication was demanded. Most 
experimenters use either a 95% or 99% confidence level. Tables for calculation of confidence limits 
other than 95% or 99%, called tables of the t distribution, can be found in any statistics book.

How Many Measurements are Needed?
The standard error of the mean a  x is also the key to estimating how many measurements to

make. The definition a  ^= oN 05 can be recast as N =a2/a 2 Suppose we want to make enough 
measurements to obtain a final mean that is within 2  units of the true mean (i.e., a  x<2 ), and a small 
pilot study permits us to calculate that our measurement scatter a~10. Then our experimental series
will need N>102/22, orN>25, measurements to obtain the desired accuracy at the 6 8 % confidence 
level (or l a  *). For about 95% confidence, we recall that about 95% of points are within 2a  of the
mean and conclude that we would need 2a  x<2, so N>102/12, or N>100 measurements. Alterna
tively and more accurately, we can use the t table above to determine how many measurements will 
be needed to assure that our mean is within 2 units of the true mean at the 95% confidence level 
(ag5 <2 ): we need for 195=0 1 95 /0  x= a 95  N°'5/a=  2 N°'5/10 = 0.2 N0 5 to be greater than the t95 in the 
table above for that N. By trying a few values of N, we see that iV>100 is needed.

As a rule of thumb, one must quadruple the number o f measurements in order to double the 
precision o f the result. This generalization is based on the N0 5 relationship of standard deviation to 
standard error and is strictly true only if our measure of precision is the standard error. Tf, as is of
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ten the case, our measure of precision is CX95, then the rule of thumb is only approximately true be
cause the f  s of Table 1 are only approximately equal to 2.0.

*  *  *

Propagation of Errors

Sometimes the variable of interest actually is calculated from measurements of one or more 
other variables. In such cases it is valuable to see how errors in the measured variables will propa
gate through the calculation and affect the final result. Propagation of errors is a scientific concern 
for several reasons:
* it permits us to calculate the uncertainty in our determination of the variable of interest;
* it shows us the origin of that uncertainty; and
* a quick analysis of propagation of errors often will tell us where to concentrate most of our lim
ited time resources.

If several different independent errors (e,-) are responsible for the total error (£) of a measure
ment, then:

E2 = C | -+C2 “+- ■ ■ +Cj\!~

As a rule of thumb, one can ignore any random error that is less than a quarter the size o f the 
dominant error. The squaring of errors causes the smaller errors to contribute trivially to the total 
error. If we can express errors in terms of standard deviations and if we have a known relationship 
between error-containing variables, then we can replace the estimate above with the much more 
powerful analysis of propagation of errors which follows.

Suppose that the variable of interest is V, and it is a function of the several variables a, b, c, . . .: 
V=f(a,b,c,...). If we know the variances of a, b, c, . . . ,  then the variance of V can be calculated from:

a 2y = (dV/da)2*a2a + (dV/db)2* o \  + . . .  (1)

Thus the variance of V is equal to the sum of the product of each individual variance times the 
square of the partial derivative. For example, if we want to determine the area (A) of a rectangle by 
measuring its two sides (a and by. A=ab, and a 2A = (<9A/da)2*a2a + (<9A/db)2*a2b = b2a 2a + 

a2o \ .  Propagation of errors can be useful even for single-variable problems. For example, if we 
want to determine the area (A) of a circle by measuring its radius (r): A=Jtr2, and a 2A = 
(dA/dr)2*a2r = (2jt r)2a 2r .

Why analyze propagation of errors? In the example above of determining area of a circle from 
radius, we could ignore propagation of errors, just convert each radius measurement into an area, 
and then calculate the mean and standard deviation of these area determinations. Similarly, we could 
calculate rectangle areas from pairs of measurements of sides a and b, then calculate the mean and 
standard deviation of these area determinations. In contrast, each of the following variants on the 
rectangle example would benefit from analyzing propagation of errors:
* measurements a and b of the rectangle sides are not paired; shall we arbitrarily create pairs for cal
culation of A, or use propagation of errors?

* we have different numbers of measurements of rectangle sides a and b. We must either discard 
some measurements or, better, use propagation of errors;
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* we are about to measure rectangle sides a and b and we know that a will be about 1 0  times as big 
as b. Because a 2 A = b2a 2a + a2a 2b, the second term will be about 100 times as important as the 
first term if a and b have similar standard deviations, and we can conclude that it is much more im
portant to find a way to reduce o2j, than to reduce o2a.

Usually we are less interested in the variance of V than in the variance of the mean V, or its 
square root (the standard error of V). We can simply replace the variances in equation (1) above 
with variances of means. Using variances of means, propagation of errors allows us to estimate how 
many measurements of each of the variables a,b,c,. . . would be needed to determine V with some 
desired level of accuracy, if we have a rough idea of what the expected variances of a,b,c, . . . will 
be. Typically the variables a,b,c,.. . will have different variances which we can roughly predict after 
a brief pilot study or before we even start the controlled measurement series. Tf so, a quick analysis 
o f propagation o f errors will suggest concentrating most o f our limited time resources on one 
variable, either with a large number of measurements or with slower and more accurate measure
ments. For example, above we imagined that a is about 10 times as big as b and therefore concluded 
that we should focus on reducing o2}, instead of reducing o2a. Even if we have no way of reducing
o ^ w e  can reduce o2 ^(variance of mean b) by increasing the number of measurements, because 
the standard error a  x=aN '"'\

Equation (1) and ability to calculate simple partial derivatives will allow one to analyze propaga
tion of errors for most problems. Some problems are easier if equation (1) is recast in terms of 
fractional standard deviations:

(a v/V ) 2 = (V-1*3V/3a)2*a2a + (V-i-dV/db)2* ^  + .. . (2)

Based on equation (1) or (2), here are the propagation of error equations for several common 
relationships of V to the variables a and b, where k and n are constants:

V=ka+nb: a 2v = k2a 2a + n2a 2b 

V=ka-nb: a 2v = k2a 2a + n2a 2b 

V=kab: o \  = (k b a a ) 2 + (k I a b ) 2

or: (a v/ V) 2 = (a a/ a) 2 + (ab/ b) 2 

V=ka/b: (a v/ V) 2 = (a a/ a) 2 + (ab/ b) 2 

V=kan: a v/ V = naa/ a 

V=akbn: (a v/ V) 2 = (kaa/ I ) 2 + (nab/ b) 2

*  *  *

Non-Normal Distributions
The most frequent statistics pitfall is also a readily avoided pitfall: assuming a normal distribu

tion when the data are non-normally distributed. Every relationship and equation in the previous 
section should be used only if the data are normally distributed or at least approximately normally 
distributed. The more data depart from a normal distribution, the more likely it is that one will be



30

misled by using what are called ‘parametric statistics’, i.e., statistics that assume a Gaussian distri
bution of errors. This section is organized in the same sequence that most data analyses should 
follow:

1) test the data for normality;
2 ) if non-normal, can one transform the data to make them normal?
3) if non-normal, should anomalous points be omitted?
4) if still non-normal, use non-parametric statistics.

Normality Tests
Because our statistical conclusions are often somewhat dependent on the assumption of a nor

mal distribution, we would like to undertake a test that permits us to say “I am 95% confident that 
this distribution is normal.” But such a statement is no more possible than saying that we are 95% 
certain that a hypothesis is correct; disproof is more feasible and customary than proof. Thus our 
normality tests may allow us to say that “there is <5% chance that this distribution is normal” or, 
in statistical jargon, “We reject the null hypothesis of a normal distribution at the 95% confidence 
level.”

Experienced scientists usually test data for normality subjectively, simply by looking at a histo
gram and deciding that the data look approximately normally distributed. Yet I, an experienced sci
entist, would not have correctly interpreted the center histogram of Figure 2 as from a normal distri
bution. If in doubt, one can apply statistical tests of normality such as Chi-square (X2) and examine 
the type of departure from normality with measures such as skewness. Too often, however, even the 
initial subjective examination is skipped.

We can use a X2 test to determine whether or not our data distribution departs substantially 
from normality. A detailed discussion of the many applications of X2 tests is beyond the scope of 
this book, but almost all statistics books explain how a X2 test can be used to compare any data
distribution to any theoretical distribution. A X2 test is most easily understood as a comparison of a 
data histogram with the theoretical Gaussian distribution. The theoretical distribution predicts how 
many of our measurements are expected to fall into each histogram bin. Of course, this expected 
frequency [N ('(«)] for the nth bin (or interval) will differ somewhat from the actual data frequency 
[F(n)], or number of values observed in that interval. Indeed, we saw in Figure 2 that two groups of 
50 normally distributed measurements exhibited surprisingly large differences both from each other 
and from the Gaussian distribution curve. The key question then is how much of a difference be
tween observed frequency and predicted frequency is chance likely to produce. The variable X2, 
which is a measure of the goodness of fit between data and theory, is the sum of squares of the 
fractional differences between expected and observed frequencies in all of the histogram bins:

X2 = 2{[Nf(n)-F(n)]2/Nf(n)} (3)
n

Comparison of the value of X2 to a table of predicted values allows one to determine whether
statistically significant non-normality has been detected. The table tells us the range of X2 values 
that are typically found for normal distributions. We do not expect values very close to zero, indi
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eating a perfect match of data to theory. Nor do we expect X2 values that are extremely large, indi
cating a huge mismatch between the observed and predicted distributions.

The X2 test, like a histogram, can use any data units and almost any binning interval, with the
same proviso that a fine binning interval is most appropriate when N is large. Yet some X2 tests are 
much easier than others, because of the need to calculate a predicted number of points for each in
terval. Here we will take the preliminary step of s tandard iz ing  the data. Standardization trans
forms each measurement x-t into a unitless measurement which we will call Z(, where zj = (xj- 

X)/o. Standardized data have a mean of zero and a standard deviation of one, and any standardized 
array of approximately normally distributed data can be plotted on the same histogram. If we use a 
binning interval of 0.5a, then the following table of areas under a normal distribution gives us the 
expected frequency [Nf(#i)=N»area] in each interval.
Table 2: Areas of intervals of the normal distribution [Dixon and Massey, 1969].
a  Interval: <-3 -3 to -2.5 -2.5 to -2 -2 to -1.5 -1.5 to -1 -1 to -0.5 -0.5 to 0.0

Area: 0.0013 0.0049 0.0166 0.044 0.0919 0.1498 0.1915
a  Interval: >3 3 to 2.5 2.5 to 2 2 to 1.5 1.5 to 1 1 to 0.5 0.5 to 0.0

Equation 3 is applied to these 14 intervals, comparing the expected frequencies to the observed 
frequencies of the standardized data. Note that the intervals can be of unequal width. If the number 
of data points is small (e.g., iV<20), one should reduce the 14 intervals (»=14) to 8 intervals by 
combining adjacent intervals of Table 2 [e.g.,f(n) for 2a  to 3a  is .0166+ .0049=.0215]. The fol
lowing table shows the probabilities of obtaining a value of X2 larger than the indicated amounts,
for n=14 or n=8 . Most statistics books have much more extensive tables of X2 values for a variety 
of ‘degrees of freedom’ (df). When using such tables to compare a sample distribution to a Gaus
sian distribution that is estimated from the data rather than known independently, then df=n - 2  as in 
Table 3.

Table 3. Maximum values of X2 that are expected from a normal distribution for different numbers 
of binning intervals (n) at various probability levels (P) [Fisher and Yates, 1963],

OOO
O

h
P 90 P 95 P 97, P 99 P 99.5

n=8 : 8.56 10.64 12.59 14.45 16.81 18.55
n=14: 15.81 18.55 21.03 23.34 26.22 28.3

For example, for #i=14 intervals a X2 value of 2 2  (calculated from equation 3) would allow one 
to reject the hypothesis of a normal distribution at the 95% confidence level but not at 97.5% confi
dence (21.03<22<23.34).

A non-normal value for X2 can result from a single histogram bin that has an immense differ
ence between predicted and observed value; it can also result from a consistent pattern of relatively
small differences between predicted and observed values. Thus the X2 test only determines whether, 
not how, the distribution may differ from a normal distribution.

Skewness is a measure of how symmetric the data distribution is about its mean. A distribution 
is positively skewed, or skewed to the right, if data extend substantially farther to the right of the 
peak than they do the left. Conversely, a distribution is negatively skewed, if data extend substan
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tially farther to the left of the peak. A normal distribution is symmetric and has a skewness of zero. 
Later in this chapter we will see several examples of skewed distributions. A rule of thumb is that 
the distribution is reasonably symmetric i f  the skewness is between -0.5 and 0.5, and the distribu
tion is highly skewed if the skewness is <-1 or >1.

*  *  *

If a data distribution is definitely non-normal, it might still be possible to transform the dataset 
into one that is normally distributed. Such a transformation is worthwhile, because it permits use of 
the parametric statistics above, and we shall soon see that parametric statistics are more efficient 
than non-parametric statistics. In some fields, transformations are so standard that the ordinary un
transformed mean is called the arithmetic mean to distinguish it from means based on transforma
tions.

The most pervasively suitable transformation is logarithmic: either take the natural logarithm of 
all measurements and then analyze them using techniques above, or simply calculate the geometric 
mean ( g): g = 2(x j)1/N. The geometric mean is appropriate for ratio data and data whose errors 
are a percentage of the average value. If data are positively skewed, it is worth taking their loga
rithms and redoing the histogram to see if they look more normal. More rarely, normalitycan_be 
achieved by taking the inverse of each data point or by calculating a harm onic mean ( h): h = 
N /2(l/xj).

*  *  *

Rejecting Anomalous Data
Occasionally a dataset has one or more anomalous data points, and the researcher is faced with 

the difficult decision of rejecting anomalous data. In Chapter 6 , we consider the potential pitfalls of 
rejecting anomalous data. In many scientists’ minds, data rejection is an ethical question: some rou
tinely discard anomalous points without even mentioning this deletion in their publication, while 
others refuse to reject any point ever. Most scientists lie between these two extremes.

My own approach is the following:

• publish all data,

• flag points that I think are misleading or anomalous and explain why I think they are anomalous,
• show results either without the anomalous points or both with and without them, depending on 
how confident I am that they should be rejected.

In this way I allow the reader to decide whether rejection is justified, and the reader who may 
wish to analyze the data differently has all of the data available. Remembering that sometimes 
anomalies are the launching point for new insights, no scientist should hide omitted data from read
ers.

Here we will consider the question of data rejection statistically: are there statistical grounds for 
rejecting a data point? For example, if we have 20 measurements, we can expect about one meas
urement to differ from the mean by more than 2a, but we expect (Table 2) that only 0.13% of the 
data points will lie more than three standard deviations below the mean. If one point out of 20 dif
fers from the mean by more than 3a, we can say that such an extreme value is highly unlikely to 
occur by chance as part of the same distribution function as the other data. Effectively, we are de
ciding that this anomalous point was affected by an unknown different variable. Can we conclude 
therefore that it should be rejected?
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Although the entire subject of data rejection is controversial, an objective rejection criterion 
seems preferable to a subjective decision. One objective rejection criterion is C hauvenet’s crite
rion: a measurement can be rejected if the probability of obtaining it is less than 1/2N. For example, 
if N= 20 then a measurement must be so distant from the mean that the probability of obtaining such 
a value is less than 1/40 or 2.5%. Table 4 gives these cutoffs, expressed as the ratio of the observed 
deviation (dj) to the standard deviation, where the deviation from the mean is simply dj = Ixj- XL

Table 4. Deviation from the mean required for exclusion of a data point according to Chauvenet’s 
criterion [Young, 19621.__________________________________________________

N: 5 6 7 8 9 1 0 12 14 16 18 2 0
d/a: 1.65 1.73 1.81 1 .8 6 1.91 1.96 2.04 2 .1 2.15 2 .2 2.24

N: 25 30 40 50 60 80 1 0 0 150 2 0 0 400 1 0 0 0
d/a: 2.33 2.39 2.49 2.57 2.64 2.74 2.81 2.93 3.02 3.23 3.48

What mean and standard deviation should one use in applying Chauvenet’s criterion? The cal
culated mean and especially standard deviation are extremely sensitive to extreme points. Including 
the suspect point in the calculation of X and a  substantially decreases the size of d j /a  and thereby 
decreases the likelihood of rejecting the point. Excluding the suspect point in calculating the mean 
and standard deviation, however, is tantamount to assuming a priori what we are setting out to test; 
such a procedure often would allow us to reject extreme values that are legitimate parts of the sam
ple population. Thus we must take the more conservative approach: the mean and standard deviation 
used in applying Chauvenet’s criterion should be those calculated including the suspect point.

If Chauvenet’s criterion suggests rejection of the point, then the final mean and standard devia
tion should be calculated excluding that point. In theory, one then could apply the criterion again, 
possibly reject another point, recalculate mean and standard deviation again, and continue until no 
more points can be rejected. In practice, this exclusion technique should be used sparingly, and ap
plying it more than once to a single dataset is not recommended.

Often one waffles about whether or not to reject a data point even if rejection is permitted by 
Chauvenet’s criterion. Such doubts are warranted, for we shall see in later examples that Chauve
net’s criterion occasionally permits rejection of data that are independently known to be reliable. An 
alternative to data rejection is to use some of the nonparametric statistics of the next section, for they 
are much less sensitive than parametric techniques are to extreme values.

*  *  *

Median. Range, and 95% Confidence Limits
Until now, we have used parametric statistics, which assume a normal distribution. Nonparamet

ric statistics, in contrast, make no assumption about the distribution. Most scientific studies employ 
parametric, not nonparametric, statistics, for one of four reasons:
* experimenter ignorance that parametric statistics should only be applied to normal distributions;
* lack of attention to whether or not one’s data are normally distributed;
* ignorance about nonparametric statistical techniques;
* greater efficiency of parametric statistics.



34

The first three reasons are inexcusable; only the last reason is scientifically valid. In statistics, as 
in any other field, assumptions decrease the scope o f possibilities and enable one to draw conclu
sions with greater confidence, i f  the assumption is valid. For example, various nonparametric tech
niques require 5-50% more measurements than parametric techniques need to achieve the same 
level of confidence in conclusions. Thus nonparametric techniques are said to be less efficient than 
parametric techniques, and the latter are preferable if the assumption of a normal distribution is 
valid. If this assumption is invalid but made anyway, then parametric techniques not only overesti
mate the confidence of conclusions but also give somewhat biased estimates.

The nonparametric analogues of parametric techniques are:
Measure Parametric Nonparametric
Average: Mean Median

Dispersion: Standard deviation Interquartile range 
Confidence limits: Conf. limits on mean Conf. limits on median

Nonparametric statistics are easy to use, whether or not they are an option in one’s spreadsheet 
or graphics program. The first step in nearly all nonparametric techniques is to sort the measure
ments into increasing order. This step is a bit time consuming to do by hand for large datasets, but 
today most datasets are on the computer, and many software packages include a ‘sort’ command. 
We will use the symbol /,• to refer to the data value in sorted array position i; for example, Ij would 
be the smallest data value.

The nonparametric measure of the true average value of the parent population is the median. 
For an odd number of measurements, the median is simply the middle measurement (Ij /̂2), i.e., that 
measurement for which half of the other measurements is larger and half is smaller. For an even 
number of measurements there is no single middle measurement, so the median is the average 
(midpoint) of the two measurements that bracket the middle. For example, if a sorted dataset of five 
points is 2.1, 2.1, 3.4, 3.6, and 4.7, then the median is 3.4; if a sorted dataset of six points is 2.1, 2.1, 
3.4, 3.6,4.7, and 5.2, then the median is (3.4+3,6)/2 = 3.5.

The median divides the data population at the 50% level: 50% are larger and 50% are smaller. 
One can also divide a ranked dataset into four equally sized groups, or quartiles. One quarter of the 
data are smaller than the first quartile, the median is the second quartile, and one quarter of the data 
are larger than the third quartile.

The range is a frequently used nonparametric measure of data dispersion. The range is the data 
pair of smallest (//) and largest (IN) values. For example, the range of the latter dataset above is 2.1
5.2. The range is a very inefficient measure of data dispersion; one measurement can change it dra
matically. A more robust measure of dispersion is the interquartile range, the difference between the 
third and first quartiles. The interquartile range ignores extreme values. It is conceptually analogous 
to the standard deviation: the interquartile range encompasses the central 50% of the data, and ± 1 
standard deviation encompasses the central 6 8 % of a normal distribution,

For non-normal distributions, confidence limits for the median are the best way to express 
the reliability with which the true average of the parent population can be estimated. Confidence 
limits are determined by finding the positions I], and %-^+i 'n the sorted data array Ij, where k is 
determined from Table 5 below. Because these confidence limits use an integer number of array 
positions, they do not correspond exactly to 95% or 99% confidence limits. Therefore Table 5 gives 
the largest k yielding a probability of at least the desired probability. For example, suppose that we 
have 9 ranked measurements: 4 .5 ,4 .6 ,4 .9 ,4.9,5.2,5.4,5.7,5.8, and 6.2. Then N=9, k=3 yields less
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than 95% confidence, k=2 yields the 96.1% confidence limits 4.6-5.8 , and k= 1 yields 99.6% confi
dence limits 4.5-6.2.
Table 5. Confidence limits for the median [Nair, 1940; cited by Dixon and Massey, 1969].________

N k a>95 k a>99 N k a>95 k a>99 N k a>95 k a>99
6 1 96.9 - 26 8 97.1 7 99.1 46 16 97.4 14 99.5
7 1 98.1 - 27 8 98.1 7 99.4 47 17 96 15 99.2
8 1 99.2 1 99.2 28 9 96.4 7 99.6 48 17 97.1 15 99.4
9 2 96.1 1 99.6 29 9 97.6 8 99.2 49 18 95.6 16 99.1
1 0 2 97.9 1 99.8 30 1 0 95.7 8 99.5 50 18 96.7 16 99.3
11 2 98.8 1 99.9 31 1 0 97.1 8 99.7 51 19 95.1 16 99.5
1 2 3 96.1 2 99.4 32 1 0 98 9 99.3 52 19 96.4 17 99.2
13 3 97.8 2 99.7 33 11 96.5 9 99.5 53 19 97.3 17 99.5
14 3 98.7 2 99.8 34 11 97.6 1 0 99.1 54 2 0 96 18 99.1
15 4 96.5 3 99.3 35 1 2 95.9 1 0 99.4 55 2 0 97 18 99.4
16 4 97.9 3 99.6 36 1 2 97.1 1 0 99.6 56 2 1 95.6 18 99.5
17 5 95.1 3 99.8 37 13 95.3 11 99.2 57 2 1 96.7 19 99.2
18 5 96.9 4 99.2 38 13 96.6 11 99.5 58 2 2 95.2 19 99.5
19 5 98.1 4 99.6 39 13 97.6 12 99.1 59 2 2 96.4 2 0 99.1
2 0 6 95.9 4 99.7 40 14 96.2 12 99.4 60 2 2 97.3 2 0 99.4
2 1 6 97.3 5 99.3 41 14 97.2 12 99.6 61 23 96 2 1 99
2 2 6 98.3 5 99.6 42 15 95,6 13 99.2 62 23 97 2 1 99.3
23 7 96.5 5 99.7 43 15 96.8 13 99.5 63 24 95.7 2 1 99.5
24 7 97.7 6 99.3 44 16 95.1 14 99 64 24 96.7 2 2 99.2
25 8 95.7 6 99.6 45 16 96.4 14 99.3 65 25 95.4 2 2 99.4

Nonparametric statistics make no assumptions about the shape of either the parent population 
or the data distribution function. Thus nonparametric statistics cannot recognize that any data value 
is anomalous, and data rejection criteria such as Chauvenet's criterion are impossible. In a sense, 
nonparametric statistics are intermediate between rejection of a suspect point and blind application 
of parametric statistics to the entire dataset; no points are rejected, but the extreme points receive 
much less weighting than they do when a normal distribution is assumed.

One fast qualitative (‘quick-and-dirty’) test of the suitability of parametric statistics for one’s 
dataset is to see how similar the mean and median are. If the difference between them is minor in 
comparison to the size of the standard deviation, then the mean is probably a reasonably good esti
mate, unbiased by either extreme data values or a strongly non-normal distribution. A rule of thumb 
might be to suspect non-normality or anomalous extreme values if 4( X-"X)>a, where "X is the 
median.

*  *  *
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Figure 4 is a flowchart that shows one 
possible way of approaching analysis of a 
variable. Rarely does anyone evaluate a 
variable as systematically as is shown in 
Figure 4; indeed, I have never seen such a 
flowchart or list of steps. This flowchart 
demonstrates why different examples, such 
as those in the following section, require 
different treatments.

A useful first step in analyzing a vari
able is to ask oneself whether the individ
ual observations, measurements, or data are 
independent. Two events are independent 
if they are no more likely to be similar than 
any two randomly selected members of the 
population. Independence is implicit in the 
idea of random errors; with random errors 
we expect that adjacent measurements in 
our dataset will be no more similar to each 
other than distant measurements (e.g., first 
and last measurements) will be. Independ
ence is an often-violated assumption of the 
single-variable statistical techniques. Re
laxation of this assumption sometimes is 
necessary and permissible, as long as we 
are aware of the possible complications 
introduced by this violation (note that most 
scientists would accept this statement 
pragmatically, although to a statistician this 
statement is as absurd as saying A*A).
Except for the random-number example, 
none of the example datasets to follow has 
truly independent samples. We will see 
that lack of independence is more obvious 
for some datasets than for others, both in a 
priori expectation and in data analysis.

Actual scientific data have the same 
problem: sometimes we expect our meas
urements to be unavoidably non
independent, whereas at other times we 
expect independence but our analysis re
veals non-independence. Thus, regardless
of expectations, one should plot eveiy dataset as a function o f measurement sequence, for visual 
detection of any unexpected secular trends. Examination of the data table itself often is an inade
quate substitute. No statistical test detects secular trends as consistently as simple examination of a 
plot of variable vs. measurement order. Examples of such unexpected secular trends are:
• instrumental drift;
• measurement error during part of the data acquisition;

Figure 4. Flowchart of decision steps for a group 
of measurements.
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* undetected, involuntary change of part of the measurement procedure during the measurement 
series;
* undetected change in standards;
* temporal change in an unidentified relevant variable, i.e., a source of ‘noise’.

*  *  *

Examples
We can gain insight into the statistical techniques described above by considering their applica

tion to a few datasets of different types. Our examples come from a variety of original sources, but I 
got almost all of them from the World Almanac [Hoffman, 1990]. The exceptions are the examples 
of random normal numbers and of the hare and tortoise. I have deliberately chosen familiar exam
ples rather than artificial data or real scientific data, because the explanation for observed statistical 
behavior is easier to comprehend with familiar examples. The examples are:
* reexamination of the random normal numbers of Figures 1 and 2;
* race between the hare and the tortoise;
* percentage of high school students that graduate, by state;
* state population (1990 census);
* state taxes, per capita, by state;

Table 6  summarizes the statistical results for these examples, as well as some examples intro
duced in the next chapter.
Table 6 . Summary statistics for the example problems used in this chapter and in Chapter 3. Statis
tics for population, taxes, and batting averages are shown both before and after exclusion of extreme 
points. Columns 2-7: parametric; columns 8-10: nonparametric; column 11: exclusion by Chauve- 
net’s criterion (Y or N).___________________________________________________
dataset N X o <*95 skew med. range <*95 Ch?

randlOO 1 0 0 0 .0 2 0.95 0.19 -0 .1 0 .1 0 .1 1 -2 .4/2.2 -0.28/0.39 N
rand50a 50 0.05 0.98 0.28 -0.4 0.14 0.16 -2.4/1.9 -0.28/0.39 N
rand50b 50 -0 .0 1 0.94 0.27 0 .1 0.13 0.03 -1.9/2 .2 -0.4/0.4 N
rand2 0 a 2 0 0.03 0.9 0.42 -1 0 .2 0.19 -2.4/1.3 -0.11/0.39 Y
rand2 0 b 2 0 0.39 0.95 0.42 -0 .1 0 .2 1 0.53 -0.9/1.9 -0.55/1.23 N

pop 50 4.9 5.38 1.53 2.4 0.76 3.34 .4/29.3 2.3/4 .8 Y
pop -1 49 4.41 4.11 1.18 1.5 0.59 3.27 .4/17.6 2.3/4.7 Y
ln(pop) 50 1 .1 1 1 .0 1 0.29 0 0.14 1 .2 1 -0.8/3.4 0 .8 / 1 .6 N
taxes 50 1140 343 97 2 48 1056 553/2674 993/1161 Y
tax -1 49 1109 265 76 0 .8 38 1055 553/1993 993/1141 Y
deficit 30 1 0 .6 7.5 2 .8 0 .2 1.4 11.3 -1.8/25.7 5.5/14.1 N

HS grad 50 75.1 7.4 2 .1 -0 .1 1 .1 76.2 58/90 72.9/78.0 N
smoked 1 0 69.6 31.2 22.3 0.5 9.8 69.2 65.7/75.3 66.4/73.6 N
Anch T 1 2 35.2 16.8 10.7 0 4.9 35 13/58 18/54 N
bat avg 90 352 2 1 4.5 0.9 2.3 350 313/424 342/354 Y
bat -30 60 347 15 3.9 0 .2 1.9 346 313/385 341/353 N
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The data of Figures 1 and 2 are drawn from a table of random normal numbers and therefore 
are about as close as one can get to perfectly random, normally distributed data. The true population 
mean is zero, and the true population standard deviation is one; data units therefore could be called 
‘true standard deviations’. We will consider five datasets: one with iV=100 (RandlOO), two with 
N= 50 (Rand50a & Rand50b), and two with N= 20 (Rand20a & Rand20b). Measurements within 
each dataset are independent of each other, but datasets are not strictly independent: the iV= 1 0 0  ex
ample is the combination of the two N= 50 examples, and the two N= 20 examples are included in 
the first N= 50 example.

All five examples have a mean (Table 6 ) that is very close to the true population mean of zero; 
the largest departure is 0.4 units. As we might expect, the calculated 95% confidence limits for the 
true mean (CX95) include zero for all five examples. The CX95 for Rand20b, however, barely includes 
the true mean of zero. At first it seems surprising that we have almost disproved something that we 
know to be true: that the true mean is zero. We should remember, however, that if we did this test on 
20 datasets instead of 5, we would expect an average of one test to ‘fail’ at the 95% confidence 
level.

The histograms of Figure 2 show considerable apparent character change when compared either 
to each other or to a theoretical normal distribution. This variability is typical sampling variability 
for small samples. This visual variability is mirrored by a variability in calculated skewness: one of 
the five (Rand20a) actually fails the rule of thumb that skewness should be less than ±0.5 for nor
mally distributed data. In spite of the apparently substantial departures from a simple normal distri
bution in the histograms, the standard deviation is fairly robust: the standard deviation of each is 
about the same (0.90-0.98) and close to the true population value of 1.0. By coincidence, all five 
standard deviations are less than the true value of 1 .0 ; such a coincidence would be highly unlikely 
(1 chance in 25) if the five datasets were truly independent rather than subsets of each other. The 
interquartile range, which is less efficient than the standard deviation, is similar (1.32-1.47) for the 
three larger datasets but highly variable (0.62-1.86) for the 2 0 -point samples.

Rand20a, the apparently skewed dataset, is also the only dataset for which Chauvenet’s criterion 
allows us to reject a measurement as anomalous. This same measurement of -2.41 was in RandlOO 
and Rand50a, but it was not considered rejectable by application of Chauvenet’s criterion to those 
two datasets because more extreme values are expected when N  is larger. Obviously (in hindsight), 
even exceedingly scarce extreme values will occasionally show up in small samples, seeming more 
anomalous in the small sample than in a large sample. Chauvenet’s criterion was incorrect in sug
gesting that the measurement be rejected from Rand20a.

In all five examples, the median lies farther from the true mean of zero than the arithmetic mean 
does. Thus for these samples from a normally distributed parent population, the median is a less 
efficient and therefore less accurate estimate of the true population average than is the mean. Simi
larly, the range varies substantially among the different examples, though we have seen that the 
standard deviation is relatively constant. For each of the five examples, the 95% confidence limits 
for the median are broader and therefore less efficient that 95% confidence limits for the mean; in 
every case these confidence limits for the median correctly includes the true population average of 
zero. Whether we use confidence limits for the mean or for the median, we see in Table 6  that 
making 1 0 0  measurements rather than 2 0  lets us narrow our uncertainties in estimating the true 
population average by 50% or more.

Example 1: random normal numbers of Figures 1 and 2.
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Example 2: race between the hare and the tortoise.
In an update of the ancient race between the hare and the tortoise, the tortoise won the race and 

yet the hare got a speeding ticket. Since the tortoise won, its ‘average’ speed must have been faster 
than the hare’s more erratic pace. Use of a mean and standard deviation would be quite inappropri
ate for the hare. The hare had a bimodal speed of either zero (resting) or — rarely -  extremely fast; 
probably the mean would be closer to the dominant zero peak and the standard deviation would im
ply some negative speeds. Sampling the hare’s speed at uniform time intervals would give a com
pletely different picture than if its speed were sampled at uniform distance intervals: according to 
the former it was usually resting, but according to the latter it was usually breaking the speed limit.

Example 3: percentage of high school students that graduate, by state.
We cannot expect values of any variable for different states of the U.S.A. to be truly independ

ent: adjacent states or states with similar industries could be expected to give more similar values 
than distant states with different economic bases. We will proceed anyway, because such examples 
are illustrative and because it is fruitless to respond to a question like “What is the average percent
age of students that graduate from U.S. high schools?” with the answer “It is impossible to say, 
because it is invalid to average such data ”

Figure 5 shows that the distribu
tion of high-school graduation rates 
appears to be approximately normal.
Indeed, it looks more like a bell
shaped or Gaussian distribution than 
do Figures 1 and 2 (which are known 
to come from a normally distributed 
parent population). Furthermore, 
skewness is low, and Chauvenet’s 
criterion does not reject any data.
Thus it is relatively safe to conclude 
that the calculated average graduation 
percentage is 75.1% and that the 
‘true’ average is 75.1 ±2.1 %. Non
parametric statistics are neither 
needed nor as appropriate as para
metric statistics for this dataset. The 
mean value of 75.1 is close to the 
median of 76.2, at least in compari
son to the high standard deviation of 7.4, again suggesting normality.

Example 4: population of U.S. states (1990 census).
The populations, in millions, of the U.S. states obviously diverge from a normal distribution 

(Figure 6 a). Our ‘quick-and-dirty’ technique of comparing mean to median indicates a non-normal 
distribution: the mean is almost 50% larger than the median, and examination of Figure 6 a suggests 
that one anomalously high value is at least partially responsible for pulling the mean so far to the 
right of the median. The distribution has a strong positive skewness of 2.4, with no left tail and a 
long right tail.

High school graduates (%)
Figure 5. Percentage of high-school students who graduate, 
for U.S. states.
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Population (millions) logarithm of population (millions)
Figure 6. Populations of the U.S. states in 1990. Note that the highly 
skewed distribution of A is transformed to a nearly normal distribution 
by converting to logarithm of population (B).

Should the one extremely large value of 29,279,000 (29.3 million or 29.3M) for California 
population be excluded as anomalous? Chauvenet’s criterion says that any value of >18.7M can be 
excluded, so 29.3M is far beyond the minimum cutoff. If we exclude California and recalculate 
mean and standard deviation, reapplication of Chauvenet’s criterion (not recommended) would sug
gest that we reject two more states with large populations. I have not done so, though it might be 
interesting to see how many states we would ultimately exclude through repeated use of Chauve
net’s criterion.

If one is statistically justified in excluding at least California, then such an exclusion implies that 
California is in some way unique or anomalous, with some different variable controlling its popula
tion than is operant (or at least important) for populations of the other states. As a former member 
of the California population, I can think of many ways in which one would describe the California 
population as anomalous, but that question is beyond the scopes of these data and of our concern. 
The key point is that the analysis flags an anomaly; it cannot explain the anomaly.

Figure 4 suggests that one’s first reaction to a non-normal distribution should not be to discard 
data; it is to consider transforms that might convert the dataset to an approximately normal distribu
tion. The most common transform is to take natural logarithms of the data, and the logarithmic 
transform is most likely to succeed in cases such as the present one that have a strong positive 
skewness. Figure 6 b is such a transform. Logarithm of population visually does appear to be nor
mally distributed, mean and median are similar (with a difference that is only about 1 0 % of the 
standard deviation), and skewness is zero (!). Thus we may conclude that state population is log- 
normally distributed, with a mean of 3.0M (e11, because the mean of the natural logarithms of 
population is 1 .1).

Knowing that it is much more appropriate to analyze logarithms of state populations than raw 
state populations, we can now apply Chauvenet’s test and find that no data should be excluded. Our 
previous temptation to exclude California was ill founded. With any logarithmic distribution the 
largest values tend to be more widely spaced than the smallest values. I suspect that Chauvenet’s 
criterion will recommend exclusion of one or even many valid data points whenever a dataset has
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strong skewness (positive or negative), because Chauvenet’s criterion is excessively sensitive to 
such violations of normality.

Example 5: average state taxes per capita, by state.
What is the average amount of state taxes paid in the U.S.? One answer might come from sim

ply dividing the total of all state tax income by the total U.S. population. Here is another, more in
formative approach.

Taxes, per capita (dollars) Taxes, per capita (dollars)

Figure 7. Histograms of per capita state taxes, for all U.S. states. Data are the same 
in A and B, but binning interval is much coarser in B.

Histograms of state taxes per capita, by state, are shown in Figures 7a and 7b. Although the two 
histograms show the same data, they emphasize slightly different features because of their different 
binning intervals. The coarser binning interval of Figure 7b makes the distribution look more nor
mal, as is often the case for coarser binning (within reason). Finer binning (Figure 7a) makes the 
largest datum, per capita taxes of $2674 ($2.7K) in Alaska, look more anomalous. Both histograms 
are roughly bell-shaped but positively skewed (skewness=2.0). Thus it is worth trying a transform 
to logarithm of per capita taxes, but such a distribution is not shown because it accomplishes no 
improvement.

Chauvenet’s criterion shows that the value for Alaska taxes is far more than is likely by chance 
for a normal distribution. Recalculation of parametric statistics after omitting Alaska gives a more 
normal value of skewness, and permits us to exclude yet another state (Hawaii), but we will forgo 
that opportunity. It seems likely that Alaska and possible that Hawaii are anomalous in state taxes in 
comparison to other states, because costs are greater at remote locations.
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Chapter 3: Induction & Pattern Recognition
Induction is pattern recognition — an 

inference based on limited observational or 
experimental data — and pattern recogni
tion is an addictively exhilarating acquired 
skill.

Of the two types of scientific inference, 
induction is far more pervasive and useful 
than deduction (Chapter 4). Induction usu
ally infers some pattern among a set of ob
servations and then attributes that pattern to 
an entire population. Almost all hypothesis 
formation is based consciously or subcon
sciously on induction.

Induction is pervasive because people 
seek order insatiably, yet they lack the op
portunity of basing that search on observa
tion of the entire population. Instead they 
make a few observations and generalize.

Induction is not just a description of 
observations; it is always a leap beyond the data -  a leap based on circumstantial evidence. The leap 
may be an inference that other observations would exhibit the same phenomena already seen in the 
study sample, or it may be some type of explanation or conceptual understanding of the observa
tions; often it is both. Because induction is always a leap beyond the data, it can never be proved. If 
further observations are consistent with the induction, then they confirm, or lend substantiating 
support to, the induction. But the possibility always remains that as-yet-unexamined data might dis
prove the induction.

In symbols, we can think of confirmation of our inductive hypothesis A as: A=>B, B, .’.A (i.e., 
A implies B; B is observed and therefore A must also be true or present). Such evidence may be 
inductively useful confirmation. The logic, however, is a deductive fallacy (known as affirming the 
consequent), because there may always be other factors that cause B. Although confirmation of an 
induction is incremental and inconclusive, the hypothesis can be disproved by a single experiment, 
via the deductive technique of modus tollens: A=>B, -B, .’.-A (i.e., A implies B; B is not observed 
and therefore A must not be true or present).

Scientific induction requires that we make two unprovable assumptions, or postulates:
• representative sampling. Only if our samples are representative, or similar in behavior to the 
population as a whole, may we generalize from observations of these samples to the likely behavior 
of the entire population. In contrast, if our samples represent only a distinctive subset of the popu
lation, then our inductions cannot extend beyond this subset. This postulate is crucial, it is usually 
achieved easily by the scientist, and yet it is often violated with scientifically catastrophic results. As 
discussed more fully in the previous chapter, randomization and objective sampling are the paths to 
obtaining a representative sample; subjective sampling generates a biased sample.
• uniformity of nature. Strictly speaking, even if our sample is representative we cannot be cer
tain that the unsampled remainder of the population exhibits the same behavior. However, we as



sume that nature is uniform, that the unsampled remainder is similar in behavior to our samples, that 
today’s natural laws will still be valid tomorrow. Without this assumption, all is chaos.

*  *  *

4 3

Types of Explanation
Induction is explanation, and explanation is identification of some type of order in the universe. 

Explanation is an integral part of the goal of science: perceiving a connection among events, deci
phering the explanation for that connection, and using these inductions for prediction of other 
events. Some scientists claim that science cannot explain; it can only describe. That claim only per
tains, however, to Aristotelian explanation: answering the question “Why?” by identifying the pur
pose of a phenomenon. More often, the scientific question is “How?” Here we use the inclusive 
concept of explanation as any identification of order.

Individual events are complex, but explanation discerns their underlying simplicity of relation
ships. In this section we will consider briefly two types of scientific explanation: comparison (anal
ogy and symmetry) and classification. In subsequent sections we will examine, in much more detail, 
two more powerful types of explanation: correlation and causality.

Explanation can deal with attributes or with variables. An attribute is binary: either present or 
absent. Explanation of attributes often involves consideration of associations of the attribute with 
certain phenomena or circumstances. A variable, in contrast, is not merely present or absent; it is a 
characteristic whose changes can be quantitatively measured. Explanations of a variable often in
volve description of a correlation between changes in that variable and changes in another variable. 
If a subjective attribute, such as tall or short, can be transformed into a variable, such as height, ex
planatory value increases.

The different kinds of explanation contrast in explanatory power and experimental ease. Easiest 
to test is the null hypothesis that two variables are completely unrelated. Statistical rejection of the 
null hypothesis can demonstrate the likelihood that a classification or correlation has predictive 
value. Causality goes deeper, establishing the origin of that predictive ability, but demonstration of 
causality can be very challenging. Beyond causality, the underlying quantitative theoretical mecha
nism sometimes can be discerned.

*  *  *

Comparison is the most common means of identifying order, whether by scientists or by lay 
people. Often, comparison goes no farther than a consideration of the same characteristic in two 
individuals. Scientific comparison, however, is usually meant as a generalization of the behavior of 
variables or attributes. Two common types of comparison are symmetry and analogy.

Symmetry is a regularity of shape or arrangement of parts within a whole — for example, a cor
respondence of part and counterpart. In many branches of science, recognition of symmetry is a 
useful form of pattern recognition. To the physicist, symmetry is both a predictive tool and a stan
dard by which theories are judged.

In his book on symmetry, physicist Hermann Weyl [19521 said: “Symmetry, as 
wide or as narrow as you may define its meaning, is one idea by which man through 
the ages has tried to comprehend and create order, beauty, and perfection.”

I’ve always been confident that the universe’s expansion would be followed by a 
contraction. Symmetry demands it: big bang, expanding universe, gravitational decel
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eration, contracting universe, big crunch, big bang, . . .  No problem of what happens 
before the big bang or after the big crunch; an infinite cycle in both directions. The 
only concern was that not enough matter had been found to generate sufficient grav
ity to halt the expansion. But dark matter is elusive, and I was sure that it would be 
found. Now, however, this elegant model is apparently overthrown by evidence that 
the expansion is accelerating, not decelerating [Schwarzschild, 2001]. Symmetry and 
simplicity do not always triumph.

Analogy is the description of observed behavior in one class of phenomena and the inference 
that this description is somehow relevant to a different class of phenomena. Analogy does not nec
essarily imply that the two classes obey the same laws or function in exactly the same way. Analogy 
often is an apparent order or similarity that serves only as a visualization aid. That purpose is suffi
cient justification, and the analogy may inspire fruitful follow-up research. In other cases, analogy 
can reflect a more fundamental physical link between behaviors of the two classes. Either type of 
analogy can bridge tremendous differences in size or time scale. For example, the atom and the so
lar system are at two size extremes and yet their orbital geometries are analogous from the stand
points of both visualization and Newtonian physics. Fractals, in contrast, also describe similar 
physical phenomena of very different sizes, but they go beyond analogy by genetically linking dif
ferent scales into a single class.

Analogy is never a final explanation; rather it is a potential stepping-stone to greater insight and 
hypothesis generation. Unfortunately, however, analogy sometimes is misused and treated like firm 
evidence. The following two examples illustrate the power of exact analogy and the fallacy of re
mote analogy.

Annie Dillard [1974] on the analogy between chlorophyll and hemoglobin, the 
bases of plant and animal energy handling: “All the green in the planted world con
sists of these whole, rounded chloroplasts wending their ways in water. If you analyze 
a molecule of chlorophyll itself, what you get is one hundred thirty-six atoms of hy
drogen, carbon, oxygen, and nitrogen arranged in an exact and complex relationship 
around a central ring. At the ring’s center is a single atom of magnesium. Now: If 
you remove the atom of magnesium and in its exact place put an atom of iron, you 
get a molecule of hemoglobin.”

Astronomer Francesco Sizi’s early 17th century refutation of Galileo’s claim that 
he had discovered satellites of Jupiter [Holton and Roller, 1958]:

“There are seven windows in the head, two nostrils, two ears, two eyes and a 
mouth; so in the heavens there are two favorable stars, two unpropitious, two luminar
ies, and Mercury alone undecided and indifferent. From which and many similar 
phenomena of nature such as the seven metals, etc., which it were tedious to enumer
ate, we gather that the number of planets is necessarily seven.”

Comparison often leads to a more detailed explanation: classification. Classification can ex
tract simple patterns from a mind-numbing quantity of individual observations, and it is also a 
foundation for most other types of scientific explanation. Classification is the identification of 
grounds for grouping complexly divergent individuals into a single class, based on commonality of 
some significant characteristic. Every individual is different, but we need and value tools for coping 
with this diversity by identifying classes of attributes. Indeed, many neurobiologists have concluded 
that people never experience directly the uniqueness of individual objects; instead, we uncon
sciously fit a suite of schemata, or classifications, to our perceptions of each object (Chapter 6 ).



A class is defined arbitrarily, by identifying a minimal number of characteristics required for 
inclusion in the class. Recognizing a scientifically useful classification, however, requires inductive 
insight. Ideally, only one or a few criteria specify a class, but members of the class also share many 
other attributes. For example, one accomplishes little by classifying dogs according to whether or 
not they have a scar on their ear. In contrast, classifying dogs as alive or dead (e.g., based on pres
ence/absence of heartbeat) permits a wealth of generally successful predictions about individual 
dogs. Much insight can be gained by examining these ancillary characteristics. These aspects need 
not be universal among the class to be informative. It is sufficient that the classification, although 
based on different criteria, enhances our ability to predict occurrence of these typical features.

Classes are subjectively chosen, but they are defined according to objective criteria. If the crite
ria involve presence or absence of an attribute (e.g., use of chlorophyll), definition is usually 
straightforward. If the criteria involve a variable, however, the definition is more obviously subjective 
in its specification of position (or range of positions) along a continuum of potential values.

A classification scheme can be counterproductive [Oliver, 1991], if it imposes a perspective on 
the data that limits our perception. A useful classification can become counterproductive, when new 
data are shoved into it even though they don’t fit.

Classifications evolve to regain utility, when exceptions and anomalous examples are found. 
Often these exceptions can be explained by a more restrictive and complex class definition. Fre
quently, the smaller class exhibits greater commonality of other characteristics than was observed 
within the larger class. For example, to some early astronomers all celestial objects were stars. 
Those who subdivided this class into ‘wandering stars’ (planets and comets) and ‘fixed stars’ 
would have been shocked at the immense variety that later generations would discover within these 
classes.

Each scientist applies personal standards in evaluating the scope and size of a classification. 
The ‘splitters’ favor subdivision into small subclasses, to achieve more accurate predictive ability. 
The ‘lumpers’ prefer generalizations that encompass a large portion of the population with reason
able but not perfect predictive accuracy. In every field of science, battles between lumpers and split
ters are waged. For many years the splitters dominate a field, creating finer and finer classifications 
of every variant that is found. Then for a while the lumpers convince the community that the pen
dulum has swung too far and that much larger classes, though imperfect, are more worthwhile.

A class can even be useful though it has no members whatsoever. An ideal class exhibits be
havior that is physically simple and therefore amenable to mathematical modeling. Even if actual 
individual objects fail to match exactly the defining characteristics of the ideal class, they may be 
similar enough for the mathematical relationships to apply. Wilson [1952] gives several familiar 
examples of an ideal class: physicists often model rigid bodies, frictionless surfaces, and incom
pressible fluids, and chemists employ the concepts of ideal gases, pure compounds, and adiabatic 
processes.

*  *  *
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Coincidence
Classifications, like all explanations, seek meaningful associations and correlations. Sometimes, 

however, they are misled by coincidence.

“A large number of incorrect conclusions are drawn because the possibility of 
chance occurrences is not fully considered. This usually arises through lack of proper 
controls and insufficient repetitions. There is the story of the research worker in nu
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trition who had published a rather surprising conclusion concerning rats. A visitor 
asked him if he could see more of the evidence. The researcher replied, ‘Sure, there’s 
the rat.’” [Wilson, 19521

Without attention to statistical evidence and confirmatory power, the scientist falls into the most 
common pitfall of non-scientists: hasty generalization. One or a few chance associations between 
two attributes or variables are mistakenly inferred to represent a causal relationship. Hasty generali
zation is responsible for many popular superstitions, but even scientists such as Aristotle were not 
immune to it. Hasty generalizations are often inspired by coincidence, the unexpected and improb
able association between two or more events. After compiling and analyzing thousands of coinci
dences, Diaconis and Mostelle [1989] found that coincidences could be grouped into three classes:

* cases where there was an unnoticed causal relationship, so the association actually was not a 
coincidence;

* nonrepresentative samples, focusing on one association while ignoring or forgetting exam
ples of non-matches;

* actual chance events that are much more likely than one might expect.
An example of this third type is that any group of 23 people has a 50% chance of at least two 

people having the same birthday.
Coincidence is important in science, because it initiates a search for causal relationships and 

may lead to discovery. An apparent coincidence is a perfectly valid source for hypotheses. Coinci
dence is not, however, a hypothesis test; quantitative tests must follow.

The statistical methods seek to indicate quantitatively which apparent connections between vari
ables are real and which are coincidental. Uncertainty is implicit in most measurements and hy
pothesis tests, but consideration of probabilities allows us to make decisions that appropriately 
weigh the impact of the uncertainties. With suitable experimental design, statistical methods are able 
to deal effectively with very complex and poorly understood phenomena, extracting the most fun
damental correlations.

*  *  *

Correlation
“Every scientific problem is a search for the relationship between variables.” 

[Thurstone, 1925]

Begin with two variables, which we will call X  and Y, for which we have several measurements. 
By convention, X  is called the independent variable and Y is the dependent variable. Perhaps X  
causes Y, so that the value of Y  is truly dependent on the value of X. Such a condition would be 
convenient, but all we really require is the possibility that a knowledge of the value of the independ
ent variable X  may give us some ability to predict the value of Y.

*  *  *

To introduce some of the concerns implicit in correlation and pattern recognition, let’s begin 
with three examples: National League batting averages, the government deficit, and temperature 
variations in Anchorage, AK.
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Example 1: highest annual batting average in the National League.

320 340 360 380 400 420 
highest annual batting average,

1901-1990

§10 320 330 340 350 360 370 380 390 
highest annual batting average, 

1930-1990

year
Figure 8 . Highest annual batting average in the National League. Plotting results 
versus time (B) shows that the overall distribution for 1901-1990 (A) is skewed by 
periods of unusually low and high averages before 1930. Results for 1930-1990 (C) 
are more normally distributed.

We consider here the maximum batting average obtained by any National League player in each 
of the years 1901-1990. Because batting average is a time series, data certainly are not independent 
and we must beware of temporal trends. If we were to ignore the possibility of temporal trends, we 
would conclude that the data exhibit moderately normal behavior (Figure 8 a), with slight positive 
skewness and, according to Chauvenet’s criterion, one anomalously high value of 424 that could be 
excluded. Ignoring temporal trends, we would predict at a 6 8 % confidence level ( la )  that the maxi
mum 1991 batting average would be 352±21 (Table 6 ).

Plotting batting average versus time (Figure 8 b), however, we see immediately that the depar
tures from the mean were nonrandom. Batting averages decreased rapidly during 1901-1919, 
peaked during 1921-1930, and decreased gradually since then. What accounts for these long-term
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trends? I am not enough of a baseball buff to know, but I note that the 1921-1930 peak is domi
nated by Rogers Hornsby, who had the highest average in 7 of these 10 years. Often in such analy
ses, identification of a trend’s existence is the first step toward understanding it and, in some cases, 
toward preventing it.

Of course, substantial ‘noise’, or annual variation, is superimposed on these long-term trends. 
Later in this section, we will consider removal of such trends, but here we will take a simpler and 
less satisfactory approach: we will limit our data analysis to the time interval 1931-1990. We 
thereby omit the time intervals in which secular (temporal) trends were dominant. If this shorter in
terval still contains a slight long-term trend, that trend is probably too subtle to jeopardize our con
clusions.

For 1931-1990 batting averages (Figure 8 c), skewness is substantially less than for the larger 
dataset, and no points are flagged for rejection by Chauvenet’s criterion. The standard deviation is 
reduced by one third, but the 95% confidence limits are only slightly reduced because the decrease 
in number of points counteracts the improvement in standard deviation.

Confining one’s analysis to a subsample of the entire dataset is a legitimate procedure, i f  one 
has objective grounds for defining the subset and if one does not apply subset-based interpretations 
to the overall population. Obviously it would be invalid to analyze a ‘subset’ such as batting aver
ages less than 400. Will the 1991 maximum batting average be 347±15 as predicted by the 1931
1990 data, or will there be another Rogers Hornsby?
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Example 2: U.S. government deficit as a percentage of outlays, for 1960-1989.
Again we are dealing with a 5| 

time series, so the flowchart of 
Figure 4 recommends that our 
first step is to plot deficit percent
age versus time (Figure 9b). Such 
a plot exhibits a strong secular 
trend of increasing deficit per
centage, on which is superposed 
more ‘random’ year-to-year 
variations. In other words, the 
major source of variance in defi
cits is the gradual trend of in
creasing deficit, and annual varia
tions are a subsidiary effect. Be
cause our data are equally spaced 
in time, the superposition of these 
two variances gives a blocky, 
boxcar-like appearance to the 
histogram (Figure 9a), with too 
little tail. If the secular trend were 
removed, residuals would exhibit 
a more bell-shaped distribution.

If we ignore the secular trend, 
nonparametric statistics are more 
appropriate for this dataset than 
are parametric statistics. However, 
ignoring the major source of vari
ance in a dataset is almost always 
indefensible. Instead, a secular 
trend can be quantified and used 
to refine our understanding of a 
dataset. Later in this chapter, we 
will return to this example and 
determine that secular trend.

1990

1990 
year

Figure 9. Federal budget deficits for 1960-1989, as a percentage of 
total budget.
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Example 3: Monthly averages of temperature for Anchorage. Alaska.

Figure 10. Monthly average temperatures (°F) for Anchorage, Alaska. A  histogram display (A ) o f these 
data is useless. The pattern o f temperature changes needs to be view ed versus time, in either a linear 
plot (B) or polar plot (C).

The histogram of monthly temperatures in Anchorage (Figure 10a) is strongly bimodal, with 
equal-sized peaks at 10-25° and at 45-60°. Skewness is zero because the two peaks are equal in 
size, so the mean is close to the median and both are a good estimate of the true average. Many bi
modal distributions have one dominant peak, however, causing a distribution that is skewed and bi
asing both the mean and median.

Nonparametric statistics are much more appropriate here than parametric statistics. Neither is an 
acceptable substitute for investigation of the causes of a bimodal distribution. For this example, the 
answer lies in the temporal trends. Again we have a time series, so a plot of temperature versus time 
may lend insight into data variability. Months of a year can define an ‘ordinal’ scale: order along a 
continuum is known but there is neither a time zero nor implicitly fixed values. Here I simply as
signed the numbers 1-13 to the months January-December-January for plotting, keeping in mind 
that the sequence wraps around so that January is both 1 and 13, then I replaced the number labels 
with month names (Figure 10b). A circular plot type known as polar coordinates is more appropri
ate because it incorporates wraparound (Figure 10c).

Consider the absurdities of simply applying parametric statistics to datasets like this one. We 
calculate that the average temperature is 35.2° (i.e., cold), but in fact the temperature almost never is 
cold. It switches rapidly from cool summer temperatures to bitterly cold winter temperatures. Con
sidering just the standard deviation, we would say that temperature variation in Anchorage is like 
that in Grand Junction, Colorado (16.8° versus 18.7°). Considering just the mean temperature, we 
would say that the average temperature of Grand Junction (52.8°) is similar to that of San Francisco 
(56.8°). Thus temperatures in Grand Junction, Colorado are statistically similar to those of San 
Francisco and Anchorage!

*  *  *

Crossplots
Crossplots are the best way to look for a relationship between two variables. They involve 

minimal assumptions: just that one’s measurements are reliable and paired (Xj, >’j). They permit use 
of an extremely efficient and robust tool for pattern recognition: the eye. Such pattern recognition 
and its associated brainstorming are a joy.
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Crossplot interpretation, like any subjective pattern recognition, is subject to the ‘Rorschach ef
fect’: the brain's bias toward ‘seeing’ patterns even in random data. The primary defense against 
the Rorschach effect is to subject each apparent pattern to some quantitative test, but this may be 
impractical. Another defense is to look at many patterns, of both random and systematic origins, in 
order to improve one’s ability to distinguish between the two.

Galison [ 1985] described the application of this approach in the bubble-chamber 
experiments at Berkeley. A computer program plotted histograms not only of the 
measured data but also of randomly generated pseudo-datasets. The investigator had 
to distinguish his datasets by recognizing which histograms had significant peaks.
Louis Alvarez said that this program prevented many mistaken discovery claims and 
later retractions. Figure 2 makes me empathize with the problem faced by these parti
cle physicists.

?1%74 1975 1976 1977 1978 1979 1980 
year % 7 4 1976 1978198019821984 198619881990 year

Figure 11. The hazards of extrapolation are shown by these plots of percentage of high school 
students who have smoked cigarettes. The apparent upward trend for 1975-1978 may be an 
artifact of less accurate data prior to 1982.
Data dispersion is inevitable with crossplots, and awareness of this dispersion is essential to 

crossplot interpretation. For example, consider the change through time of the percentage of Ameri
can high school seniors who have ever smoked a cigarette. Figure 11a shows that this percentage 
increased from 73.6% to 75.3% in the three years from 1975 to 1978. If I were foolish enough to 
extrapolate from these two measurements, I could estimate that by the year 2022 100% of high 
school students will have tried cigarettes. The flaws are that one has no estimate of the errors im
plicit in these measurements and that extrapolation beyond the range of one’s data is hazardous. As 
a rule of thumb, it is moderately safe to extrapolate patterns to values o f the independent variable 
that are perhaps 20% beyond that variable’s measured range, but extrapolation of Figure 11a to 
2022 is more than an order of magnitude larger than the data range.

Figure l ib  shows the eight subsequent determinations of percentage who have tried cigarettes. 
From this larger dataset it is evident that the apparent pattern of Figure 11a was misleading, and the 
actual trend is significantly downward. Based on these later results, we might speculate that one or 
both of the first two measurements had an error of about two percent, which masked a steady and 
possibly linear trend of decreasing usage. Alternatively, we might speculate that usage did increase 
temporarily. Is the steady trend of the rightmost seven points a result of improved polling tech
niques so that errors are decreased? Examination of such crossplots guides our considerations of 
errors and underlying patterns.

*  *  *
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Crossplots can hide or reveal patterns. Plotting technique affects the efficiency of visual pattern 
recognition. Scientists are accustomed to a suite of plotting conventions, and they may be distracted 
if asked to look at plots that depart substantially from these conventions. I thank Open University 
[1970] for reminding me of some of the following plotting hints, which I normally take for granted. 
Figure 12 illustrates the effect of a few of these factors.

1919 0* Plot the dependent variable (the one '
whose behavior you hope to predict 
from the other variable) on the verti
cal axis, and plot the independent 
variable on the horizontal axis.

Plotting Hints

1914.5-

* Choose an aspect ratio for the plot 
that maximizes information (e.g., if 
we are examining the changes in Y 
values throughout a long time series, 
then the horizontal X  axis can be 
much longer than the vertical Y axis).
* Plot variables with values increas
ing to the right and upward.
* Choose simple scale divisions, usu
ally with annotated major divisions 
and with tics for simple subdivisions 
(e.g., range of 20-40 with annotation 
interval of 5 and tic spacing of 1).
* Choose a total plot range for each 
variable that is as small as possible, 
subject to these two restrictions: 
simple scale divisions and inclusion 
of all data points.
* Make an exception to the previous 
hint by including major meaningful 
scale divisions such as zero or 100%, 
only if this inclusion requires a rela
tively small expansion of the plot 
range.
* Plot data points as solid or open 
circles or crosses.
* If more than one dataset is included 
on the same plot, use readily distin
guishable symbols.

,1910.0-

* Label each axis 
name and its units.

with the variable

* If data are a time series, connect the 
points with line segments. If they are 
independent, fit a line or curve

1905.5-

1901

1919.0

1914.5-

.1910.0-
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K *'!
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200
average
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Independent^ 
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Figure 12. The same data are plotted in A and C, but poor 
choices of plotting parameters (B) in the top plot interfere 
with interpretation.



through the data, not connecting line segments.
* If possible, transform one or both variables so that the relationship between them is linear (e.g., 
choose among linear, semilog, and log-log plots).

53

Individual scientific specialties routinely violate one or more of the hints above. Each specialty 
also uses arbitrary unstated conventions for some plotting options:
* whether to frame the plot or just use one annotated line for each axis;
* whether to use an internal grid or just marginal tics on the frame or lines;
* whether to put tics on one or both sides, and whether to put them inside or outside the plot frame.

*  *  *

Extrapolation and Interpolation:
If a relationship has been established between variables X and Y, then one can predict the value 

of Fj at a possibly unmeasured value of Xj. The reliability of this prediction depends dramatically 
on where the newXj is with respect to the locations of the Xj that established the relationship. Sev
eral rules of thumb apply to interpolation and extrapolation:
* interpolation to an Xj location that is between closely spaced previous Xj is relatively safe,

* interpolation between widely spaced previous Xj is somewhat hazardous,

* extrapolation for a short distance (<20% of the range of the previous Xj) is somewhat hazardous,

* extrapolation for a great distance is foolhardy, and
* both interpolation and extrapolation are much more reliable when the relationship is based on in
dependent data than when it is based on non-independent data such as a time series.

For example, when we saw the pattern of temporal changes in the U.S. deficit, the data appeared 
to fit a trend of increasing deficit rather well, so one should be able to extrapolate to 1991 fairly re
liably. However, extrapolation ability is weaker for a time series than for independent events. As I 
am typing this, it is January 1991, the U.S. has just gone to war, Savings & Loans are dropping like 
flies, the U.S. is in a recession, and a deficit as small as the extrapolated value of 22% seems hope
lessly optimistic. In contrast, when you read this, the U.S. budget hopefully is running a surplus.

As another example, we have already examined the changes with time of cigarette smoking 
among high school students, and we concluded that extrapolation from the two points of Figure 1 la 
was foolhardy. With the data from Figure 1 lb, we might extrapolate beyond 1989 by perhaps 2-3 
years and before 1975 by perhaps one year; the difference in confidence between these two ex
trapolations is due to the better-defined trend for 1983-1989 than for 1976-1980. Because these 
data are from a time series, any extrapolation is somewhat hazardous: if cigarette smoking were 
found in 1990 to be an aphrodisiac, the 1983-1989 pattern would immediately become an obsolete 
predictor of 1990 smoking rates. If there were such a thing as a class of 1986.5, then interpolation 
for the interval 1983-1989 would be very reliable (error <0.5%), because of extensive data coverage 
and small variance about the overall trend. In contrast, interpolation of a predicted value for some of 
the unsampled years in the interval 1975-1980 would have an error of at least 1%, partly because 
data spacing is larger but primarily because we are unsure how much of the apparent secular change
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is due to measurement errors. If we knew that the first three measurements (in 1975,1978, & 1980) 
constituted random scatter about the same well-defined trend of 1983-1989, then surprisingly it 
would be more accurate to predict values for these three years from the trend than to use the actual 
measurements.

An extreme example of the differ
ence between extrapolation and inter
polation for time series is world popu
lation (Figure 13). The validity of in
terpolated population within the last 
2000 years depends on how much one 
trusts the simple pattern of Figure 13.
The prolonged gap between 1 A.D. and 
1650 conceivably could mask excur
sions as large as that of 1650-present, 
yet we know independently from his
tory that such swings have not oc
curred. The combination of qualitative 
historical knowledge and the pattern of 
Figure 13 suggests that even the Black 
Death, which killed a large proportion 
of the population, caused less total 
change than is now occurring per dec
ade. For purposes of defining the trend 
and for interpolation, then, both the distance between bracketing data points and the rate of change 
are important. Thus the great increase in sampling density at the right margin of Figure 13 is en
tirely appropriate, although a single datum at about 1000 A.D. would have lent considerable im
provement to trend definition.

Extrapolation of world population beyond the limits of Figure 13 is both instructive and a mat
ter of world concern. Predicting populations prior to 1 A.D. would be based on very scanty data, yet 
it appears that values would have been greater than zero and less than the 1 A.D. value of 0.2 bil
lion. In contrast, extrapolation of the pattern to future populations suggests that the world popula
tion soon will be infinite. Reality intervenes to tell us that it is impossible for the pattern of Figure 
13 to continue for much longer.

The three examples above are atypical in that they all are time series -  measurements of tempo
ral changes of a variable. Interpolation, extrapolation, and indeed any interpretation of a time series 
is ambiguous, because time is an acausal variable. Often one can hypothesize a relationship between 
two variables that lends confidence to one’s interpretation. In contrast, the source of variations 
within a time series may be unmeasured and possibly even unidentified.

The challenge of avoiding the confounding effect of time is present in all sciences. It is particu
larly acute within the social sciences, because some variables that might affect human behavior are 
difficult to hold constant throughout an experiment. For example, consider the relationship between 
height and weight of boys, shown in Figure 14a. The relationship is nonlinear, and we might be 
tempted to extrapolate that a 180-cm-high boy could be as much as twice as heavy as a 160-cm- 
high boy. Clearly neither height nor weight is normally distributed, and in fact it would be absurd to 
speak of the average height or weight of boys, unless one specified the boys’ age. Figure 14a is 
actually based on a tabulation for boys of different ages. Age is the causal variable that controls 
both height and weight and leads to a correlation between the two. Both change systematically but

0 500 1000 1500 2000
year (A.D.)

Figure 13. Growth in world population during the last 
2000 years.
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nonlinearly with age (Figures 14b and 14c): early growth is dominantly in height and later growth 
is dominantly in weight, leading indirectly to the pattern of Figure 14a.

Figure 14. The relationship between average weight and height of boys (A) is indirect, caused by 
dependence of both on age (B & C).
Time series in particular, and nonindependent sampling in general, jeopardize interpolation and 

especially extrapolation. Nonlinearities are also a hazard, and we shall explore their impacts more 
fully in the subsequent section. First, however, let us assume the ideal correlation situation — inde
pendent sampling and a linear relationship. How can we confidently and quantitatively describe the 
correlation between two variables?

*  *  *

Correlation Statistics
The type of test appropriate for identifying significant correlations depends on the kind of 

measurement scale. For classification data, such as male and female responses to an economic or 
psychological study, a test known as the contingency coefficient searches for deviations of observed 
from expected frequencies. For ranked, or ordinal, data where relative position along a continuum is 
known, the rank correlation coefficient is appropriate. Most scientific measurement scales include 
not just relative position but also measurable distance along the scale, and such data can be analyzed 
with the correlation coefficient or rank correlation coefficient. This section focuses on analysis of 
these continuous-scale data, not of classification data.

Suppose that we suspect that variable Y is linearly related to variable X. We need not assume 
existence of a direct causal relationship between the two variables. We do need to make the three 
following assumptions: first, that errors are present only in the Yf. second, that these errors in the Yf 
are random and independent of the value of Xf, and third, that the relationship between X  and Y (if 
present) is linear. Scientists routinely violate the first assumption without causing too many prob
lems, but of course one cannot justify a blunder by claiming that others are just as guilty. The sec
ond assumption is rarely a problem and even more rarely recognized as such. The third assumption, 
that of a linear relationship, is often a problem; fortunately one can detect violations of this assump
tion and cope with them.

The hypothesized linear relationship between Xt and Yj is of the form: Y = mX+b, where m is 
the slope and b is the Y intercept (the value of Y when X equals zero). Given N  pairs of measure
ments (Xj,7j) and the assumptions above, then the slope and intercept can be calculated by linear 
regression, from:
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m = [NSXiYHSXiXSYOMNSX^-dlXi)2]

b = [(SYiXSXi^-dXiYiXSXiJl/tNSX^-dXi)2]

Most spreadsheet and graphics programs include a linear regression option. None, however, 
mentions the implicit assumptions discussed above.

Linear regression fits the line that minimizes the squares of the residuals of Y{ deviations from 
the line. This concept is illustrated in Figure 15a, which shows a linear regression of leading Na
tional League batting averages for the years 1901-1920. This concept of minimizing the squares of 
Yj deviations is very important to remember as one uses linear regression, for it accounts for several 
characteristics of linear regression.
400,------------ ,-------------,------------ ,------------- 40

/"avg = 3074 1.43 x yeaiS 
V R=-0.47 J

1910 1915 1920 1900 1905 1910 1915 1920 year year
Figure 15. Linear regression (in this case of National League maximum batting average vs. time)
minimizes the sum of squares of Y residuals (shown by vertical lines in A). Regression residuals
(observed minus predicted values of Y), shown in B, are assumed to vary randomly about an average
of zero and as a function of X (year).

First, we now understand the assumption that only the Y{ have errors and that these errors are 
random, for it is these errors or discrepancies from the trend that we are minimizing. If instead the 
errors were all in the X-t, then we should minimize the X-t instead (or, much easier, just rename vari
ables so that Y becomes the one with the errors).

Second, minimizing the square of the deviation gives greatest weighting to extreme values, in the 
same way that extreme values dominate a standard deviation. Thus, the researcher needs to investi
gate the possibility that one or two extreme values are controlling the regression. One approach is to 
examine the regression line on the same plot as the data. Even better, plot the regression residuals — 
the differences between individual Yf and the predicted value of Y at each Xj, as represented by the 
vertical line segments in Figure 15a. Regression residuals can be plotted either as a function of Xj 
(Figure 15b) or as a histogram.

Third, the use of vertical deviations accounts for the name linear regression, rather than a name 
such as linear fit. If one were to fit a trend by eye through two correlated variables, the line would be 
steeper than that determined by regression. The best-fit line regresses from the true line toward a 
horizontal no-fit line with increases of the random errors of Y. This corollary is little-known but 
noteworthy; it predicts that if two labs do the same type of measurements of (Xj, Yj), they will obtain 
different linear regression results if their measurement errors are different.
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Fitting a linear regression does not imply that the obtained trend is significant. The correlation 
coefficient (R ) measures the degree to which two variables are linearly correlated. We have seen 
above how to calculate the slope m of what is called the regression of Y on X: Y=mX+b. Con
versely, we could calculate the slope in' of regression of X on Y: X=m'Y+b'. Note that we are aban
doning the assumption that all of the errors must be in the Yt. If X and Y are not correlated, then 
m=0 (a horizontal line) and m '=0 (a vertical line), so the product mm'=0. If the correlation is per
fect, then m=l/m', or mm'= 1. Thus the product mm' provides a unitless measure of the strength of 
correlation between two variables [Young, 1962]. The correlation coefficient (R) is:

R=(mm')°-5 = [N2XiYi-(2Xi)(2Yi)]/{[N2Xi2-(2xi)2]0.5.[N2Y i2-(2Yi)2]0.5}

The correlation coefficient is always between -1 and 1. R=0 for no correlation, R=-1 for a per
fect inverse correlation (i.e., increasing X  decreases F), and R= 1 for a perfect positive correlation.
What proportion of the total variance in Y is accounted for by the influence of XI R2, a positive 
number between 0 and 1, gives that fraction.

Whether or not the value of R indicates a significant, or non-chance, correlation depends both 
on R and oniV. Table 7 gives 95% and 99% confidence levels for significance of the correla
tion coefficient. The test is called a two-tailed test, in that it indicates how unlikely it is that uncor
related variables would yield either a positive or negative R whose absolute value is larger than the 
tabulated value. For example, linear regression of federal budget deficits versus time gives a high 
correlation coefficient of R=0.76 (Figure 9C). This pattern of steadily increasing federal budget 
deficits is significant at >99% confidence; for N=30, the correlation coefficient only needs to be 
0.463 for the 99% significance level (Table 7).
Table 7: 95% and 99% confidence levels for significance of the correlation coefficient [Fisher and 
Yates, 1963].______________________________________________________

N: 3 4 5 6 7 8 9 10 11 12

R95. 0.997 0.95 0.878 0.811 0.754 0.707 0.666 0.632 0.602 0.576

r99- 1 0.99 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.708

N: 13 14 15 16 17 18 20 22 24 26

R 95* 0.553 0.532 0.514 0.497 0.482 0.468 0.444 0.423 0.404 0.388

R 99- 0.684 0.661 0.641 0.623 0.606 0.59 0.561 0.537 0.515 0.496

N: 28 30 40 50 60 80 100 250 500 1000

R 95* 0.374 0.361 0.312 0.279 0.254 0.22 0.196 0.124 0.088 0.062

r99- 0.479 0.463 0.402 0.361 0.33 0.286 0.256 0.163 0.115 0.081

Table 7 exhibits two features that are surprising. First, although we have already seen that N= 2 
gives us no basis for separating signal from noise, we would expect that N= 3 or 4 should permit us 
to determine whether two variables are significantly correlated. Yet if N=3 or 4 we cannot be confi
dent that the two variables are significantly correlated unless we find an almost perfectly linear cor
relation and thus an R of almost 1 or -1. Second, although we might accept that more pairs of QQ, 
Y{) points would permit detection of subtler correlations, it is still remarkable that withiV>200 a cor



58

relation can be significant even if R is only slightly larger than zero. With practice, one can tenta
tively identify whether two variables are significantly correlated by examining a crossplot, and Fig
ure 16 is provided to aid that experience gathering. With very large N, however, the human eye is 
less able to identify correlations, and the significance test of Table 7 is much more reliable.

1

Figure 16. Examples of strong (R-0.88), moderate (R—0.71), and weak (R-0.21) correlations, 
for N=100 points (top plots) and N=20 (bottom). Note that the linear regression line regresses 
toward horizontal as the correlation coefficient is reduced; only for the strongest correlation 
is this line as steep as would be drawn subjectively. All correlations except for that at lower 
right are significant at the 95% confidence level.

There is an adage: “One doesn’t need statistics to determine whether or not two variables are 
correlated.” This statement not only ignores scientists’ preference for quantitative rather than 
qualitative conclusions; it is simply wrong when N is very small or very large. When N is very small 
(e.g., N<6), the eye sees correlations that are not real (significant). When N  is very large (e.g., 
iV>200), the eye fails to discern subtle correlations.

* * *

Nonlinear Relationships
The biggest pitfall of linear regression and correlation coefficients is that so many relationships 

between variables are nonlinear. As an extreme example, imagine applying these techniques to the 
annual temperature variation of Anchorage (Figure 10b). For a sinusoidal distribution such as this, 
the correlation coefficient would be virtually zero and regression would yield the absurd conclusion
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that knowledge of what month it is (X) gives no information about expected temperature (Y). In 
general, any departure from a linear relationship degrades the correlation coefficient.

The first defense against nonlinear relationships is to transform one or both variables so that the 
relation between them is linear. Taking the logarithm of one or both is by far the most common 
transformation; taking reciprocals is another. Taking the logarithm of both variables is equivalent to
fitting the relationship Y=bXm rather than the usual Y=b+mX. Our earlier plotting hint to try to ob
tain a linear relationship had two purposes. First, linear regression and correlation coefficients as
sume linearity. Second, linear trends are somewhat easier for the eye to discern.

A second approach is to use a nonparametric statistic called the rank correlation coefficient. 
This technique does not require a linear correlation. It does require a relationship in which increase 
in one variable is accompanied by increase or decrease in the other variable. Thus the technique is 
inappropriate for the Anchorage temperature variations of Figure 10b. It would work fine for the 
world population data of Figure 13, because population is always increasing but at a nonlinear rate. 
To determine the rank correlation coefficient, the steps are:
1) assign a rank to each Xj of from 1 to N, according to increasing size of Xf,

2) rank the Yj in the same way;

3) subtract each Xj rank from its paired Fj rank; we will call this difference in rankings df

4) determine the rank correlation coefficient r, from

r = 1 - [6(2dj2)]/[N(N2-l)].

The rank correlation coefficient r is much like the linear correlation coefficient R, in that both 
have values of -1 for perfect inverse correlation, 0 for no correlation, and +1 for perfect positive cor
relation. Furthermore, Table 7 above can be used to determine the significance of r in the same way 
as fori?.

For example, the world population data of Figure 13 obviously show a close relationship of 
population to time. These data give a (linear) correlation coefficient of R=0.536, which is not sig
nificant according to Table 7. Two data transforms do yield correlations significant at the 99% con
fidence level: an exponential fit of the form Y=b+10mx (although this curve fit underestimates cur
rent population by more than 50%), and a polynomial fit of the form Y=b+m1X+m2X2 (although it 
predicts that world population was much less than zero for 30-1680 A.D.!). In contrast, the rank 
correlation coefficient is r= 1.0, which is significant at far more than the 99% confidence level.

Nonlinearities are common; the examples that we have just seen are a small subset. No statisti
cal algorithm could cope with or even detect the profusion of nonlinear relationships. Thus I have 
emphasized the need to make crossplots and turn the problem of initial pattern recognition over to 
the eye.

Nonlinearities can be more sudden and less predictable than any of those shown within the pre
vious examples. Everyone knows this phenomenon as ‘the straw that broke the camel's back’; the 
scientific jargon is ‘extreme sensitivity to initial conditions’. Chaos, a recent physics paradigm, now 
is finding such nonlinearities in a wide variety of scientific fields, particularly anywhere that turbu
lent motion occurs. The meteorologist originators of chaos refer to the ‘Butterfly Effect’: today’s 
flapping of an Amazon butterfly’s wings can affect future U.S. weather. Gleick [1987] gives a re
markably readable overview of chaos and its associated nonlinearities.
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Due to extreme nonlinearities, a causal variable can induce a totally different kind of result at 
low concentration than at high concentration. An example is that nitroglycerin is a common medica
tion for heart problems, yet the patient never explodes! Low concentrations of some causal variables 
can have surprisingly large effects, through development of a feedback cycle. Such a cycle, for ex
ample, is thought to account for the mechanism by which minute oscillations in the earth’s orbit 
cause enormous fluctuations in global climate known as ice ages and interglacial stages. Extreme 
nonlinearities are the researcher’s bane.

*  *  *

Correlation Conclusions
* Correlation can describe a relationship, but it cannot establish causality.
* Many variables have secular trends, but the correlation with time is indirect: secular change in a 
possibly unidentified causal variable causes the measured dependent variable to exhibit secular 
change.
* Crossplots are the most robust and reliable way to look for a relation between variables.
* Statistical correlation techniques assume independent measurements, so they must be used with 
caution when measurements are not independent (e.g., time series or grouped data).
* Interpolation between independent measurements is safe, but interpolation between non
independent measurements is risky.
* Extrapolation beyond the range of previous measurements is usually risky.
* Linear regression and the correlation coefficient R assume a linear relationship between variables.
* Examination of regression residuals is needed, to detect systematic mismatches.
* Nonlinearity can complicate relationships among variables enormously.

*  *  *

Perspectives on Causality
“Felix qui potuit rerum cognoscere causas.”

(Happy is he who has been able to learn the causes of things) [Virgil, 70-19 B.C.]

Causality is a foundation of science, but it is not a firm foundation. Our concept of causality has 
been transformed more than once and it continues to evolve.

During the classical Greek period, to seek causes meant to seek the underlying purposes of 
phenomena. This concept of causality as purpose is identified with Aristotle, but Aristotle was an 
advocate rather than an initiator of this focus. The search for underlying purpose is also a religious 
concern, and the overlap between science and religion was correspondingly greater in ancient 
Greece than in modem times. Perhaps the religious connotation partly explains the shift away from 
Aristotelian causality during the last few centuries, but I suspect that the decisive factor was the 
growing scientific emphasis on verifiability. Greek science felt free to brainstorm and speculate 
about causes, but modem science demands tests of speculations. Testing purposes is much less 
feasible than testing modem associative causality. Modem scientific concern about purpose is con
fined primarily to some aspects of biology and social science. Even most of these questions (e.g.,
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“what is the purpose of brain convolutions?”) refer not to an underlying plan but to function or 
evolutionary advantage.

Hume [1935] redefined causality in more pragmatic terms. His definition of a cause is “an ob
ject precedent and contiguous to another, and where all objects resembling the former are placed in 
like relations of precedency and contiguity to those objects that resemble the latter.” We can for
give Hume’s constipated wording, I hope, on the grounds that definitions, like legal jargon, must be 
unambiguous and yet comprehensive. In other words, systematic (nonrandom) proximity in both 
space and time implies causality, and the event that occurs first is considered to be the cause of the 
second event. If event B is commonly preceded by an association with event A, then event A is a 
cause of event B. Note that neither requires the other: A may not be the only type of event that can 
cause B, and other conditions may be needed before A can cause B. We will consider these vari
ables of causality and their tests in a later section on Mill’s canons.

Lenzen [1938] used the example of Newtonian physics to demonstrate that even Hume’s care
ful definition has exceptions. Cause does not always precede effect, as is evidenced by the fact that 
force causes simultaneous acceleration, not delayed acceleration. Cause and effect need not be con
tiguous, as is evidenced by the fact that gravitational attraction acts over millions of miles (else the 
earth would go careening away from the sun and off into space). To me, these exceptions are incon
sequential. Hume’s causality is meant to be a pragmatic concept, and a principle that is almost al
ways useful should not be discarded for the purity of a void.

If causality is to be limited to the observable and testable as Hume’s concept is, then several fa
miliar attributes of causality may have to be stripped away: Aristotelian interest in purpose, the in
evitability or necessity of an effect given a cause, and concern with underlying (unobservable) 
mechanisms [Boyd, 1985]. We are left with a sterile association between events, firmly founded in 
observations but lacking deeper understanding of processes. One twentieth-century philosophical 
school reached a similar conclusion with different logic: causality is nonunique — one ‘cause’ can 
generate several paths and different causes can lead to the same ‘effect’ — so causality should be 
confined to associations. Physicist Victor Weisskopf often said that causality is simply connec
tions. A philosophical movement called logical positivism skirted this limitation by emphasizing that 
deduction from natural laws can provide a causal explanation of observations.

For the Sufis, cause-and-effect is a misguided focus on a single thread in the tapestry of inter
twined relationships. They illustrate this lesson with the parable of the hanged man [Shah, 1972], 
which we can recast as follows:

In 212 B.C., in his home in Syracuse, while working a math problem, Archimedes 
was killed by a Roman soldier. What caused his death? Was it that his applied scien
tific contributions -  in the form of novel defensive weapons -  were no defense against 
treason? Was it that the leader of the victorious invaders, in giving the order to leave 
the house of Archimedes alone, failed to assure that individual soldiers attended to the 
order? Was it that Archimedes, when commanded by a soldier to leave his home, was 
so preoccupied by his math problem that he refused to let even the fall of a city dis
tract him? Or was it simply that the soldier had had a hard day, exhausting his pa
tience for the cranky stubbornness of an old man?

*  *  *

Causality or pattern -  is the choice a cultural one rather than innate? And if it is cultural, what 
about related fundamental scientific assumptions: comparison, linear thought, and time? A provoca
tive perspective on these questions was provided by Lee’s [1950] classic study of the language of 
the Trobriand Islanders, a virtually pristine stone-age culture of Southeast Asia. Her goals were to



extract both cultural information and fundamental insights into their thought patterns and “codifi
cation of reality”. She did not assume that reality is relative; she did assume that different cultures 
can categorize or perceive reality in different ways, and that language provides clues to this percep
tual approach.

The Trobriand language has no adjectives; each noun contains a suite of implicit attributes, and 
changing an attribute changes the object or noun. The Trobriand language has no change, no time, 
no distinction between past and present. Lacking these, it also lacks a basis for causality, and indeed 
there is no cause-and-effect. Absences of adjectives, change, and time distinctions are aspects of a 
broader characteristic: the virtual absence of comparisons of any kind in Trobriand language or 
world-view. There is no lineal connection between events or objects.

The Trobriand culture functions well without any of these traits that we normally consider es
sential and implicit to human perception. So implicit are these assumptions that Bronislaw Mali
nowski studied the Trobriand Islanders without detecting how fundamentally different their world
view is. Not surprisingly, he was sometimes frustrated and confused by their behavior.

The Trobriand people use a much simpler and more elegant perceptual basis than the diverse 
assumptions of change, time distinctions, causality, and comparison. They perceive patterns, com
posed of “a series of beings, but no becoming” or temporal connection. When considering a pat
terned whole, one needs no causal or temporal relationships; it is sufficient merely to identify ingre
dients in the pattern.

“Trobriand activity is patterned activity. One act within this pattern brings into 
existence a pre-ordained cluster of acts. . . pattern is truth and value for them; in fact, 
acts and being derive value from the embedding pattern. . . To him value lies in 
sameness, in repeated pattern, in the incorporation of all time within the same point.”
[Lee, 19501

During the last 12,000 years an ice age has waned, sea levels have risen, and climates have 
changed drastically. Plant and animal species have been forced to cope with these changes. Since 
the development of agriculture about 12,000 years ago, human progress has been incredibly fast. 
Biological evolution cannot account for such rapid human change; cultural evolution must be re
sponsible. Perhaps the Trobriand example lends some insight into these changes. A Trobrian- 
desque world-view, emphasizing adherence to pattern, might have substantial survival value in a sta
ble environment. In contrast, climatic stress and changing food supplies favored a different world
view involving imagination and choice. Only in rare cases, such as the Trobriand tropical island, was 
the environment stable enough for a Trobriand-style perspective to persist.

The Trobriand world-view is in many ways antipodal to that upon which scientific research is 
based. Yet it is valid, in the same sense that our western world-view is valid: it works (at least in a 
stable environment). And the viability of such an alien perspective forces us to recognize that some 
of our fundamental scientific assumptions are cultural: our concepts of causality, comparison, and 
time may be inaccurate descriptions of reality.

*  *  *

Scientific causality transcends all of these restricted concepts of causality. It does not abandon 
concern with inevitability or with underlying mechanisms. Instead it accepts that description of 
causal associations is intrinsically valid, while seeking fundamental conceptual or physical princi
ples that explain these associations.

Different sciences place different emphases on causality. The social sciences in general give a 
high priority to identifying causal relationships. Physical sciences often attempt to use causality as a

6 2
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launching point for determining underlying theoretically-based quantitative relationships. Possibly 
this difference reflects the greater ease of quantifying and isolating variables in the physical sci
ences. Such sweeping generalizations are simplistic, however — economics is an extremely quanti
tative social science.

All concepts of cause-and-effect assume that identical sets of initial conditions yield identical 
effects. Yet, quantum mechanics demonstrates that this fundamental scientific premise is invalid at 
the scale of individual atoms. For example, radioactive decay is intrinsically unpredictable for any 
one atom. If certainty is impossible at the atomic level, the same must be true for larger-scale phe
nomena involving many atoms. Wemer Heisenberg, a champion of atomic-scale indeterminacy, car
ried this logic to a conclusion that sounds almost like a death knell for causality [Dillard, 1974]: 
“method and object can no longer be separated. The scientific world-view has ceased to be a scien
tific view in the true sense of the word.”

Some non-scientists have seized on Heisenberg’s arguments as evidence of the inherent limita
tions of science. Heisenberg’s indeterminacy and the statistical nature of quantum mechanics are 
boundary conditions to causal description of particle physics, but not to causal explanation in gen
eral. Particle physicists emphasize that virtual certainty can still be obtained for larger-scale phe
nomena, because of the known statistical patterns among large numbers of random events. The 
pragmatic causality of scientists finds atomic indeterminacy to be among the least of its problems. 
Far more relevant is the overwhelming complexity of nature. Heisenberg may have shaken the 
foundations of science, but few scientists other than physicists felt tremors in the edifice.

It seems that a twentieth-century divergence is occurring, between theoretical concepts of cau
sality and the working concepts used by scientists. One can summarize the differences among these 
different concepts of causality, using the following symbols:

A is the cause,
B is the effect,
=> means ‘causes’,
*> means ‘does not necessarily cause’, 

means ‘therefore’,
Aj is an individual observation of A, and 

A is average behavior of A.
The different concepts of causality are then:

Sufi and Trobriand patterns: . . . .  A, B , . . . .
Aristotle: A=>B, in order to . . .
Hume: If A, then B; or A, .\B

logical positivist: theory C predicts ‘A, .\B ’, & observation confirms it

Quantum mechanics: Aj *> Bj, yet A => B

scientific consensus: If A, then probably B, possibly because . . . .

Scientists’ working concept of causality remains unchanged, effectively useful, and moderately 
sloppy: if one event frequently follows another, and no third variable is controlling both, then infer 
causality and, if feasible, seek the underlying physical mechanism. Ambiguities in this working
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concept sometimes lead to unnecessary scientific debates. For example, the proponent of a causal 
hypothesis may not expect it to apply universally, whereas a scientist who finds exceptions to the 
hypothesis may announce that it is disproved.

*  *  *

The logician’s concept of causality avoids the ambiguity of the scientist’s concept. Logicians 
distinguish three very different types of causality: sufficient condition, necessary condition, and 
a condition that is both necessary and sufficient.

If several factors are required for a given effect, then each is a necessary condition. For the ex
ample of Archimedes’ death, both successful Roman invasion and his refusal to abandon his math 
problem were necessary conditions, or necessary causal factors. Many necessary conditions are so 
obvious that they are assumed implicitly. If only one factor is required for a given effect, then that 
factor is a sufficient condition. If only one factor is capable of producing a given effect, then that 
factor is a necessary and sufficient condition. Rarely is nature simple enough for a single necessary 
and sufficient cause; one example is that a force is a necessary and sufficient condition for accel
eration of a mass.

Hurley [1985] succinctly describes the type of causality with which the scientist often deals:

“Whenever an event occurs, at least one sufficient condition is present and all the 
necessary conditions are present. The conjunction of the necessary conditions is the 
sufficient condition that actually produces the event.”

For the most satisfactory causal explanation of a phenomenon, we usually seek to identify the 
necessary and sufficient conditions, not a single necessary and sufficient condition. Often the re
searcher’s task is to test a hypothesis that N  attributes are needed (i.e., both necessary and suffi
cient) to cause an effect. The scientist then needs to design an experiment that demonstrates both 
the presence of the effect when the N  attributes are present, and the absence of the effect whenever 
any of these attributes is removed.

Sometimes we cannot test a hypothesis of causality with such a straightforward approach, but 
the test is nevertheless possible using a logically equivalent statement of the problem. The following 
statements are logically equivalent [Hurley, 1985], regardless of whether A is the cause and B is the 
effect or vice versa (with - A meaning ‘not-A’ and s  meaning ‘is equivalent to’):

A is a necessary condition for B
s  B is a sufficient condition for A
-IfB ,th en A (i£ .,B , .’.A)
s  If A is absent, then B is absent (i.e., -A, .\-B)
s  Absence of A is a sufficient condition for the absence of B
3 Absence of B is a necessary condition for absence of A.

*  *  *

Mill’s Canons: Five Inductive Methods
John Stuart Mill [1930], in his influential book System of Logic, systematized inductive tech

niques. The results, known as ‘Mill's Canons’, are five methods for examining variables in order to 
identify causal relationships. These techniques are extremely valuable and they are routinely used in 
modem scientific experiments. They are not, however, magic bullets that invariably hit the target.
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The researcher needs to know the strengths and limitations of all five techniques, as each is most 
appropriate only in certain conditions.

A little jargon will aid in understanding the inductive methods. Antecedent conditions are those 
that ‘go before’ an experimental result; antecedent variables are those variables, known and un
known, that may affect the experimental result. Consequent conditions are those that ‘follow with’ 
an experimental result; consequent variables are those variables whose values are affected by the 
experiment. In these terms, the inductive problem is expressed as seeking the antecedent to the con
sequent of interest, i.e., seeking the causal antecedent. In considering the inductive methods, a useful 
shorthand is to refer to antecedent variables with the lower-case letters a, b, c, . . . and to refer to 
consequent variables with the upper-case letters Z, Y, X , . . .

Mill’s Canons bear 19th-century names, but the concepts are familiar to ancient and modem 
people in less rigorous form:
a must cause Z, because:

• whenever I see Z, I also find a (the method o f agreement)',
• if I remove a, Z  goes away (the method o f difference)',
• whether present or absent, a always accompanies Z (the joint method o f agreement and differ

ence)',
• if I change a, Z  changes correspondingly (the method o f concomitant variations)',
• if I remove the dominating effect of b on Z, the residual Z variations correlate with a (the 

method o f residues).

Each of the five inductive methods has strengths and weaknesses, discussed below. The five 
methods also share certain limitations, which we will consider first.

Mill was aware that association or correlation does not imply causality, regardless of inductive 
method. For example, some other variable may cause both the antecedent and consequent (h=>c, 
h=>Z, c correlates with Z, but c*>Z). Thus Mill would expand the definition of each method 
below, ending each with an escape clause such as “or the antecedent and result are connected 
through some fact of causation.” In contrast, I present Mill’s Canons as methods of establishing 
relationships; whether the relationships are directly causal is an independent problem.

When we speak of a causal antecedent, we usually think of a single variable. Instead, the ‘causal 
antecedent’ may be a conjunction of two or more variables; we can refer to these variables as the 
primary and facilitating variables. If we are aware of the facilitating variables, if we assure that they 
are present throughout the experiment, and if we use the inductive methods to evaluate the influence 
of the primary variable, then success with Mill’s Canons is likely. If we are unaware of the role of 
the facilitating variables, if we cannot turn them on and off at will, or if we cannot measure them, 
then we need a more sophisticated experimental design.

Method of Agreement
I f several different experiments yield the same result, and these experiments have only one 

factor (antecedent) in common, then that factor is the cause o f the observed result. Symbolically,
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abc=>Z, cde=>Z. clg=>Z. ,\c ^ Z ; or abc=>ZYX. cde=>ZW. cfg^ZVUT, ,\c ^ Z . The method of 
agreement is theoretically valid but pragmatically very weak, for two reasons:
* almost never can we be certain that the various experiments share only one common factor. We 
can increase confidence in the technique by making the experiments as different as possible (except 
of course for the common antecedent), thereby minimizing the risk of an unidentified common vari
able; and
* some effects can result from two independent causes, yet this method assumes that only one cause 
is operant. If two or more independent causes produce the same experimental result, the method of 
agreement will incorrectly attribute the cause to any antecedent that coincidentally is present in both 
experiments. Sometimes the effect must be defined more specifically and exclusively, so that differ
ent causes cannot produce the same effect.

It is usually safest to restate the method of agreement as: if several different experiments yield 
the same result, and these experiments appear to have only one antecedent factor in common, then 
that factor may be the cause of the observed result. Caution is needed, to assure that the antecedent 
and result are not both controlled by some third variable, that all relevant factors are included, and 
that the effect or result is truly of the same kind in all experiments. Time is a variable that often con
verts this method into a pitfall, by exerting hidden control on both antecedents and results. Ideally, 
the method of agreement is used only to spot a possible pattern, then a more powerful experimental 
design is employed to test the hypothesis.

Method of Difference
I f a result is obtained when a certain factor is present but not when it is absent, then that factor 

is causal. Symbolically, abc=>Z, ab=>-Z, .\c=>Z; or abc=>ZYXW, ab=>YXW, .\c=>Z. The 
method of difference is scientifically superior to the method of agreement: it is much more feasible 
to make two experiments as similar as possible (except for one variable) than to make them as dif
ferent as possible (except for one variable).

The method of difference has a crucial pitfall: no two experiments can ever be identical in all 
respects except for the one under investigation. Thus one risks attributing the effect to the wrong 
factor. Consequently, almost never is the method of difference viable with only two experiments; 
instead one should do many replicate measurements.

The method of difference is the basis of a powerful experimental technique: the controlled ex
periment. In a controlled experiment, one repeats an experiment many times, randomly including or 
excluding the possibly causal variable ‘c’. Results are then separated into two groups -  experiment 
and control, or c-variable present and c-variable absent — and statistically compared. A statistically 
significant difference between the two groups establishes that the variable c does affect the results, 
unless:
* the randomization was not truly random, permitting some other variable to exert an influence; or
* some other variable causes both c and the result.

During his long imprisonment, the scientist made friends with a fly and trained it 
to land on his finger whenever he whistled. He decided to carry out a controlled ex
periment. Twenty times he whistled and held out his finger; every time the fly landed 
there. Then he pulled off the fly’s wings. Twenty times he whistled and held out his 
finger; not once did the fly land there. He concluded that flies hear through their 
wings.
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Joint Method of Agreement and Difference
I f a group o f situations has only one antecedent in common and all exh ibit the same result, and 

if another group o f similar situations lacks that antecedent and fails to exhibit the result, then that 
antecedent causes the result. Symbolically, abc=>ZYX, ade=>ZWV, and afg=>ZUT; bdf=>YWU 
and bceg=>XVT, .\a=>Z.

This method is very similar to the methods of agreement and of difference, but it lacks the sim
ple, simultaneous pairing of presence or absence between one antecedent and a corresponding re
sult. Effectively, this method treats each ‘situation’ or experiment as one sample in a broader ex
periment demonstrating that whenever a is present, Zresults, and whenever a is absent, Z is absent. 
The method makes the seemingly unreasonable assumption of ‘all other things being equal’; yet 
this assumption is valid if the experiment is undertaken with adequate randomization.

Method of Concomitant Variations
I f variation in an antecedent variable is associated systematically with variation in a conse

quent variable, then that antecedent causes the observed variations in the result. Symbolically, 
abc=>Z. abAc=>AZ. .\c=>Z;or abc=>WXYZ, abAc=>WXYAZ, .\c=>Z.

The method of concomitant variations is like a combination of the methods of agreement and 
difference, but it is more powerful than either. Whereas the methods of agreement or difference 
merely establish an association, the method of concomitant variations quantitatively determines the 
relationship between causal and resultant variables. Thus the agreement and difference methods 
treat antecedents and consequents as attributes: either present or absent. The method of concomitant 
variations treats them as variables.

Usually one wants to know whether a relationship is present, and if so, what that relationship is. 
This method simultaneously addresses both questions. Furthermore, nonlinear relationships may 
fail the method of difference but be identified by the method of concomitant variation. For example, 
a method-of-difference test of the efficacy of a medication might find no difference between medi
cated and unmedicated subjects, because the medicine is only useful at higher dosages.

A quantitative relationship between antecedent and result, as revealed by the method of con
comitant variation, may provide insight into the nature of that relationship. It also permits compari
son of the relative importance of various causal parameters. This technique, however, is not immune 
to two limitations of the two previous methods:
• determination that a significant relationship exists does not prove causality; and
• other variables must be prevented from confounding the result. If they cannot be kept constant, 
then their potential biasing effect must be circumvented via randomization.

The correlation techniques described earlier in this chapter exploit the method of concomitant 
variations.

Method of Residues
I f one or more antecedents are already known to cause part o f a complex effect, then the other 

(residual) antecedents cause the residual part o f the effect. Symbolically, abc=>WXYZ, ab=>WXY, 
.'.c=>Z.
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As defined restrictive]} above, this method is of little use because it assumes that every poten
tially relevant antecedent is being considered. Yet a pragmatic method of residues is the crux of 
much empirical science: identify the first-order causal relationship, then remove its dominating ef
fect in order to investigate second-order and third-order patterns.

The method of residues provided a decisive confirmation of Einstein’s relativity: 
the theory accurately predicted Mercury’s orbit, including the residual left unex
plained by Newtonian mechanics. Another example is the discovery of Neptune, 
based on an analysis of the residual perturbations of the orbit of Uranus. Similarly, 
residual deviations in the orbits of Neptune and Uranus remain, suggesting the exis
tence of a Planet X, which was sought unsuccessfully with Pioneer 10 and is still being 
looked for [Wilford, 1992bl.

The archaeological technique of sieving for potsherds and bone fragments is well 
known. Bonnichsen and Schneider [19951, however, have found that the fine residue 
is often rich in information: hair. Numerous animal species that visited the site or were 
consumed there can be identified. Human hair indicates approximate age of its donor 
and dietary ratio of meat to vegetable matter. Furthermore, it can be radiocarbon 
dated and may even have intact DNA.

*  *  *

The five inductive methods establish apparent causal links between variables or between attrib
utes, but they are incomplete and virtually worthless without some indication of the confidence of 
the link. Confidence requires three ingredients:
* a quantitative or statistical measure of the strength of relationships, such as the correlation sta
tistics described earlier in this chapter;
* discrimination between causal correlation and other sources of correlation, which is the subject 
of the next section; and
* an understanding of the power or confirmation value of the experiment, a subject that is dis
cussed in Chapter 7.

The five inductive methods differ strikingly in confirmatory power. The Method of Difference 
and the Method of Concomitant Variations are the most potent, particularly when analyzed quanti
tatively with statistics. The Method of Agreement is generally unconvincing. Unfortunately, an indi
vidual hypothesis usually is not amenable to testing by all five methods, so one may have to settle 
for a less powerful test. Sometimes one can recast the hypothesis into a form compatible with a 
more compelling inductive test.

*  *  *

Correlation or Causality?
Causality needs correlation; correlation does not need causality. The challenge to scientists is to 

observe many correlations and to infer the few primary causalities.

Mannoia [1980] succinctly indicates how direct causal relationships are a small subset of all 
observed correlations. Observed statistical correlations (e.g., between A and B) may be:
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•accidental correlations (1 of 20 random data comparisons is ‘significant’ at the 95% confidence 
level);
* two effects of a third variable that is causal and possibly unknown (X=>A & X=>B);

* causally linked, but only indirectly through intervening factors (A=>X1=>X2=>B, or 
B=>X1=>X2=>A); or

* directly causally related (A=>B or B=>A).

Earlier in this chapter, we examined quantitative measures of correlation strength and of the sig
nificance of correlations. Only an inductive conceptual model, however, can provide grounds for 
assigning an observed correlation to one of the four categories of causality/correlation. No quanti
tative proof is possible, and the quantitative statistical measures only provide clues.

Many factors affect or ‘cause’ change in a variable. Usually, our interest in these factors de
creases with decreasing strength of correlation between the causal variables and the effect B. In 
general, we judge the relative importance of various causal variables based on two factors: the 
strength of correlation and the rate of change dB/dAr High correlation strength means that much of 
the observed variation in effect B is somehow accounted for by variation in possible causal variable 
Aj. High rate of change means that a substantial change in effect B is associated with a modest 
change in causal variable Af. However, rate of change alone can be misleading, for the total natural 
range of two causal variables Aj and A2 may be so different that dB/dA | could be larger than 
dB/dA2 and yet A2 causes more variation in B than Aj does. Earlier in this chapter, we employed the 
correlation coefficient as a quantitative measure of correlation strength and the linear-regression 
slope as a measure of rate of change.

If one has three variables (C, D. and E) that are correlated, correlation strength can be used to 
infer likely relationships among them. Statistical techniques such as path analysis and analysis of 
covariance are best for determining these interconnections, but we will confine the present discus
sion to a more qualitative consideration of the problem. For example, suppose the correlation 
strengths among C. D. and E  are as follows: C/D strong, D/E strong, and C/E weak. Probably, the 
weak relationship C/E is a byproduct of the two stronger correlations C/D and D/E. each of which 
may be causal. Direct causal connections (A=>B) usually generate much stronger correlations than 
indirect ones (A=>X1=>X2=>B). Extraneous factors affect each of the steps (A=>X|, X (=>X2, and 
X2=>B) of the indirect correlation, thus weakening the overall correlation between A and B. Note, 
however, that relative strengths of correlations cannot establish causality; they only provide evidence 
about relative proximity of links among variables. For example, the pattern of C/D strong, D/E 
strong, and C/E weak could result either from C=>D=>E or from E=>D=>C.

Many surveys of U.S. voting patterns have shown that those who vote Republican 
have, on average, more education than Democratic voters. Does this mean that educa
tion instills Republican voting, or perhaps that higher intelligence inspires both 
greater education and Republican voting? Hoover [19881 uses this example to illus
trate how social sciences need to beware of correlations induced by an unidentified 
third variable. More detailed and well-controlled surveys demonstrate that family 
wealth is the third variable: children of wealthier families tend to acquire a higher 
level of education and to be wealthier than average, and the voting pattern of wealthier 
individuals is more likely to be Republican than Democratic.

*  *  *



7 0

The following two examples illustrate the challenge of identifying the causality that manifests as 
correlation: the investigators had to design experiments to tease out this causal pattern. In both ex
amples, epidemiological studies of a large population were used to identify a statistical association 
between a pair of variables.

What is the effect of electromagnetic radiation on health? In one study, pregnant 
women who used video terminals more than 20 hours per week had twice as many 
miscarriages as did other kinds of female office workers. The authors of the study 
cautioned, however, that radiation was not necessarily the cause of this difference. For 
example, the video-intensive jobs might be more stressful.

A statistical study of Denver children found that those who had lived near power- 
distribution lines were twice as likely to get cancer than other children. This study was 
criticized for its uncontrolled variables, so other investigators conducted a follow-up 
study designed to be much better controlled and more diagnostic. Contrary to the re
searchers’ expectations, the new result was virtually the same as the original, so many 
scientists concluded that electromagnetic radiation really does seem to affect health.
Note the origin of this change in opinions: the combination of a recognizably skepti
cal scientist and a tighter experiment [Stevens, 1992b].

Compelling scientific evidence is required, because of the potentially staggering 
human and economic impacts if a causal link between electromagnetic radiation and 
health were confirmed. A synthesis of more than one hundred studies demonstrates 
that health impacts are generally negligible [Derry, 1999], but scientific concerns per
sist, particularly regarding possible long-term effects of cell phones.

Is there a genetic predisposition to alcoholism? Research on this question exem
plifies the problem of distinguishing between acquired and inherited characteristics.
One of the most successful ways to attack such problems is by studying adopted chil
dren. For example, 30-40% of adopted children of alcoholics become alcoholics, 
compared to only 10% of the general population. This result constitutes good evi
dence for a genetic origin, but only because it was confined to children of alcoholic 
fathers; it is conceivable that an alcoholic mother could pass along an acquired de
pendence to her fetus, as occurs with heroin.

In a different type of experiment, H. Begleiter found a much higher incidence of 
certain deficiencies in thinking and remembering among alcoholics than among non
alcoholics. Some of these deficiencies disappeared after the subjects stopped drinking, 
but others persisted for years. Was this evidence of permanent damage caused by al
cohol? The author considered a radical alternative hypothesis: instead of the brain de
ficiency being caused by drinking, it preceded the drinking and was a trait among 
those most likely to become alcoholics. In studies of children, he found that 30-35% 
of the sons of alcoholic fathers had the deficiency, although only 1% of a control 
group did [Kolata, 1992a],

Rare scientists (e.g., Bauer, 1994) claim that the continuing debates about acquired vs. inherited 
characteristics illustrate deficiencies of sociology. Many non-scientists interpret the debates as re
vealing the fallibility of scientists. Instead, this research exemplifies the inductive ingenuity of those 
scientists who can recognize the possibility of a pattern among incredible complexity, then design a 
test that successfully isolates the primary variables.
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Chapter 4: Deduction and Logic
“The supreme task of the 

physicist is to arrive at those uni
versal elementary laws from 
which the cosmos can be built 
up by pure deduction. There is 
no logical path to these laws; 
only intuition, resting on sym
pathetic understanding, can lead 
to them.” [Einstein, 1879-19551

“'From a drop of water,' said 
[Sherlock Holmesl, 'a logician 
could infer the possibility of an 
Atlantic or a Niagara without 
having seen or heard of one or 
the other. So all life is a great 
chain, the nature of which is 
known whenever we are shown a 
single link of it. Like all other 
arts, the Science of Deduction 
and Analysis is one which can 
only be acquired by long and 
patient study, nor is life long 
enough to allow any mortal to 
attain the highest possible perfection in it.” [Doyle, 1893bl

*  *  *

Scientific deduction bears little similarity to the mythical conception conveyed by Sherlock 
Holmes. In science, obvious deductions are ubiquitous, insightful deductions are sporadic, and nei
ther is infallible. We wield our logic with confidence, not noticing our occasional deductive errors. 
Before declaring that you are immune to such errors and skipping to the next chapter, please take 
ten minutes to attack the following problem:

Imagine that four 3"x5" cards are on the table. You can see that each card has a 
single letter or number on its top: one has the letter ‘A’, one has ‘B’, one has the 
number ‘4’, and one has the number ‘7’. You may assume that each card contains a 
single letter on one side and a single numeral on the other side. What cards is it neces
sary to turn over, to evaluate the validity of this rule: ‘If a card has an A on one side, 
then it has a 4 on the other side’?

This problem, posed by Wason [1966], is considered by many to be a good example of the type 
of deductive decision-making that scientists face. Only 10% of college students answer the card 
problem correctly [Kuhn et al., 1988], I suspect that you, like I, spent only a minute or two on the 
problem and got the wrong answer. Before proceeding, please consider the problem once more, this 
time actually using some props such as post-its, sheets of paper, or pencil and pad. Imagine that 
each card flip will be a major, time-consuming experiment. Will each experiment really be crucial to 
testing the hypothesis?

"I think you should be more explicit here in step two."
[Harris, 1970]
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The correct answer to the card problem above is the two cards A and 7. Many people answer A 
and 4. The B card is clearly not useful, because it cannot prove or disprove the rule regardless of 
what is on the other side. Surprisingly, however, the same is true for the 4 card: even if it has an A 
on the other side, it supports but neither proves nor disproves the rule that any card with an A on 
one side has a 4 on the other side. In contrast, flipping the 7 card does test the rule, because the rule 
would be disproved if the other side is an A.

Many philosophers of science interpret the A & 4 answer as evidence of a confirmation bias: 
the chooser of the 4 card is seeking a result that confirms the hypothesis, rather than choosing the 7 
card and potentially disproving the hypothesis. Scientists, in contrast, may justify choice of the 4 
card as a search for patterns where they are most likely to be found. Not choosing the 7 card, how
ever, is a failure to consider deductively the importance of potential results.

Two problems can involve identical deductive logic yet differ in difficulty. How a deductive 
problem is posed can affect the likelihood of correct results. Concrete examples are easier to solve 
than are the same problems expressed in symbols. For example, the success rate on the problem 
above was increased from 10% to 80% [Kuhn et al., 1988] when the problem was recast: given an 
envelope that may or may not be sealed and may or may not have a stamp on it, test the hypothesis, 
‘if an envelope is sealed, then it has a 5-pence stamp on it’.

Our greater facility with the concrete rather than with abstract deductions challenges the very 
basis of this decision-making. Possibly we do not even make decisions based on learned rules of 
formal logic [Cheng and Holyoak, 1985], but instead we recognize conceptual links to everyday 
experience [Kuhn et al., 1988] . The problem must seem real and plausible if there is to be a good 
chance of a successful solution; thus the postage problem is easier than the 4-card problem. In de
ductive logic, a similar strategy is often useful: recast the problem so that the logical structure is un
changed but the terms are transformed into more familiar ones. This technique, known as substitu
tion, is one that we shall employ later in this chapter.

The four-card problem illustrates several points:
* prior thought can prevent needless experiments;
* sketches can be valuable in avoiding error;
* the same problem is more likely to be solved correctly if in familiar terms than if in abstract 
terms;
* confirmation bias is present in science, but to some extent it is a normal consequence of our 
pervasive search for patterns; and
* many people’s ‘deductive thinking’ may actually be inductive pattern recognition of a familiar 
deductive form.

*  *  *

Logic
Logic means different things to different people. To Aristotle (384-322 B.C.), the ‘Father of 

Logic’, it was a suite of rules for deductive evaluation of syllogisms. To Peter Abelard (1079-1142) 
and William of Occam (1285-1349), Aristotelian logic was a useful launching point for develop
ment of a more comprehensive logic. G. W. Leibniz (1646-1716) sought to subsume all types of 
arguments within a system of symbolic logic. During the last century, symbolic logic has been the 
focus of so much study that it almost appeared to be the only type of logic. A notable exception was 
John Stuart Mill’s Canons of inductive logic (Chapter 3).
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Logic is the science o f argument evaluation', it includes methods and criteria for deciding 
whether arguments are reliable. In this context, the term ‘argument’ has a meaning quite distinct 
from its everyday use as a difference of opinion: an argument is a group o f statements, consisting 
of evidence and a conclusion. Evidence statements are called premises, and the conclusion is 
claimed to follow from these premises. For example, the following argument consists of three sim
plified statements, of which the first two are premises and the third is a conclusion:

All A are B.
All B are C.
Therefore, all A are C.

*  *  *

Deduction vs. Induction
Scientific logic has two distinctive branches: deduction and induction. Surprisingly, most scien

tists do not know the difference between these two types of inference. I, for example, used the word 
‘deduced’ incorrectly in the title of my first major paper. Sherlock Holmes is indelibly associated 
with deduction, yet many of his ‘deductions’ were actually inductive interpretations based on subtle 
evidence.

To a first approximation, deduction is arguing from the general to the particular, whereas induc
tion is arguing from the particular to the general [Medawer, 1969]. Often scientific induction does 
involve generalization from the behavior of a sample to that of a population, yet the following in
ductive argument goes from the general to the particular:

In spite of many previous experiments, never has a relationship between variables 
X and Fbeen observed. Therefore, this experiment is unlikely to exhibit any relation
ship between X and Y.

In a deductive argument, the conclusion follows necessarily from the premises. In an inductive 
argument, the conclusion follows probably from the premises. Consequently, totally different stan
dards are applied to deductive and inductive arguments. Deductive arguments are judged as valid or 
invalid by a black-or-white standard: in a valid deductive argument, if the premises are true, then 
the conclusion must be true. Inductive arguments are judged as strong or weak according to the 
likelihood that true premises imply a correct conclusion. Statistical arguments are always inductive. 
The following argument is inductively strong but deductively invalid:

No one has ever lived more than 150 years.
Therefore I will die before age 150.

A mnemonic aid for the difference between deduction and induction is: deduction is definite; 
induction is indefinite and uncertain.

Both deductive and inductive arguments are evaluated in a two-step procedure:
* Does the conclusion follow from the premises?
* Are the premises true?
The order of attacking the two questions is arbitrary; usually one considers first whichever of the 
two appears to be dubious. The distinction between induction and deduction lies in the evaluation of 
whether the conclusion follows from the premises.
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Here the focus is on deduction; induction was considered in Chapter 3. Before leaving the de
duction/induction dichotomy, however, two common fallacies must be dispelled: ‘scientific deduc
tion is superior to induction,’ and ‘scientific induction is superior to deduction.’ Three centuries 
ago, great minds battled over whether science should be deductive or inductive. Rene Descartes ar
gued that science should be confined to the deductively certain, whereas Francis Bacon argued that 
the majority of scientific discoveries were empirical, inductive generalizations. A hallmark of the 
inception of rapid scientific progress was the realization that both deduction and induction are nec
essary aspects of science (Chapter 1). Yet the battle continues, fueled by misconceptions. For ex
ample, theoretical physicists such as Einstein probably would be outraged by the following state
ments from Beveridge’s [1955] book on scientific methods:

“Since deduction consists of applying general principles to further instances, it 
cannot lead us to new generalisations and so cannot give rise to major advances in sci
ence. On the other hand the inductive process is at the same time less trustworthy but 
more productive.”

Inevitably, theoreticians value deduction and empiricists value induction, but the choice is based 
on taste rather than inherent superiority.

*  *  *

Scientific deduction uses the science of deduction, but the two do not share the same values or 
goals. Evaluating the validity of arguments is a primary objective of both, but scientific deduction 
places more emphasis on the premises. How can they be tested? Can the number of premises, or 
assumptions, be reduced, and if so what is the impact on the conclusion? How sensitive is the ar
gument to the definition of terms in the premises? Are the premises themselves conclusions based 
on either deductive or inductive interpretation of other evidence?

Some scientists use a somewhat bootstrap logic that would be abhorrent to logicians. The tech
nique is to tentatively assume an untested premise, and then see where it leads in conjunction with 
other, more established premises. If the resulting conclusion is one that is independently valued, 
perhaps on the basis of other deductive paths or perhaps on grounds of elegance or simplicity, then 
the premise may be tentatively accepted. These other standards of hypothesis evaluation are dis
cussed more fully in Chapter 7.

*  *  *

Deductive Logic
Everyday language provides myriad opportunities for obscuring premises and conclusions, so 

the first step in evidence evaluation is usually the identification of premises and conclusion. Opin
ions, examples, descriptions, and many explanations are neither premise nor conclusion and are 
consequently not integral parts of an argument. Frequently, obvious premises are omitted from an 
argument:

“Publish or perish” is an argument of the form: 
all A are B, 
not B, 

not A.
Here we use the symbol ‘ .% ’ to indicate ‘therefore’. The premises are ‘all suc

cessful scientists are paper publishers’ and ‘consider someone who is not a paper 
publisher’; the conclusion is ‘that person is not a successful scientist’.



Premises may begin with one of the following flags: because, due to, since, given that, owing to, 
as indicated by, in that, . . . Likewise, most conclusions have an identifying flag: therefore, conse
quently, thus, accordingly, hence, so, as a result, it follows that, . . . Usually the conclusion is the 
first or last statement in an argument. Sometimes, however, one has to search for the conclusion by 
asking oneself, ‘What is the author trying to convince me of?’ For example, examine the following 
argument and identify the premises, conclusion, and any extraneous statements.

Why should I have to study history? I am a scientist, I have more than enough to 
do already, I don’t like history, and history is irrelevant to science.

If one interprets the conclusion as ‘History is irrelevant to me,’ then the salient 
premises are ‘History is irrelevant to scientists’ and ‘I am a scientist.’ If one interprets 
the conclusion as ‘History is a waste of time for me,’ then the supporting premises are 
‘History is irrelevant to scientists,’ ‘I am a scientist,’ and ‘Doing history would pre
vent me from doing something more worthwhile.’ The logic is valid, but some of the 
premises are dubious.

*  *  *
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With deductive logic, each statement in the argument is either true or false. For the conclusion 
to be true, two critical preconditions must be met. First, the premises must be true. Second, the form 
of the argument must be valid. A valid deductive argument is one in which the conclusion is neces
sarily true if the premises are true. Validity or invalidity is totally independent of the correctness of 
the premises; it depends only on the form of the argument -  thus the term formal logic.

The following arguments demonstrate the distinction between the roles of premises and of logi
cal form in determining the correctness of a conclusion:

All dogs are cats.
All cats are animals.
Therefore, all dogs are animals.

All dogs are mammals.
All mammals are animals. 
Therefore, all dogs are animals.
All dogs are mammals.
All cats are mammals. 
Therefore, all dogs are cats.

Valid form, but one false 
premise, so the argument 
is incorrect (although the con
clusion happens to be true).
Valid form, true premises, 
so the argument is correct and 
the conclusion must be true.
True premises, but invalid 
form, so the argument is 
invalid and does not yield 
this conclusion.

For these three examples, the reader already knows which conclusions are true and which are 
false without even evaluating the arguments. For scientific arguments, however, it is crucial that one 
considers separately the two elements — premise correctness and argument form — rather than ac
cept or reject the argument based on whether or not the conclusion sounds right. Evaluation of 
premises requires subjective judgment based on local expertise. Evaluation of argument form, in 
contrast, is objective. With some practice and a few guidelines, the reader can avoid using invalid 
argument forms and recognize them in publications. Such is the main goal of this chapter.

* * *

Classification Statements
A building block of deductive logic is the classification statement; logicians use the term cate

gorical proposition. The classification statement consists of a subject and predicate, and it states that



members of the subject category are or are not included in the predicate category. For example, the 
statement ‘all scientists are people’ is a classification statement, in which ‘scientists’ is the subject 
and ‘people’ is the predicate. The four types of classification statement are:
* All S are P: The entire subject class lies within the predicate class. Every member of the subject 
class is also a member of the predicate class.
* No S are P: The entire subject class is excluded from, or outside, the predicate class. No mem
ber of the subject class is a member of the predicate class.
* Some S are P: At least one member of the subject class lies within, and is a member of, the 
predicate class.
* Some S are not P: At least one member of the subject class lies outside, and is not a member of, 
the predicate class.

Note that ‘some’ means at least one; it does not mean ‘less than all’. Thus it is possible for 
both statements ‘All S are P ’ and ‘Some S are P ’ to be true for the same S and P; if so, the former 
statement is more powerful. Similarly, both statements ‘Some S are P ’ and ‘Some S are not P ’ may 
be true for the same S and P.

The statements ‘All S are P ’ and ‘No S are P ’ are sometimes referred to as universal statements 
because they apply to every member of a class. In contrast, the statements ‘Some S are P ’ and 
‘Some S are not P ’ apply not to every member but instead to a particular subset; thus they are re
ferred to as particular statements.
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Deductive Aids: Venn Diagrams and Substitution
The four classification statements can be illustrated diagrammatically as shown in Figure 17. 

All S are P No S are P Some S are P Some S are not P

Figure 17. Classification statements, expressed as Venn diagrams.

John Venn, a 19th-century logician, invented this technique of representing the relationship be
tween classes. Each class is represented by a circle; in this case there are only the two classes S or 
P. Potential members of the class are within the circle and individuals not belonging to the class are 
outside the circle. The overlap zone, lying within both circles, represents potential members of both 
classes. Hatching indicates that a zone contains no members (mathematics texts often use exactly 
the opposite convention). An Vindicates that a zone contains at least one (‘some’) member. Zones 
that contain neither hatching nor an X  may or may not contain members. In the next section, we will 
observe the substantial power of Venn diagrams for enhancing visualization of deductive statements 
or arguments. For now, it suffices to understand the Venn representations above of the four classi
fication statements:
* All S are P: The zone of S that is not also P  is empty (hatched), and the only possible locations 
of S are in the zone that overlaps P. Ergo, all S are P.
* No S are P: The zone of S that overlaps P, i.e. that is also P, is empty.
* Some S are P: The X  indicates that at least one member lies within the zone that represents 
members of both S and P. The remaining members of S or P may or may not lie within this zone.



* Some S are not P: The X  indicates that at least one member lies within the zone that represents 
members of S but not of P. Other members of S may or may not lie within P.

*  *  *

Substitution is a powerful technique for recognizing valid and invalid deductive arguments. 
Validity depends only on the form of the argument. Therefore, we can replace any arcane or con
fusing terms in a deductive argument with familiar terms, then decide whether or not the argument is 
valid. For example, the following four arguments all have the same invalid form:

If a star is not a quasar, then it is theoretically impossible for it to be any type of star 
other than a neutron star. This follows from the fact that no neutron stars are quasars.

No neutron stars are quasars. Therefore, no non-quasars are non-neutron stars.

No S are P. no non-P are non-S

No cats are dogs. Therefore, no non-dogs are non-cats.

Recognizing that the first three arguments are invalid is easy for some readers and difficult for 
others. Some of us experience mind-glaze when faced with arguments involving unfamiliar and 
highly technical terms; others find abstract, symbolic notation even more obscure. Some can ana
lyze arguments easier when the argument is in a standard notation; others prefer their arguments to 
be couched in everyday language. Everyone can immediately recognize the fallacy of the cats-and- 
dogs argument, for obviously the world is full of objects that are neither cat nor dog. If this cats- 
and-dogs argument is invalid, then the other three arguments must be invalid because they have the 
same form.

Substitution relies on four principles that we have encountered in this chapter:
* Validity or invalidity of a deductive argument depends only on the form of the argument, not on 
its topic (note: this is not true for inductive arguments).
* A valid deductive argument is one in which the conclusion is necessarily true if the premises are 
true (note: this is not true for inductive arguments).
* If we know that the premises of an argument are true and yet the conclusion is false, then the 
argument must be invalid.
* Validity or invalidity is much easier to recognize for arguments about familiar objects than for 
abstract arguments.

To employ substitution, simply identify the elements of the argument and replace each element 
with a familiar term. In the examples above, the elements are neutron stars and quasars, or S and P, 
or cats and dogs, and the structural equivalents are S=neutron stars=cats and P=quasars=dogs. 
Formal logic assumes that the premises are true, so it is easiest if one picks substitutions that yield a 
true initial statement. Then, an absurd result can be attributed correctly to invalid logic.

Substitution may be the main way that most people (logicians excluded) evaluate deductions, 
but this method seldom is employed consciously. Instead, we unconsciously perceive that an argu
ment is familiar, because it is similar in form to arguments that we use almost every day. Con
versely, we may recognize that an argument sounds dubious, because it seems like a distortion of a 
familiar argument form. With that recognition, we then can deliberately employ substitution to test 
the argument.

7 7

*  *  *
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Logically Equivalent Statements
Venn diagrams permit us to identify or remember logically equivalent statements. Such 

statements have exactly the same truth value (whether true or false) as the original. The Venn dia
grams in Figure 18 permit us to identify which apparent equivalences are valid (identical Venn dia
grams) and which are invalid (different Venn diagrams).

Valid equivalent statements:

All S are P: No S are non-P:

All S are P: All non-P are non-S:

No S are P: No P are S:

No S are P: All S are non-P:

Some S are P: Some P are S:

Some S are P: Some S are not non-P:

Some S are non-P:

Superficially similar but non-equivalent statements:

All S are P: No P are non-S:

All S are P: All PareS:

Some P are not S:
Figure 18. Valid and invalid equivalent statements, and their Venn diagrams.
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Logicians use the terms conversion, obversion, and contraposition to define three types of logi
cally equivalent statements, but we will not need to memorize these terms. Below are listed on the 
right the only logically equivalent statements to those on the left:

Initial statement Logically equivalent statements

All S are P. No S are non-P. All non-P are non-S.

No S are P.

Some S are P.

No P are S.

Some P are S.

All S are non-P.

Some S are not non-P.

Some S are not P. Some S are non-P. Some non-P are not non-S.

Some logically equivalent statements seem cumbersome and overloaded with negatives. That 
apparent weakness is a strength of the concept of logical equivalence, for we may encounter a 
statement on the right and want to translate it into a familiar classification statement.

The concept of logical equivalence can also be useful in experimental design. For example, it 
might be impossible to show that ‘some S are P ’ but easy to show that ‘some P are S ' . In Chapter 
7 we will consider the Raven’s Paradox: the two statements ‘All ravens are black’ and ‘All non
black things are non-ravens’ may be logically equivalent, but testing the latter would involve an in
ventory of the universe.

* * *

For recognizing logically equivalent statements, substitution is an alternative to Venn diagrams. 
For example, replace S with scientists and replace P with either people, physicists, or politicians, 
whichever gives a true initial statement:

Valid equivalent statements:
All Scientists are People.

All Scientists are People.

No Scientists are Politicians.

No Scientists are Politicians.

Some Scientists are Physicists.

Some Scientists are Physicists.

Some Scientists are not Physicists.

Some Scientists are not Physicists.

Non-equivalent statements:
All Scientists are People.

All Scientists are People.

Some Scientists are not Physicists.

*

No Scientists are non-People.

All non-People are non-Scientists.

No Politicians are Scientists.

All Scientists are non-Politicians.

Some Physicists are Scientists.

Some Scientists are not non-Physicists. 

Some Scientists are non-Physicists.

Some non-Physicists are not non-Scientists.

No People are non-Scientists.

All People are Scientists.

Some Physicists are not Scientists.

*  *



The four types of classification statement are for
mally related in truth value, regardless of the subjects 
of the statements. The relationships can be summa
rized in what is called the square of opposition (Fig
ure 19).

The strongest relationship among the statements is 
that of contradiction along the diagonals: if a statement 
is true, then its diagonal is false, and vice versa. With
out even substituting familiar terms for the subject and 
predicate, one can recognize readily that:
• ‘All S are P’ contradicts the statement ‘Some S are 
not P’, and
• ‘No S are P’ contradicts the statement ‘Some S are 
P \

TT . „ . , , , „ . Figure 19. Square o f opposition.Horizontally along the top, one or both of the °  1 11
statements invariably is false:
• If ‘AH 5 are P ’ is true, then ‘No 5 are P ’ must be false;
• If ‘No 5 are P ’ is true, then ‘All 5 are P ’ must be false;
• If either ‘All S are P ’ or ‘No S are P ’ is false, we cannot infer that the other statement is true; 
possibly both are false and ‘Some S are P ’.

Horizontally along the bottom, one or both of the statements invariably is true:
• If ‘Some S are P ’ is false, then ‘Some S are not P ’ must be true;
• If ‘Some S are not P ’ is false, then ‘Some S are P ’ must be true;
• Both statements may be true: some S are P while other S are not P.

Vertically, the statements lack the perfect symmetry that we saw diagonally and horizontally. 
Instead, imagine truth flowing downward (from the general to the particular) and falsity flowing 
upward (from the particular to the general):
• If ‘All S are P ’ is true, then it is also true that ‘Some S are P1.
The knowledge that ‘All S are P ’ is false, however, does not constrain whether or not ‘Some S are 
P \

8 0

Relationships Among Statements
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* Similarly, if ‘No S are P ’ is true, then it is also true that ‘Some S are not P \  The knowledge that 
‘No S are P ’ is false, however, does not constrain whether or not ‘Some S are not P \
* If ‘Some 5 are P ’ is false, then ‘AH 5 are P ’ 
must also be false. The knowledge that ‘Some S 
are P ’ is true, however, does not indicate whether 
or not ‘All S are P ’.
* Similarly, if ‘Some S are not P ’ is false, then 
‘No S are P ’ must also be false. The knowledge 
that ‘Some S are not P ’ is true, however, does 
not indicate whether or not ‘No S are P ’.

These relationships can be visualized more 
easily with a square of opposition composed of 
Venn representations of the four types of state
ment (Figure 20).

For example, the Venn diagrams demonstrate 
the incompatible, contradictory nature of diago
nal statements such as ‘All 5 arc P' and ‘Some 
S are not P ’.

Table 8 summarizes the relationships that can be determined between any two of the classifica
tion statements by examination of the square of opposition.
Table 8. Relationships among classification statements.

All S are P No S are P Some S are P Some S are not P
If ‘All S are P’ true, then false true false

If ‘AH S are P’ false, then unknown unknown true
If ‘No S are P’ true, then false false true

If ‘No S are P’ false, then unknown true unknown
If ‘Some S are P’ true, then unknown false unknown

If ‘Some S are P’ false, then false true true
If ‘Some S are not P’ true, then false unknown unknown

If ‘Some S are not P’ false, then true false true

Finally and most simply (for me at least), one can immediately see the impact of any one state
ment's truth value on the other three statements through substitution. Again I substitute Scientist for 
S, and either People, Physicists, or Politicians for P, whichever fits the first statement correctly. For 
example, if I assume (correctly) that ‘Some scientists are physicists’ is true, then ‘No scientists are 
physicists’ must be false, and I need additional information to say whether ‘All scientists are physi
cists’ or ‘Some scientists are not physicists’. Some caution is needed to assure that my conclu
sions are based on the evidence rather than on my independent knowledge. For example, I know 
that ‘All scientists are physicists’ is false but I cannot infer so from the statement above that ‘Some 
scientists are physicists’. As another example, if I assume (naively) that ‘Some scientists are politi
cians’ is false, then it also must be true that ‘No scientists are politicians’ and that ‘Some scientists 
are not politicians’. Furthermore, the statement that ‘All scientists are politicians’ must be false.

*  *  *
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Syllogisms
Syllogism is the deductive solution of a pervasive scientific problem: what is the relationship 

between the two classes A and C, given that I know the relation of both A and C to the third class Bl
Aristotle loved syllogisms. He systematized them, developed rules for and patterns among them, 

and promoted them as the foremost tool for analysis of arguments. But what is a syllogism? Let us 
examine the syllogism using Aristotle’s own example:

All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

This argument is recognizable as a syllogism by these characteristics:
* the argument consists of three statements;
* two of the statements (in this case the first and second) are premises and the third is a conclu
sion that is claimed to follow from the premises.

In so-called standard form such as the Socrates syllogism, the third statement is the conclusion, 
containing a subject (‘Socrates’) and predicate (‘mortal’), the first statement is a premise dealing 
with the predicate, and the second statement is a premise dealing with the subject.

Syllogisms are of three types: categorical, hypothetical, and disjunctive. We will consider hy
pothetical syllogisms briefly later in this chapter. The Socrates syllogism is categorical: three classi
fication statements, each beginning explicitly or implicitly with one of the three words ‘all’, ‘no’, or 
‘some’, with two terms in each statement, and with each term used a total of twice in the argument. 
Each term must be used in exactly the same sense both times. For example, man cannot refer to 
mankind in one use and males in the second; this is the fallacy of equivocation, described in a later 
section.

Chambliss [1954] succinctly comments:

“The syllogism does not discover truth; it merely clarifies, extends, and gives pre
cision to ideas accepted as true. It is, according to Aristotle, ‘a mental process in 
which certain facts being assumed something else differing from these facts results in 
virtue of them.’”

Aristotle's description that “something else differing from these facts results” is a bit mislead
ing in its hint of getting something for nothing. The conclusion does not really transcend the prem
ises; instead it is really immanent, an implication of the premises that may or may not be obvious. 
Rather than discover truth, the syllogism reveals the implications of our assumptions. As such, it is 
a fundamental step in the hypothetico-deductive method (better known as the scientific method).

Syllogisms can be difficult to recognize in everyday language. Formal analysis of syllogistic 
logic requires a translation from everyday language into the so-called standard syllogism form. This 
translation may involve reorganizing the statements, recognizing that a term can be much longer 
than one word, using logical equivalences to reduce terms, supplying an omitted (but implied) 
premise or conclusion, or breaking apart a compound argument into its component syllogisms. This 
translation is useful to learn but beyond the scope of this book; the reader is encouraged to consult 
a textbook on logic and practice translation of the many examples therein. Here we focus on the 
analysis of standard-form syllogisms, because familiarity with standard-form syllogisms has a 
fringe benefit: invalid syllogisms will sound dubious and invite closer scrutiny, even if they are 
couched in everyday language.

*  *  *
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Categorical Syllogisms
Categorical syllogisms have 256 varieties; only 24 are valid. Any one of these 256 can occur in 

scientific arguments or everyday life, and we should be able to recognize whether it is valid or inva
lid. Simply but brutally put, we cannot always avoid false assumptions, false inductions, or mis
leading data, but we must avoid invalid deductions. A scientist who incorrectly judges the validity of 
a syllogism may design and undertake an entire experiment based on a fallacious expectation of its 
potential meaning.

Table 9: Valid categorical syllogisms [Hurley, 1985]. 
Unconditionally valid:_________________________
All M are P. All S are M. \  All S are P.
No M are P. All S are M. \  No S are P.
All M are P. Some S are M. •. Some S are P.
No M are P. Some S are M. •. Some S are not P.

No P are M. All S are M. \  No S are P.
All P are M. No S are M. \  No S are P.
No P are M. Some S are M. •. Some S are not P.
All P are M. Some S are not M. •. Some S are not P.

Some M are P. All M are S. •. Some S are P.
All M are P. Some M are S. •. Some S are P.
Some M are not P. All M are S. •. Some S are not P.
No M are P. Some M are S. •. Some S are not P.

All P are M. No M are S. \  No S are P.
Some P are M. All M are S. •. Some S are P.
No P are M. Some M are S. •. Some S are not P.
Conditionally valid:
All M are P. All S are M. Some S are P. (S must exist)
No M are P. All S are M. Some S are not P. (S must exist)
All P are M. No S are M. Some S are not P. (S must exist)
No P are M. All S are M. Some S are not P. (S must exist)
All P are M. No M are S. Some S are not P. (S must exist)
All M are P. All M are S. Some S are P. (M must exist)
No M are P. All M are S. Some S are not P. (M must exist)
No P are M. All M are S. Some S are not P. (M must exist)
All P are M. All M are S. Some S are P. (P must exist)
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Many strategies could be employed to distinguish between valid and invalid categorical syllo
gisms:
* random choice (not a very scientific basis for decision-making at any time, but particularly when 
the chance of winning is only 24/256);
* memorization, an old, laborious standby;
* knowing where the answer can be found (Table 9);
* recognition that the correct solutions all obey a few rules (only five rules are needed for suc
cessful separation of the 24 valid syllogisms from the 232 invalid ones);
* sketching Venn diagrams;
* substitution, in which we recognize that the problem structure is identical to one whose answer 
is known.

All except for the ‘random choice’ option are acceptable solutions to the problem, but memori
zation and substitution have the strong advantage of much greater speed. In the remainder of this 
section, I list the valid syllogisms for easy reference, and then I describe substitution — the easiest 
closed-book technique for evaluating syllogisms.

*  *  *

Substitution is an easy way to evaluate categorical syllogisms. As with the evaluation of any 
formal logic, the validity of the form is independent of the actual terms used. If we insert familiar 
terms into the syllogism, choosing ones that yield true premises, then an untrue conclusion must 
indicate an invalid syllogism. For evaluation of categorical syllogisms, I select substitutions from 
the following classification tree:

animals

/ \

mammals reptiles

/ \  / \

dogs cats snakes turtles

The danger of substitution is that a true conclusion does not prove that the logic is valid, as we 
saw above for the syllogism “Some mammals are dogs; some mammals are cats; therefore no cats 
are dogs.” Substitution can prove that an argument is invalid but, unfortunately, cannot prove that it 
is valid. If the premises are true, a substitution that yields a true conclusion may or may not be of 
valid form. In contrast, a substitution with true premises and false conclusion must be of invalid 
form. Thus one needs to consider several substitutions, to see whether any case can prove invalidity. 
For example, the following argument is not disproved by the first substitution but is disproved by 
the second one:

Some physicists are theoreticians.
Some astronomers are theoreticians.
Therefore some physicists are astronomers.

Some dogs are animals.
Some mammals are animals.
Therefore some dogs are mammals.
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Some dogs are mammals.
Some cats are mammals.
Therefore some dogs are cats.

Usually, an invalid syllogism couched in familiar terms feels wrong, even if the conclusion is 
true. Further brief thought then generates a variant that proves its invalidity. Using the ‘animal tree’ 
to test syllogisms can generally avoid the juxtaposition of invalid logic and true conclusion: simply 
confine each statement to adjacent levels in the animal tree, rather than creating statements like 
‘some dogs are animals’ that skip a level.

*  *  *

Hypothetical Syllogisms
Like categorical syllogisms, hypothetical syllogisms consist of two premises and a conclusion. 

Unlike categorical syllogisms, one or both of the premises in a hypothetical syllogism is a condi
tional statement: ‘if A, then B’.

We can express a conditional, or if/then, statement symbolically as A=>B. The statement A=>B 
can be read as ‘A implies B’ or as ‘if A, then B’; the two are logically equivalent. Both statements 
state that A is a necessary and sufficient condition for B .

If both premises in a hypothetical syllogism are if/then statements, then only three forms of 
syllogism are possible:

Valid Invalid Invalid
S=>M. S=>M. M=>S.
M=>P. P=>M. M => P.

S=>P. S=>P. S=>P.

Another type of hypothetical syllogism has one if/then statement, a statement that one of the two 
conditions is present or absent, and a conclusion about whether the other condition is present or 
absent. Symbolically, we can indicate presence (or truth) by S or P, and absence by -S or -P. If only 
one premise is an if/then statement, two valid and two invalid forms of syllogism are possible:

Valid Invalid Invalid Valid

S ^P S ^P S ^P S ^P
s -S P -P

p -P S -s
As with categorical syllogisms, hypothetical syllogisms are readily testable through substitution. 

The substitution that I use treats if/then as a mnemonic for ‘if the hen’:
A: if the hen lays an egg;
B: we cook omelettes;
C: we eat omelettes.

This substitution readily distinguishes invalid from valid hypothetical syllogisms:
Valid: A=>B. If the hen lays an egg, then we cook omelettes.

B=>C. If we cook omelettes, then we eat omelettes.
A=>C. Therefore, if the hen lays an egg, we eat omelettes.
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Invalid: A=>B. If the hen lays an egg, then we cook omelettes.
C=>B. If we eat omelettes, then we cook omelettes.

A=>C. Therefore, if the hen lays an egg, we eat omelettes (invalid; eating omelettes is not 
necessarily related to the hen’s laying).

Invalid: B=>A. If we cook omelettes, then the hen lays an egg.
B=>C. If we cook omelettes, then we eat omelettes.

A=>C. Therefore, if the hen lays an egg, we eat omelettes (invalid, not because the first 
premise is absurd but because the hen’s laying and our omelette eating are not necessarily 
related).

Valid: A=>B. If the hen lays an egg, then we cook omelettes.
A. The hen laid an egg.

B. Therefore, we cook omelettes.

Valid: A=>B. If the hen lays an egg, then we cook omelettes.
-B. We are not cooking omelettes.

-A. Therefore, the hen did not lay an egg.

Invalid: A=>B. If the hen lays an egg, then we cook omelettes.
-A. The hen did not lay an egg.

B. Therefore, we are not cooking omelettes, (invalid; maybe we can get eggs elsewhere)

Invalid: A=>B. If the hen lays an egg, then we cook omelettes.
B. We are cooking omelettes.

A. Therefore, the hen laid an egg. (invalid; maybe we can get eggs elsewhere)

The last two fallacies above are so obviously wrong that we might dismiss them as irrelevant to 
scientists. When couched in technical terms, however, these invalid syllogisms do appear occasion
ally in print. Both fallacies imply confusion between necessary and sufficient conditions. Both are 
deductively invalid, but they may have some inductive validity:
Valid: If the hen lays an egg, then we cook omelettes.

The hen did not lay an egg.
Therefore, we may not cook omelettes.
(the hen’s failure is a setback to our omelette plans, but maybe we can get eggs elsewhere)

Valid: If the hen lays an egg, then we cook omelettes.
We are cooking omelettes.
Therefore, the hen may have laid an egg. (true, but maybe we got eggs elsewhere)

This second hypothetical syllogism is a cornerstone of scientific induction: “If hypothesis 
(H) entails Evidence (£), and E  is true, then H  is probably true.” It is fallacious to conclude that H 
is definitely true, but the evidence is relevant to evaluation of the hypothesis.

*  *  *

Pitfalls: Fallacious Arguments
After a bit of practice, one can readily recognize syllogistic arguments that are expressed in or

dinary language, and one can evaluate them by examining their structures. Many arguments can ap
pear to be structurally valid and yet be fallacious; such arguments yield a false conclusion even if 
the premises are true. These fallacies exhibit an error in execution, such as subtle problems in their 
premises, use of apparently relevant but logically irrelevant evidence, an incorrect connection of 
premises to conclusion, and grammatical errors or ambiguities. Many of these fallacies are genuine
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pitfalls to scientists. Most are deductive pitfalls, but a couple of inductive pitfalls (e.g., hasty gener
alization) are included here because of their similarity to deductive pitfalls.

The list of fallacies that follows is loosely based on the compilation of Hurley [1985], Other 
logicians lump or split these fallacies differently and describe them with different jargon. For our 
purposes, the names applied to these fallacies have limited usefulness; instead, our goal is to recog
nize when an argument is fallacious. Practice with a variety of examples is the key, and logic text
books have a wealth of examples.

Most fallacies fall into one of four types: problems in a premise, extraneous extra evidence, 
faulty link between premises and conclusion, or case-dependent relationship between parts and 
whole. Table 10 gives an overview of these different kinds of fallacy, and the remainder of this 
chapter examines these fallacies in more detail.

*  *  *

Table 10. Varieties of fallacious argument. 
Problems in a premise:_______________

Fallacy Premises other ‘evidence’ => Conclusion
false dichotomy 2 choices as

sumed
other choices 

omitted
suppressed evi

dence
weakness ig

nored
ambiguity ambiguity misinterpreted

false cause noncausal, yet 
assumed causal

slippery slope unlikely chain 
of events

flawed links

Extraneous other evidence:
Fallacy Premises other ‘evidence’ =p Conclusion

appeal to authority experts say . ..

personal attack fools say . . .

mob appeal rest of group 
says . . .

might makes right accept or suffer 
consequences

extenuating cir
cumstances

extenuating cir
cumstances

red herring smoke-screen
distraction
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Faulty link between premises and conclusion:
Fallacy Premises other ‘evidence’ =p Conclusion

missing the point imply conclu
sion A

conclusion B 
drawn

overinterpreting uncertain definite

begging the ques
tion #1

dubious premise 
ignored

begging the ques
tion #2

validated by 
conclusion

circular rea
soning

validated by 
premises

equivocation one meaning 
for key word

another meaning 
for same word

straw man tested with bad 
example

Case-dependent relationship between parts and whole:
Fallacy Premises other ‘evidence’ => Conclusion

false extrapolation 
to whole

parts attribute mis
applied

whole

false extrapolation 
to parts

whole attribute mis
applied

part

false extrapolation 
to individual

general attribute mis
applied

individual

hasty generaliza
tion

nonrepresenta
tive individual

generalized general

*  *  *

Fallacies Resulting from Problems in a Premise

For scientists, few ‘victimless’ crimes are as outrageous as the burning of the Al
exandria library, and with it the destruction of so much ancient knowledge and cul
ture. One legend is that when the Muslim Amrou Ibn el-Ass captured Alexandria, he 
sought his caliph’s guidance on the fate of the library. Caliph Omar responded that 
the library’s books are either inconsistent or consistent with the Koran. If inconsistent, 
they are heretical; if consistent, they are redundant. In either case they should be 
burned. [Gould, 19901

The story is apocryphal and, I suspect, wrong. The library was probably destroyed 
in 389 A.D., not 642 A.D., and the Muslims embraced other cultures and their science 
at a time when Christians were suppressing them. As a memorable example of false 
dichotomy, however, the story is unsurpassed.

A valid deduction does not imply a correct conclusion; accurate premises or assumptions are 
also essential. When reading a research paper, the scientist must seek and evaluate the premises. 
Incorrect or overlooked premises are probably the dominant source of incorrect scientific deduc
tions, and these errors can take several forms:

• False dichotomy is an incorrectly exclusive ‘either . . .or.. .’ statement in one of the premises. 
When one choice is eliminated by another premise, the other choice is accepted incorrectly as the 
conclusion. The logic is valid, and if there truly are only two choices then the conclusion is valid:
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“Either you subscribe to the journal or you don’t. Your subscription lapsed, and 
therefore you don’t subscribe to the journal.”

The fallacy of false dichotomy is that the either/or premise is false if more than two choices ex
ist. Therefore the conclusion is invalid:

“Either the hypothesis is proved or disproved. This experiment did not prove the 
hypothesis. Therefore it must have disproved it.” Unfortunately, science is almost al
ways less efficient than this. Experiments may support hypotheses, refute them, or 
disprove them, but never prove them.

False dichotomy is frequent among the general public.
Sometimes one premise and the conclusion are obvious and unstated:

“Either make at least 100 measurements or skip the experiment entirely.” The 
premises (P) and conclusion (C) are: PI: the experiment is worthless if <100 meas
urements are made; P2: surely you want the experiment to be worthwhile; and C: 
therefore you will want to do at least 100 measurements.

* Suppressed evidence is the omission of evidence that weakens or fatally undermines one 
premise. This fallacy is frequent among both lay people and scientists. Few scientists deliberately 
hide an assumption. Instead, they may suppress evidence passively, by an unconscious ‘forgetting’ 
or by a conscious decision that the evidence is too flawed to warrant mention. A different, but re
lated, lapse of objectivity is the ignoring of evidence that leads to a competing conclusion.

* Ambiguity creates a fallacious argument, when misinterpretation of an ambiguous premise re
sults in a wrong conclusion. Usually the ambiguity arises from punctuation or grammar and is 
merely a temporary distraction while reading a publication:

“We analyzed our experiments on monkeys using multivariate statistics.” Smart 
monkeys!

Misinterpretation of someone else’s ambiguously stated premise is more serious. People often 
are unaware of ambiguities in their own statements, because of familiarity with the subject. Others 
then misinterpret the statement, leading them to incorporate it into an argument that is doomed by 
the incorrect premise.

A sign on a beach says, “Sharks! No swimming!” [Ennis, 19691

My colleagues and I have often succumbed to the fallacy of ambiguity in inter
preting telexes. The sender cannot foresee the ambiguity that cost-saving brevity has 
introduced. For example: “. . . STOP MISS YOU STOP LOVE END”

* False cause is an argument in which a relationship is incorrectly assumed to be causal. Several 
types of associations can be misinterpreted as causal: (1) one event may precede another and be
come misidentified as its cause; (2) the cause may be confused with the effect if the two are nearly 
simultaneous; (3) a variable may control two others and thereby give those two an indirect associa
tion; and (4) the apparent association may be coincidental. Determining causality and dodging the 
potential pitfall of false cause are fundamental aspects of science. They are discussed in more detail 
in Chapter 3.
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* Slippery slope is an argument in which the premises form a chain reaction of assumed causal 
consequences, beginning with some initial event and culminating with a conclusion. One step onto a 
slippery slope causes one to slide all the way to an undesirable outcome. The arguer’s purpose is 
usually to prevent that first step. The slippery-slope fallacy is the invalid assumption that a full 
chain reaction invariably follows the initial event. Almost all chain reactions are invalid, because 
each step requires a causality that is both necessary and sufficient; only then are alternative paths 
precluded. Thus chain-reaction arguments are particularly vulnerable to the fallacy of false cause.

Slippery-slope logic is used with mixed success by many fundamentalist preachers. Seldom is 
it used in science, but sometimes the link between a hypothesis and a testable prediction can involve 
several steps. If so, one must evaluate whether each step validly involves either pure deduction or a 
necessary and sufficient causality.

The most familiar example of a slippery slope, at least to those in my age group, 
is domino theory. Used successfully in the early justifications of the Vietnam war, 
domino theory said that if Vietnam were to fall to communism, through chain reac
tion all of Southeast Asia would eventually become communist. Domino theory was 
wrong.

In attempting to refute Galileo’s claim that he had discovered satellites of Jupiter, 
astronomer Francesco Sizi [Holton and Roller, 1958] used a slippery-slope argument:

“The satellites are invisible to the naked eye and therefore can have no influence 
on the earth and therefore would be useless and therefore do not exist.”

*  *  *

Fallacies Employing Extraneous Other Evidence

When ego is involved, scientific arguments can get personal. This was often the 
case for Isaac Newton, as the following letter [~1700] illustrates. Note that Newton at
tempts to demolish an idea without giving a single shred of evidence:

“That gravity should be innate, inherent and essential to matter, so that one body 
may act upon another at a distance through a vacuum, without the mediation of any 
thing else, by and through which their action and force may be conveyed from one to 
another, is to me so great an absurdity, that I believe no man who has in philosophical 
matters a competent faculty of thinking, can ever fall into it.”

Unlike Newton’s argument, most arguments do involve evidence that can be evaluated in terms 
of premises and deductive or inductive conclusions. They may also, however, contain a collage of 
other information that the proponent considers to be relevant but that is extraneous to the core de
ductive argument. Often this extraneous information is emotionally charged, and the evaluator must 
cull the deductive argument from among the distractions.

* Appeal to authority is the claim that an argument should be accepted because some expert 
accepts it. Ideally, scientists do not appeal to authority; they evaluate evidence personally. In prac
tice, however, we limit such analyses primarily to our own field, and we tentatively accept the pre
vailing wisdom of scientists in other fields. The appeal to authority must be considered pragmati
cally, based on how much more experience the ‘authority’ has than the arguers have, how main
stream the authority’s view is, and how feasible it is for the arguers to evaluate all of the evidence.

For example, when a biologist considers a physics argument, it is valid to give 
weight to what physicists believe. Yet when a physicist considers a physics argument, it 
is a fallacy to accept it merely because some ‘great’ physicist believes it.
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* Personal attack is a criticism of the opponent in a debate, rather than refutation of the oppo
nent’s arguments. This diversionary attack, like the red-herring fallacy discussed later, is a smoke
screen that uses emotional impact to draw attention away from the relevant logical arguments. Three 
types of personal attack are:

* verbal abuse, in which one directly attacks the opponent’s character, personality, or psy
chological health, although those factors are irrelevant to the argument being ‘refuted’.

“The so-called discoverers of cold fusion are more interested in glory and a No
bel prize than in well-controlled experiments.”

* challenging the objectivity o f the opponent, in which one argues that the opponents’ bias 
forces them to argue as they do, regardless of the argument’s validity.

“It is not surprising that A rejects these experimental data, since they refute his 
hypothesis.”

* ‘practice what you preach’, in which one defends oneself by claiming that the opponent is 
just as guilty.

“A claims that I have ignored conflicting evidence, but she has ignored . . .”

* Mob appeal is the assertion that one should accept an argument in order to join the crowd. 
Mob appeal is the premise for the emotionally enticing conclusion that ‘right thinking’ people are a 
group of winners. Different manifestations of the mob appeal fallacy are:

* mob psychology, in which the arguer seeks a simultaneous group response through the bait 
of inclusion or the threat of exclusion. Politicians and preachers use this technique; scientists do 
not.

* bandwagon , in which it is claimed that the group knows best and an individual is in danger 
of being left out.

“Everyone’s accepting this new theory and finding applications for their own 
field.”

“In science the authority embodied in the opinion of thousands is not worth a 
spark of reason in one man.” [Galileo Galilei, 1564-1642]

* egotistic appeal, which provides a simple way for an individual to be like someone famous.

“Nobel prizewinner A advocates the hypothesis, so wouldn’t you?”

* status symbol, in which the individual joins a group composed only of the superior people.

“Mensa is the most fascinating of clubs, because only those with intelligence in 
the top 2% can join.”

The last football game that I attended was USC versus UCLA, in about 1969. It 
was called a ‘great game’: the sides were evenly matched and the team I favored 
(USC) came from behind to win in the last couple of minutes. My overriding mem
ory, however, is that the fans on both sides were chanting “Kill! Kill! Kill!” and 
meaning it. They cheered each time a member of the opposing team was injured or 
carried from the field, and the game was dirty enough that such incidents were fre



quent. That day I lost my interest in football, but I gained realization of the need to 
make my own judgments, rather than accepting mob opinion.
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* Might makes right is the argument that the listener must accept the arguer’s conclusion or 
suffer the consequences. The threat may be physical or it may involve some other undesirable ac
tion. Between parents and children it is usually the former, and among scientists it is the latter. The 
threat is irrelevant to the validity of the conclusion, and yet it may affect the listener’s decision
making.

“Everyone knows that this theory is correct, and if you try to prove otherwise you 
will destroy your credibility as a scientist.”

* Extenuating circumstances is the plea for accepting the conclusion out of pity for someone. 
The arguer claims that acceptance will help someone in trouble, or that rejection of the conclusion 
will cause undue hardship to someone (usually to the arguer). The extenuating circumstances are 
irrelevant to the validity of the basic argument.

Students often use the plea of extenuating circumstances on their teachers; law
yers use it on juries and judges. Scientists use it in personal, not scientific, arguments.

* Red herring is diversion of attention from an argument’s weakness, by creating a distracting 
smoke-screen. The fallacy is named after a technique used in training hunting dogs: drag a sack of 
red herring (a strongly scented fish) across the scent trail that the dog is supposed to follow, and 
train the dog to stick to the main trail without being distracted or diverted to the red-herring trail. 
The fallacious red herring can and usually does consist of valid reasoning, often protracted and 
sometimes emotional, so the listener is left with the impression that the conclusion is valid. In fact, 
the red herring is a related issue that is extraneous to the central argument.

This style of misdirection is the secret of many magicians’ tricks. It rarely is employed deliber
ately in scientific arguments. However, a similar smoke-screen -  ‘straining at a gnat and swallowing 
a camel’ [Matthew 23:24] — is sometimes adopted: the arguers demolish a minor criticism of their 
argument, giving the false impression of careful and objective thoroughness, while obscuring a brief 
mention of a serious weakness in the argument.

When the theory of evolution was proposed by Charles Darwin and advocated by 
Thomas Huxley, falacious refutations were rampant: Evolution is inconsistent with the 
Bible (appeal to authority); Darwin is a heretic (personal attack) who should be ex
cluded from our community of scientists (mob appeal) and will certainly burn in Hell 
(might makes right).

*  *  *

Faulty Link Between Premises and Conclusion

“The myth of the scientific method keeps the scientific community from recog
nizing that they must have a humanly developed and enforced professional ethics be
cause there is no impersonal method out there that automatically keeps science the 
way it ought to be.” [Bauer, 1994]
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The hardest fallacies to spot are those that lead to a conclusion with which we agree. No scien
tist would disagree with Bauer’s [1994] conclusion that personal ethical responsibility is essential. 
And yet, his argument is fallacious: we may value the innate checks-and-balances of the scientific 
method, but no scientist responds by abdicating personal ethics. Between premise and conclusion, 
the argument has gone astray -  in this case by misrepresenting the relationship between scientist 
and scientific method. This straw man fallacy is one of several ways in which the link between 
premises and conclusion may be fallacious.

• Missing the point is basing a conclusion on an argument in which the premises actually lead 
to a quite different conclusion. Like red herring, much of the argument in missing the point is valid 
but only appears to lead toward the conclusion. Red herring, however, is often deliberate whereas 
missing the point is accidental. The fallacy is detectable by deciding what conclusion is actually 
warranted from the premises, then comparing this valid conclusion to that drawn by the arguer.

“Hypothesis A fails these two tests, and consequently hypothesis B is the best ex
planation.”

• Overinterpreting is the attempt to claim a firm conclusion although one or more premises is 
quite uncertain. The fallacy is in asserting a definite, deductive conclusion:

“Scientists have tried for years to refute this hypothesis and have failed. Thus the 
hypothesis must be true.”

In contrast, the following somewhat similar argument is valid, because it properly considers the 
evidence as inductive:

“Many attempts to find N rays have failed, although N rays should be detectable 
by these tests. Therefore N rays probably do not exist.”

• Begging the question is an argument in which the logic may be valid, but a dubious premise is 
either propped up by the conclusion or is ignored entirely. This term is used to describe two differ
ent fallacies: ignored dubious premise and circular reasoning.

An ignored dubious premise, omitted from but essential to an argument, is a common pitfall. 
Ignoring a premise is reminiscent of but more extreme than the fallacy of suppressed evidence. 
This fallacy is one of the most serious pitfalls of scientific research, for three reasons. First, every
one is better at noticing characteristics of observed features than at noticing that something is miss
ing. Second, once a premise is overlooked, it will be harder for anyone else to recall. Third, most 
occurrences of this fallacy could be avoided, if the researcher would just list the premises. Too of
ten, scientists fail to ask themselves what their premises are, or they think about the answers super
ficially but fail to write them down systematically.

“You need a different kind of instrument, because the one you have broke 
down.” The dubious premise is that a different type of instrument will not break 
down.

Circular reasoning is an argument in which the conclusion and premises seem to support each 
other, but actually they say virtually the same thing in two different ways. The logic is valid if trivial 
(A, /.A), yet the repetition lends the illusion of strengthening the conclusion.

“It is obvious that the instrument is not working reliably because it gives anoma
lous results. These results must be wrong because the instrument malfunctioned.”
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* Equivocation is use of the same word in subtly different senses; due to ambiguity of word 
meaning, fallacious logic appears to be structurally valid. Particularly subject to this fallacy are ar
guments that repeatedly use qualitative descriptions such as large and small, or good and bad:

“The hypothesis is slightly incorrect, because there is a slight difference between 
predictions and observations.” The first use of ‘slight’ means ‘small but definitely 
significant,’ whereas the second ‘slight’ may mean ‘small and statistically insignifi
cant.’

Proof that -1 is the largest integer [Spencer, 19831: Listing all the integers . . .  -4,
-3, -2, -1,1, 2,3,4, . . . where \  . .’ extends to infinity, we see that nothing has been 
omitted. But we also know that the largest integer (n) is the only integer for which 
there is no n+i; the only such number is -1.

* Straw man is a fallacious strategy for refuting an argument: misinterpret it, refute the misinter
preted version, and then conclude that you have refuted the original argument successfully. The 
term is a takeoff on the concepts of scarecrows and burning in effigy: imagine that you set up a 
straw man and easily knock it down, claiming that you have knocked down the real man. The term 
‘straw man’ is sometimes used in a different sense than used here; it can be a ‘trial balloon’, an 
idea that is proposed knowing that it will be knocked down but expecting that it will be a productive 
starting point for further discussions.

Frequently, hypothesis refutations are of the following form: “Let’s examine the truth of your 
hypothesis by seeing how well it fits the following example: . . .” If the argument or hypothesis 
really should apply to the example, then this technique is compelling. The refutation or confirmation 
is valid, and any refuted argument must be abandoned or modified. With a straw man, in contrast, 
the original hypothesis was not intended to encompass the example, so the argument is fallacious 
although the entire logic of the analysis is just as valid. Thus one should evaluate the appropriate
ness of the example before applying it, lest the refutation act as a smoke-screen.

*  *  *

Case-dependent Relationship Between Parts and Whole

Cholesterol seems to have surpassed sex as the number-one source of guilt in 
modem America. Much of this cholesterol consciousness stems from the 1985 Na
tional Cholesterol Education Program. All Americans were urged to reduce choles
terol in order to avoid heart disease. Surprisingly, however, there was virtually no di
rect scientific evidence that cholesterol reduction prevents heart disease in either 
women or in the elderly, although 75% of heart attacks are in people older than 60 
years.

The key studies were all on middle-aged men with high cholesterol. These studies 
conclusively found that: (1) higher cholesterol level is associated with higher risk of 
heart disease, and (2) giving cholesterol-lowering drugs to high-cholesterol subjects 
reduced their risk of heart disease. The first finding established a correlation, and the 
second result demonstrated causality. Generalization of this pattern to middle-aged 
women and to the elderly of both sexes is plausible, but neither data nor deduction 
implies it. [Kolata, 1992bl.

The conclusion that everyone should reduce cholesterol is a hasty generalization, the extrapola
tion to an entire population from a possibly nonrepresentative sample. The conclusion may be cor
rect -  indeed, it has been demonstrated by subsequent experiments to be correct -  but it does not 
follow compellingly from these data. This inductive fallacy and several deductive fallacies go astray



95

in linking the individual to the general, or parts to the whole, or the universal to the particular. The 
validity of such arguments is case-dependent: arguments with identical form can be valid or invalid, 
depending on the specific relationship between parts and whole.

• False extrapolation to the whole is the false conclusion that the whole exhibits some charac
teristic because one or more parts exhibit it. The argument is structurally valid; whether it is correct 
or not requires careful evaluation of the content, because sometimes extrapolation to the whole is 
warranted. For example:

Invalid: “The mistaken belief that technology is applied science . . . implies that any 
advance in scientific knowledge could be harnessed to useful applications” [Bauer,
1994]. Actually, scientists argue only that many scientific advances have valuable 
practical applications.

Valid: “This prediction of the hypothesis is refuted, and therefore the hypothesis is 
disproved.”

Invalid: “This prediction of the hypothesis is confirmed, and therefore the hypothesis 
is proved.”

Valid: “This premise in the argument is false; thus the argument is false.”

Invalid: “Every premise in the argument is true; thus the argument is true.” Remem
ber that the truth of a conclusion depends both on the truth of premises and on the 
validity of the logic.

• False extrapolation to parts is the false conclusion that a part exhibits some characteristic 
because the whole exhibits it. This potential fallacy is the reverse of the previous one. The conclu
sion may be either correct or incorrect depending on the content:

Valid: “The argument is correct (valid and true), so every premise must be true.”

Invalid: “The argument is incorrect (either invalid or untrue), so every premise must 
be false.”

Valid: “This journal requires peer review for its papers; therefore this article in the 
journal has been peer reviewed.”

Invalid: “That scientific meeting is worth attending, and consequently every talk at 
the meeting is worth attending.”

• False extrapolation to the individual is misapplication of a generalization to an individual 
case. This fallacy is the reverse of hasty generalization, and it is somewhat similar to the fallacy of 
false extrapolation to parts. Like these, it may be correct or incorrect depending on the content. The 
fallacy lies in ignoring evidence that the general rule is inappropriate to this specific case.

“Publication is an essential part of any research project. Therefore my manu
script should not be refused publication even if the reviews were negative.”
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* Hasty generalization is the inductive extrapolation to an entire population, based on a sample 
that is nonrepresentative. Often the sample is too small to be representative, but smallness does not 
necessarily imply the fallacy of hasty generalization. A sample of only two or three can be enough 
if one is dealing with a uniform and representative property: for example, learning not to touch fire. 
Hasty generalization is frequent among non-scientists; it is the origin of many superstitions. A key 
difference between scientific and popular induction is that the latter usually ignores the need for a 
representative sample. The consequence is vulnerability to hasty generalization.

Hasty generalization is quite similar to the fallacy of false extrapolation to the whole. The two 
differ, however, in the scopes of their conclusions: a general statement about every member of a 
population (hasty generalization) or the collective behavior of a class (false extrapolation to the 
whole).

Hasty generalization: “Wristwatches with radium dials are safe, so all radium samples 
are safe.”

False extrapolation to the whole: “The half-life of a radium-226 atom is 1622 years; 
thus brief exposure to radium poses negligible hazard.”

Which is this? “I seldom detect the effect, so the effect must be rare.”

*  *  *

H. H. Bauer, a chemist and self-proclaimed expert in STS (science, technology, and society), 
succeeded in packing a remarkable number of the foregoing fallacy types into a single paragraph:

“In what sense, then, are the social sciences actually science? They have no uni
fying paradigm or the intellectual consensus that goes with it. They have not pro
duced distinctive and reliable knowledge that is respected or valued by human society 
as a whole. Yet those are the very qualities for which the natural sciences are noted 
and respected; they are the qualities that we associate with something being scientific - 
- that is, authoritatively trustworthy. The social sciences are simply not, in the accepted 
meaning of the term, scientific. And that conclusion has been reached by at least a 
few practicing social scientists — for example, Ernest Gellner.” [Bauer, 19941

Bauer’s argument succumbs to at least seven fallacies:
* Suppressed evidence: His assertion that none of the social sciences has a paradigm is incorrect.
* Suppressed evidence: To claim that the social sciences have not produced reliable knowledge, 
one must ignore countless concepts such as supply and demand (economics), stimulus and re
sponse (psychology), human impacts of environmental change (geography), and human impacts of 
racial and gender stereotypes (sociology).
* False dichotomy: He assumes that the accumulated knowledge of all of the social sciences can 
be classified as either having or not having a consensus. In actuality, consensus is a continuum and 
degree of consensus varies tremendously both within and among fields.
* Mob appeal: He claims that ‘human society as a whole’ determines the reliability of knowl
edge.
* Straw-man: His definition of ‘scientific’ as ‘authoritatively trustworthy’ is not merely a weak 
assumption; it is a deliberate misrepresentation.
* Appeal to authority: He seeks validation for his stance by quoting one social scientist.
* False extrapolation to the whole: He applies a conclusion based mainly on sociology to all so
cial sciences.
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Chapter 5: Experimental Techniques
“An experiment is a question 

which science poses to Nature, and 
a measurement is the recording of 
Nature’s answer.” [Planck, 19491

Experimental design determines 
whether a research report is read or ignored, 
whether a result is accepted or rejected, and 
whether a scientist is judged superior or 
inferior. Most scientists and many techni
cians can carry out an experiment success
fully. An experiment’s value, however, de
pends not only on outcome but also on the 
skill with which it is designed. Fortunately, 
this skill, which develops with experience, 
also can be fostered deliberately. This 
chapter provides a variety of experimental 
tips, culled from the experiences of many 
scientists.

Like military planning, research plan
ning has three levels [Beveridge, 1955]:
• tactics, the small-scale and relatively 
short-term planning of an individual ex
periment. The key question is ‘how’. Tactics must be considered in the context of
• strategy, the broader approach to the research problem, which involves an extensive suite of 
experiments. A strategy is most efficient if it is considered in the context of
• policy, the determination made by funding agencies and committees concerning which general 
problems are the most crucial in a science.

Like business planning, research planning should involve the following:
• risk analysis. What is the chance of success? What could go wrong and what would its impact 
be?
• risk management. How can I improve the chances of success? How can I avoid possible fac
tors that would make the final result ambiguous or misleading?
• time analysis. How much time will it take for each step? How will potential problems affect 
this estimate?
• time management. How much control do I have over the amount of time required for each 
step? Where can I streamline the procedure without weakening the integrity of the experiment?
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An intelligent person would never go to war or start a business without careful analysis of the 
factors above, yet most research planning gives them only brief attention. Usually we are so im
mersed in the details that we neglect the broader concerns. We may even claim that we are so busy 
doing that we don’t have time for esoteric planning. Careful planning o f an experiment determines 
its value. If most experiments were to begin as a ‘gedanken’ experiment, a thoughtful anticipation 
of the likely progress and outcome of the experiment, then the few that are physically undertaken 
would be more likely to be key experiments.

“From the way a war is planned, one can forecast its outcome. Careful planning 
will lead to success and careless planning to defeat. How much more certain is defeat 
if there is no planning at all!” [Sun Tzu, ~500 B.C.l

Failure to consider the factors above creates some of the more common experimental pitfalls:
* underestimating the amount of time that an experiment will take. Underestimation is most 
acute when the planned experiment has never been done before (e.g., when one is designing new 
equipment for a novel experiment). Almost always, one’s overall time estimate is much shorter and 
less realistic than would be an estimate based on a list of the time requirements of individual steps. 
Most experimenters also fail to include time estimates for delays, setbacks, and unexpected prob
lems, and their time estimates assume ‘production mode’ rather than the entire period from set-up 
to shut down. I routinely allow optimism to carry me into this pitfall, even though I recognize the 
wisdom of my wife’s rule of thumb: carefully estimate the time for each individual step, sum these 
times, and then double the total.
*  lack of time management, resulting from taking each step as it is encountered. For example, 
running batch processes is usually more efficient than doing experiments in series. The wait time 
that occurs somewhere in most experiments can often be filled with another part of the experiment, 
if the process is planned as a whole. If I concentrate, I can keep three processes going at a time.
* lack of strategy. Even a tactically brilliant project can be strategically ineffectual or foolish; the 
best example is the Japanese attack on Pearl Harbor. The consequences of clever implementation of 
unfocussed research are less drastic: inefficiency and ho-hum science. Many ingenious experi
ments contribute little, because of insufficient attention to overall strategy. Too many experiments 
are selected merely because they are obvious or logical follow-ups to previous experiments. A more 
powerful selection strategy is to consider various possible experiments, then select the one that is 
likely to contribute most.
* lack of risk management. Often, surprisingly small changes in design or technique can pro
foundly affect the value of an experiment. Yet these refinements are neglected, because planning is 
short-circuited by optimism, lack of risk analysis, or enthusiasm to get started. In hindsight, the 
changes that should have been made are obvious.

“The winner does everything to ensure success before he fights. The loser rushes 
into combat without adequate preparation.” [Sun Tzu, ~500 B.C.l

*  *  *

Observational versus Experimental Science
Many scientific disciplines are more observational than experimental. Within these research ar

eas, only a few of the guidelines for experimental design in this chapter will apply. For example, in 
observational or descriptive branches of biology, ecology, psychology, anthropology, and astron
omy, manipulation of variables is not always possible. With many natural phenomena one cannot
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control experimental conditions. Yet the basic elements of scientific method are identical to those 
used with other experiments: observations inspire hypotheses, which can be tested only with further 
observation.

Scientists generally use the term ‘observations’ as a synonym for ‘data’, whether or not the 
experiment actively manipulates the observed environment. This section, in contrast, focuses on that 
distinction. Unlike experimental science, much observational science is akin to the Chinese concept 
of wu-wei, or ‘not doing’. Wu-wei is a balance of active and receptive, an alertness coupled with a 
willingness to allow nature to unfold and reveal itself.

Throughout scientific history, some scientists have chosen this method of alert receptivity. 
Greek science was almost entirely observational; it sought order in the universe through observa
tion, interpretation, and classification rather than through experimentation. Charles Darwin, as bio
logical taxonomer on the Beagle, recognized patterns that allowed him to understand both the evo
lution of coral reefs and the process of biological evolution through natural selection. Within the 
science of geology, a more observational science than most, there are highly experimental fields 
such as experimental geochemistry as well as largely observational fields such as paleontology. The 
lack of experimentation in paleontology has not prevented the field from providing the age-dating 
foundations for most of the rest of geology, or from revealing a wealth of climatic and evolutionary 
information.

Observation is the primary method for understanding complex systems. Control of all possibly 
relevant variables in such systems may be impossible, and the theories may be so simplified that 
they cannot predict the observations reliably. In studying complex systems, the search for one phe
nomenon frequently reveals an even more interesting phenomenon.

The approach to observational science often begins qualitatively, as a search for an order that 
characterizes the system. Usually the researcher observes many variables, hoping to detect any pat
terns. These patterns or relationships may or may not be causal. If an apparent pattern is found, a 
suite of later observations can be designed to test its significance.

An observational science can evolve into a more experimental science, particularly when a new 
paradigm guides observations by imposing order on the complexity and indicating which parame
ters are important for study. Astronomy is a good example: for thousands of years it was purely 
observational, then it became capable of quantitative predictions such as the occurrence of seasons 
and eclipses. Since Newton, work in astronomy has been increasingly quantitative and theoretical. 
Even without the ability to affect the planets and stars, astronomical experiments can isolate vari
ables and test hypotheses.

Unlike hypothesis-driven experimentation, with its limited choice of expected results, observa
tional science often yields unpredicted results. While this can be advantageous, promoting insight 
and creativity, there also are drawbacks. Unexpected results often are overlooked or rationalized 
(see Chapter 6). A particularly challenging aspect of observation is the necessity of noticing ab
sence of a phenomenon; absence can be as significant as presence. For example, consider Sherlock 
Holmes’s search for the perpetrator of a break-in:

“ ‘Is there any point to which you would wish to draw my attention?’ [asked In
spector Ross].

‘To the curious incident of the [watch]dog in the night-time,’ [answered Sherlock 
Holmes].

‘The dog did nothing in the night-time.’
‘That was the curious incident,’ remarked Sherlock Holmes.”
[Doyle, 1893a]
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Observational science has a bad reputation among some scientists, for several reasons. First, it 
cannot change experimental conditions as some other fields can. Second, its initial stage is often 
‘just’ data gathering, a ‘fishing expedition’, because the phenomenon is still so incompletely un
derstood that few hypotheses are available to channel observations. Third, and probably most im
portant, the initial stage of most observational sciences is qualitative — subjective — not quantitative. 
Often the system is so complex and so many parameters can be measured quantitatively, that the 
scientist cannot discern which characteristics should be measured. I suspect that astronomy enjoys 
a much higher reputation than clinical psychology among scientists because it has progressed far
ther along a continuum, which begins with overwhelming complexity, progresses to pattern recog
nition and qualitative hypothesis testing, and culminates in quantitative testing of theoretical models.

Some scientists whose research is amenable to carefully designed experiments think that any 
research lacking such control is ‘less scientific’ than their own research. Nothing could be farther 
from the truth, and one should beware the assumption that the same standards for scientific method 
apply to all types of science. “If one has only a hammer, one tends to look at everything as if it 
were a nail.”

“More discoveries have arisen from intense observation of very limited material 
than from statistics applied to large groups. The value of the latter lies mainly in test
ing hypotheses arising from the former.” [Beveridge, 1955]

The following late 19th-century experiment by naturalist J. Henri Fabre [Teale, 1949] is worth a 
detailed description because it illustrates both the power of observational techniques and the re
markable impact that the subtlest experimental intervention can have on the value of a suite of ob
servations. It should be noted that Fabre tried several similar, unsuccessful experiments before he 
recognized an emerging opportunity and seized it.

To what extremes can animals be enslaved by instinct? Fabre investigated this 
question by studying the pine processionary, a moth caterpillar that leaves a silky 
thread behind it as it travels. Nearly always, it chooses to follow existing silky paths, 
laid down by other pine processionaries. Usually this strategy is valuable for survival, 
leading each individual among the established food supplies of pine needles.

Watching a parade of pine processionaries approach the rim of a palm vase in his 
greenhouse, Fabre waited until the leader had completed a full circle around the rim.
He intercepted the parade, by quickly brushing away all caterpillars and trails below 
the rim. That was the extent of his experimental intervention. He then observed the re
sult, a continuous, leaderless string of caterpillars rimming the pot.

Because pine processionaries simply follow the silky trails left by others, the cat
erpillars kept going in a circle. Night and day, they kept going in the same circle.
Only during the coldest part of the night did they slump. When they started again on 
the third day, they were huddled in two groups. Two leaders started the march around 
the rim, but soon the two groups combined into a continuous ring. On the fourth day 
the first to wake had slumped off the track. It and six followers entered the new terri
tory of the pot’s interior, but they found no food and eventually wandered back to 
the rim, retaking the circular path. On the fifth day, a leader and four followers 
strayed from the path and explored the outside of the vase, to within nine inches of a 
pile of pine needles. They failed to notice this food and wandered back to the rim.
Two days later, now staggering from hunger, one wandered and found the pine nee
dles. Eventually the rest of the group followed. The pine processionaries had circled 
hundreds of times over a seven-day period and failed to recognize the uselessness of 
their circular path. They followed instinct to the point of collapse repeatedly, surviv
ing only by chance.
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*  *  *

Seizing an Opportunity
Fabre’s experiment above is a classic example of the power of seizing a scientific opportunity. 

Often scientists undertake carefully planned experiments, but occasionally chance presents them 
with an opportunity. Such opportunities are most common in the more observational fields of re
search.

For example, whenever an earthquake happens, teams of seismologists rush to the scene with 
their seismometers, in order to monitor the aftershocks. When the 1971 San Fernando earthquake 
struck, I was at Scripps Institution of Oceanography, less than 100 miles away. I failed to seize the 
opportunity: I slept through the earthquake. My advisor, in contrast, ran into the bathroom and 
looked into the toilet. He saw that the water was sloshing north-south. Because he knew that active 
faults lie north but not south of San Diego, he inferred that a major earthquake had just struck north 
of us — in the Los Angeles region.

A few hours later, he and several other geologists (myself included) were driving near San 
Fernando, looking for the fresh fault scarp. At least that is what we were trying to do; actually we 
were stuck in a canyon in what seemed to be the world’s largest traffic jam, while earthquake- 
loosened pebbles bounced down the hillsides and pelted the cars below. I remember wondering 
whether seizing this opportunity might be the dumbest idea I had ever gone along with.

Seizing an opportunity has sometimes been used as an excuse for skimming the cream and dis
carding the milk. In Egyptology, for example, the early approach was to grab the spectacular, ex
pending no time for ‘details’ such as careful documentation of the less glamorous debris or post
excavation restoration of the site environment. Now archaeological work in Egypt is more careful 
throughout each project [Cowell, 1992], because an archaeological site offers no opportunity for a 
second chance or replicate study.

Supernova SN1987A was a successful example of scientists seizing an opportu
nity [Browne, 1992], This explosion of a star occurred so close to earth ( ‘only’
160,000 light-years away) that it was visible to the naked eye. It was the closest super
nova in the last 400 years, an astounding chance to exploit modern astronomical 
technology to verify popular but untested models such as that of neutrino flux. The 
challenge was that study of SN1987A required a very fast scientific response, because 
the supernova peaked in brightness only three months after it was discovered. Both 
astronomers and funding agencies bypassed existing plans and procedures, achieving 
a sudden burst of observation, confirmation, and modification of theories.

*  *  *

Experimental Equipment
Equipment, not rare opportunities, is the mainstay of most experimental science. The applica

tions, complexities, and costs of research apparatuses differ, yet several concerns and potential pit
falls are common to most equipment used in science.

Invention often follows technology. When new technology permits higher-resolution studies or 
a novel type of measurement, new perspectives often result. One should be alert for such techno
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logical developments, even if they arise from outside one’s specialty, because of the potential for 
cross-disciplinary applications.

New technology also has potentially serious pitfalls. First, fascination with the new and com
plex can prevent objective evaluation of a new device’s strengths and weaknesses. For example, as I 
write this, the most powerful of the supercomputers is the Cray. Many scientists are impressed with 
results from the Cray. Some claim that anything produced on it must be right, and that its calcula
tions supersede those from other computers. In fact, all computer calculations are subject to the 
same pitfalls of programming error, rounding error, and invalid assumptions; the supercomputers 
merely allow faster completion of complex calculations.

Researchers often are faced with a choice between two pieces of equipment: an older and a 
newer model. Perhaps one already has the older type and is thinking of acquiring the newer version. 
Usually the newer design uses state-of-the-art technology and therefore is more expensive, more 
efficient, and more accurate. Will enough experiments be undertaken for the greater efficiency to 
justify the greater cost? Cost of experimenter time must be weighed against equipment cost. Simi
larly, one must weigh the option of obtaining more measurements with lower accuracy against that 
of fewer measurements with greater accuracy. The latter is more aesthetically pleasing but not nec
essarily the most practical solution, and simple statistical analyses can help in this comparison.

Occasionally investigators choose to design their own apparatus, perhaps because none is 
commercially available or because personally constructed equipment is more suitable or less expen
sive than commercial. Almost always, this design and construction takes more time than expected. 
Yet home-built equipment also has several advantages, such as intimate familiarity by the researcher. 
Wilson [1952] gives a detailed review of factors to consider when designing and building one’s 
own equipment.

Whether using old or new equipment, the most frequent equipment pitfall is trusting the equip
ment. Nearly all equipment needs standards and calibration, regardless of what the manufacturer 
may imply. The need for calibration is obvious with home-built equipment, but calibration checks 
are just as necessary for sophisticated, expensive equipment. Indeed, this pitfall is even more insidi
ous with the newer, higher-technology equipment. Digital displays and direct computer interfacing 
of equipment do not assure reliability.

Precision and accuracy, once determined, cannot be assumed to persist unchanged. Both can be 
destroyed by equipment malfunction and by subtle changes in the experimental environment. For 
example, I once subcontracted to another lab for 400 chemical analyses. In examining the data and 
the replicate measurements of standards, I found that the final 25% of the analyses were worthless. 
A power cord had been replaced and the equipment was not recalibrated after this ‘minor’ change.

Creating or purchasing some standards, then occasionally running them to confirm equipment 
performance, takes trivial time compared to the span of routine measurements. In contrast, lack of 
calibration checks can mean that entire experiments have to be redone. If realization of data unreli
ability dawns after publication, the setback can affect an entire research discipline.

*  *  *

Prototypes and Pilot Studies
When designing a new apparatus for a suite of experiments, it is usually a good idea to build a 

prototype first. When beginning a novel type of experiment, it is usually a good idea to do a pilot 
study first. In both cases, it is tempting to skip this step ‘to increase efficiency’. Skipping this step
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is almost always a false economy, unless the new apparatus or experiment is only a slight refine
ment of a familiar one.

The experimental prototype is a routine step in applied science, where it provides a bridge be
tween theory and routine practical application. Applied science usually has two scales of prototype: 
laboratory prototype and then pilot plant. Only after both have been tried does a company decide 
whether commercial production is viable.

The prototype is a less common step in basic research, although some of the same factors that 
encourage its use in applied science apply to basic science. The prototype allows feasibility study, 
detection of practical problems, and improvement of design parameters. It also permits identification 
and isolation of unanticipated factors that could affect the success or accuracy of the experiments. 
Consequently, far different standards and objectives apply to the prototype than to the final appara
tus:
• The prototype is much less expensive and time-consuming to build than the final apparatus. Often 
it is smaller, less robust, and less streamlined.
• The prototype is much more versatile than the final apparatus. Modification is easier, parts can be 
exchanged, and ‘quick and dirty’ fixes are acceptable.
• Depending on the type of measurement, the prototype may have a smaller or larger range of 
measurement values than the final apparatus will need to have.
• Precision and accuracy may be lower on the prototype, and both are improved as problem vari
ables are isolated. The prototype is not necessarily well calibrated, because we are probably more 
interested in sensitivity analysis than in accuracy of these results.
• Measurements may be more cumbersome and slower on the prototype than on the final apparatus.

A prototype is likely to be needed whenever equipment design is substantially modified. It can 
even be a worthwhile time saver when one is building equipment or an experimental setup similar to 
published ones and depending on rather scanty published details. It is better to discover that the 
author left out a ‘slight complication’ when trying out a prototype than in the midst of an experi
ment.

The pilot study is the procedural analogue to an equipment prototype, and many of the consid
erations above apply equally well to pilot studies. Different standards [Beveridge, 1955] concerning 
variables and their control apply to pilot studies than to the formal experimental series:
• One can use extreme values for a variable in the pilot study to see if they have any effect. If they 
do seem to have an effect, then the formal experiment can focus on the range of most interest for 
this variable. At that stage, higher accuracy and precision probably will be required. Indeed, statisti
cal analysis of the pilot data can indicate how many measurements will be needed to detect the effect 
(Chapter 2).
• In some situations, many variables could have a significant effect, and it is not obvious which 
needs to be incorporated into design of the formal experiment. One can lump many variables in the 
pilot study. Of course, some caution is needed to prevent cancellation of the effect of one variable 
by the opposing effect of another. This approach is most effective if one knows the probable direc
tion of the potential influence of each variable. If a composite effect is found, then formal experi
ments can be designed that will systematically isolate the effects of each variable.
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Pilot studies can indicate whether a potential experiment is likely to be fruitful and how one 
should deal with the relevant variables. Pilot studies cannot substitute for a well designed formal 
experiment.

Prototypes and pilot studies are modes of scientific troubleshooting. Whether or not we expect 
problems, these techniques help us to avoid them.

*  *  *

Troubleshooting and Search Procedures
Troubleshooting is a familiar, intimate part of science. The trouble may involve computer hard

ware or software, malfunctioning equipment, or an experiment that is giving results that are unex
pected and possibly unreliable. These and many other problems are solvable with established trou
bleshooting and search procedures. Yet the techniques are published in few places, and most of us 
react to encountered problems by thinking of only one or two remedies. Wilson [1952] considers 
troubleshooting and search techniques in detail, and the completeness of the following discussion 
owes much to his comprehensive treatment.

The foremost rule of troubleshooting and search is: keep records to avoid duplication of effort 
and floundering, to reveal any patterns in the troubleshooting results, and to make it easier to iden
tify potential tests that you have overlooked. Keeping records is unnecessary for the first or even 
second attempted solution. As soon as troubleshooting extends beyond a few minutes, however, one 
should start jotting down notes of what has been tried and what it yielded.

The frustration implicit in troubleshooting can result in needless damage. Hippocrates was fa
miliar with the problem 2000 years ago. His guideline, which could have supplanted later leechcraft, 
is still apropos: Primum non nocere; first do no harm. When diagnosing a medical problem, ex
ploratory surgery is an acceptable last resort; autopsy is not.

A subtler manifestation of primum non nocere is the following question: is the object of the 
quest worth the cost of the search? Cost can take various forms, tangible and intangible. When cost 
is computed in dollars, this question is the daily quandary faced by NSF and the occasional topic of 
intense arguments, as exemplified by the debate over star-wars research.

If troubleshooting new equipment:
1) Remember the facetious saying, “If all else fails, read the manual.” Probably something is con
nected wrong, a setting is incorrect, or a step is being left out. The better manuals even have a sec
tion on troubleshooting.
2) If possible, run a standard that you know is supposed to work on this equipment. If the standard 
works OK, then how does your sample differ from the standard? If the standard doesn’t work ei
ther, then go on to the next step.
3) Examine all of the equipment for visible signs of damage.
4) Try to isolate which part of the equipment is malfunctioning. Some of the search procedures dis
cussed later may help. Sometimes it is possible to swap out parts of the equipment. Some parts can 
be tried in isolation or in conjunction with other working equipment, and some circuits can be tested 
with a multitester (AC, DC, and resistance).
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5) Scan the following sections for any hints that might be relevant.
6) Call the supplier or manufacturer, tell them that we have a problem with the new equipment, and 
try to get troubleshooting help over the phone. Why not do this first? Telephone help is fine, but if 
the call merely results in arrangements for a replacement requiring delays of days or even weeks, 
then a few minutes or even hours of preliminary troubleshooting may be justified. The supplier may 
suggest that returning the equipment for their evaluation is more practical than telephone trouble
shooting, because that is easier for them. If so, remind the supplier that they claimed to be in busi
ness to serve you, not vice versa.

If troubleshooting equipment or an experiment that formerly worked fine:
1) Go back to previous data and identify when the problem began, then list all changes to the sys
tem that occurred at about that time. The cause of the problem is probably in the list.
2) Run a benchmark check: try to replicate a measurement or result that you have previously ob
tained and that you are reasonably certain is valid. If it replicates OK, then how does this sample 
differ from the problem sample? If it does not replicate, then what may have changed since the 
original correct measurement? If this test is inconclusive, then a second replication test may be 
worthwhile, using a sample with quite different characteristics.
3) Consider the following frequent sources of equipment problems: incorrectly remembered meas
urement procedures, blown fuse or circuit breaker, part failure, a corroded connection, supply volt
age variations, and temperature-sensitive components or equipment response. The first three usually 
cause a complete failure, and the others often cause intermittent problems.
4) If none of the above help, then possibly you have an uncontrolled variable that is influencing the 
results. Methods for dealing with such variables are described later in this chapter.

*  *  *

Search is fundamental to scientific method. Search procedures can be used for finding objects 
and for troubleshooting problems. More generally, search is exploration-based research. Search 
procedures can provide a practical way of dealing with the complexity of nature. They can help one 
to focus efforts or scientific questions, in order to reduce them to a tractable size (Killeffer, 1969).

Most scientists are aware of most search procedures. Nevertheless, we often succumb to the 
pitfall of choosing the first search procedure that comes to mind, rather than deliberately selecting 
the most appropriate procedure. The following list of search considerations and techniques is 
largely based on a compilation by Wilson [1952]:

* Characterize the object of the search. List the characteristics of the search object, and for each 
characteristic consider whether or not the object differs from its surroundings.

“Kilimanjaro is a snow covered mountain 19,710 feet high, and is said to be the 
highest mountain in Africa. Its western summit is called by the Masai ‘Ngaje Ngai,’ 
the House of God. Close to the western summit there is the dried and frozen carcass 
of a leopard. No one has explained what the leopard was seeking at that altitude.” 
[Hemingway, 1940]

Characterizing the search object has been the nemesis of attempts to find the 
‘missing’ mass of the universe. If, as many cosmologists previously expected, the 
universe is to collapse someday into an infinitely small point like that which began the
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big bang, then there must be enough mass in the universe to produce the required 
gravitational attraction. Yet only about 10% of this mass has been found to-date [Wil- 
ford, 1992cl, even including both what has been observed and what has been ex
trapolated to exist. Imagine the challenge of searching for something when you don’t 
know what it is and you don’t know where it is. Remarkably, astronomers are finding 
at least some of this dark matter, by observing galaxies whose motions require gravi
tational forces far larger than the observed masses could generate.

* Pick the most efficient method of detection. For example, select a technique that sees the 
search object but not the surroundings. In picking the most efficient method, consider the effort, 
time, and money needed to acquire, set up, and employ each method.

Diamond hunter Gavin Lamont discovered a gigantic diamond-bearing kimberlite 
pipe in Botswana, although the entire exploration region was covered by 160 feet of 
surface sediments that contained no diamonds. He used one fact, one speculation, and 
months of perseverance. The fact was that even though diamonds are incredibly rare, 
they are accompanied by common indicator minerals garnet and ilmenite. Thus one 
should search for garnet and ilmenite first. His speculation was that the only way gar
net and ilmenite could get to the ground surface from 160 feet down would be re
working by deeply burrowing termites. Therefore he ran a search pattern through 
hundreds of square miles, easily finding each termite mound sticking up from the 
flatlands, and examining the termite mound for the presence of the dark minerals 
garnet and ilmenite. When he finally found the indicator minerals, he sank a shaft to 
what later became a 4.5-million-carat-a-year diamond mine [Hem in way, 19831.

* Before embarking on a major search, try to establish that the object really does exist in the 
area being searched. For example, do not spend a major effort taking equipment apart if the 
problem could be elsewhere (e.g., power fluctuations).

A friend of the Mulla Nasrudin found the Mulla crawling around outside at night 
beneath a lamp post. Of course he asked, “What are you doing?” “Looking for my 
key”, replied the Mulla. The friend asked, “Where did you lose it?” and the Mulla 
replied “In my house”. The exasperated friend asked, “Then why are you looking 
for it here?” The Mulla answered, “Because there is more light here.” [Sufi teaching 
story, e.g., Shah, 19721

* Confirm that you would detect the object if you encountered it. For example, it might be 
feasible to use an artificial substitute and see if you detect it. Test your detection method at intervals 
to be sure that it is still working and that it has sufficient sensitivity. Conversely, find out if your test 
is so sensitive that it gives false positives, i.e. it claims that you have found the object when you have 
not. False alarms may be acceptable, if you have another test for the object that you can apply at 
each apparent detection.

On my last oceanographic expedition, we heard an introductory lecture on drill
ing technology, complete with a 70-pound, l'-diameter drill bit as a visual aid. After 
the lecture, two women scientists saw that the drill bit had been forgotten. “Let’s put 
it in the men’s room and stick a toilet brush in it,” they decided, “No man will ever 
recognize it.” For more than a week, they were right.



107

* Keep a record of the search; ideally, flag searched areas so that they are readily distinguish
able from unsearched regions.

* Search the most probable place first, then search places that are successively less likely to 
contain the object. Use specific criteria for estimating promising locations; do not just play 
hunches.

Meteorites are occasionally found, but until recently they were considered to be 
far too rare to search for. Now they are being found in record numbers in Antarctica, 
and scientists have even found eight that they think have come from Mars and several 
that definitely came from the moon [Gleick, 1992b]. The new success is due to letting 
natural processes concentrate the meteorites: they are found on top of the Antarctic 
ice, in environments that are undergoing ablation rather than precipitation.

* Search systematically. Haphazard searching can take just as long as a systematic search, yet 
search some areas several times and others not at all. At the end of a haphazard search one still can
not exclude the searched area. Most searches begin haphazardly, but once they become time
consuming, one should pause and plan a systematic search. Systematic searches are not necessarily 
inflexible, inefficient searches.

Paul Ehrlich’s hypothesis was that some substances are able to kill parasites with
out damaging the host. He systematically investigated 605 compounds without suc
cess; the 606th, salvarsan, proved effective against syphilis. [Beveridge, 19551

* Distribute your available searching resources -  whether time or manpower — appropriately in 
the different regions. For example, if several areas seem equally promising but some are much eas
ier to search, search the easy ones first. If you will have to quit searching after a limited time, usu
ally a detailed search of the most promising area is more effective than a widespread superficial 
search. If a little-known phenomenon or a totally new type of observation is being explored, the ini
tial search should probably be a broad reconnaissance rather than a detailed examination of a small 
subset. Detailed focus is higher risk, until the reconnaissance establishes which parts of the whole 
are most likely to reward close-up studies.

* Use a convergent search procedure, if possible. Convergent searches employ feedback on 
whether they are getting closer to or farther from the object. This technique is feasible for questions 
such as “When did the equipment start giving strange results?” or “Where is the short circuit?” 
but useless for questions like “Where is the needle in the haystack?” When using a convergent 
search, it is better to overshoot than to undershoot; this is the tactic used in golf putting and in 
weighing (use large weights until overshooting, then smaller weights). The ideal search procedure 
eliminates half the possibilities at each step:

Consider the game of twenty questions, as employed in the old television show 
‘What’s My Line?’ There are thousands of professions, yet the questioners were often 
able to guess the contestant’s profession. If one can design each yes/no question to 
cut the number of possible solutions in half, then twenty questions can sort out one 
choice from 1,048,576 possibilities (220). Twenty guesses or a million? Clearly a sys
tematic search procedure such as this one can be extremely powerful. Unfortunately,
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most search problems cannot be cast in this form. Furthermore, the technique fails if 
one of the answers may be incorrect.

* Use a search method that indicates both direction and distance to the object at each search 
step. On the few occasions that this technique is feasible, it is extremely efficient.

An old parlor game begins with everyone except the subject selecting some object 
in the room. Then the subject attempts the seemingly impossible task of identifying 
that object. As he wanders around the room, he detects people’s involuntary reactions 
to his proximity to the target object.

* Consider the probability of missing the object even if it is in the search path. Decide whether it 
is more efficient to do a detailed search first or to do a quick reconnaissance first and, if unsuccess
ful, then do a slower search of the same area. Do not eliminate any area unless there is virtually no 
chance of having missed the object.

* Consider possible impacts of the search itself both on the object and on the difficulty of finding 
the object. For example, will the search technique preclude re-search? If so, we must be certain that 
the initial search does not overlook its objective.

Surprisingly often, the following technique helps to solve equipment problems: 
take the equipment apart and put it back together. Perhaps this procedure will reveal 
the problem (e.g., a corroded connection) or perhaps it will solve the problem without 
revealing it (e.g., a loose connection). This procedure is counterproductive, however, 
if one puts the equipment back together incorrectly and creates another problem; it is 
much harder to troubleshoot two independent problems than to identify one.

Searching for submarines requires one to consider the impacts of the search: the 
submarine may detect you before you detect it, and it will take evasive action. Natu
ralists have the same problem with finding wildlife. Hunters sometimes take advantage 
of this phenomenon by using beaters to flush the game.

* For multidimensional search problems, search one dimension at a time. For example, when 
searching an area of ground, run parallel lines, with minimal but finite overlap of swaths. For multi
ple independent variables, check one variable at a time. For example, when tuning several controls 
for maximum sensitivity, maximize response with each separately, then repeat the procedure if inter
actions are possible.

* Consider the possibility of the object being present or visible only intermittently. This possibility 
applies not to physical objects but to a problem or searched-for phenomenon. Intermittent phe
nomena usually require long-term monitoring rather than, or in addition to, a more conventional 
searching of different areas at different times.

* Consider the possibility that two independent factors are helping to hide the object. Would the 
search procedure be successful regardless of the relative importance of these two controls, or does it
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only help to identify one of them? These two-variable problems, like intermittent phenomena, can 
create baffling, frustrating search and equipment-troubleshooting puzzles. Somehow one needs to 
separate the two (possibly unknown) factors, as in the one-dimensional search procedure above.

When the search succeeds, minimize recurrence problems:
• prevent another loss of the object, or
• make the solution a permanent one rather than a temporary fix-up, or
• make a permanent record of the solution or successful search technique, and assure that this re
cord does not have to be searched for. For equipment problems, paste a label on the equipment de
scribing the symptom and solution.

*  *  *

Each of the search tactics above can be invaluable on occasion. For particularly intractable 
search or exploration problems, it can be worthwhile to scan the techniques above, considering the 
appropriateness of each. Many search problems, however, can be solved by a relatively simple se
ries of steps:
1) describe the problem thoroughly;
2) list the differences between ‘signal’ and ‘noise’;
3) evaluate the potential benefit of each difference for the current problem;
4) consider employing a discrimination of more than one difference, either in series (first cut then 
final discrimination) or in parallel (simultaneous).

*  *  *

Problem: Find a Needle in a Haystack.
H int#l\ First, define the problem more thoroughly. Ask, “Why do you need to find it?” This is 
not just a smart-ass question. It is a recognition that there may be many ways to solve a problem, 
and individual requirements determine the optimum approach. Are you after the needle or a needle- 
less haystack? Which is dispensable: the needle, haystack, or both? Is this a one-time or repetitive 
problem? Are you certain that the haystack contains only one needle? How critical is it that no mis
takes are made?

What is the best way to find a needle in a haystack, given each of the following scenarios?
• Feeding this hay to your thoroughbred horse could give it a punctured stomach.
• The only possible supplier of hay for your thoroughbred-horse stable provides hay that some
times is unavoidably contaminated with needles.
• You are doing some sewing, and you just lost your needle in the haystack.
• A valuable golden needle is lost in the haystack.

Hint #2: Before deciding on a technique, list the characteristics in which the search object can be 
distinguished from background:

needle hay
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metal
silver-colored
not flammable
magnetic
denser than water
sharp
rigid
etc.

vegetable
tan-colored
flammable
nonmagnetic
floats on water
dull
flexible
etc.

This listing reveals multiple possibilities that can be considered with the question of hint #1, to 
select the optimum strategy. A pitfall, however, is the possibility that the needle may be stuck into a 
straw and thereby exhibit straw-like properties.

Answers (not in order):
• Bum down the haystack, then sift through the ashes.
• Buy an airport X-ray machine and pass all hay through it.
• Throw away the haystack and buy another (hay is cheaper than time).
• Go get another needle.

*  *  *

Problem: Search for the Top Quark.
High-energy physicists, needing to test theoretical predictions concerning subatomic processes, 

attempted to detect a subatomic particle that they called the top quark. They wrote computer pro
grams to scan through a very large number of potential events and discard most of them. The re
maining events then could be examined more carefully, to see if they might be caused by the top 
quark. Effectively, hay was plentiful, and the needle was only hypothesized to exist.

A major concern in designing the computer program was the relative impact on the experiment 
of two types of errors. An alpha error is a false positive (calling a straw a needle). A beta error is a 
false negative (missing a needle).

As I write this, the top quark finally has been detected.
*  *  *

Tips on Experimental Design and Execution
“The general who understands the advantages of varying his tactics really knows 

the art of war.
“The general who does not appreciate the need to vary his tactics cannot turn 

natural advantages to account. . .
“The wise man considers both favourable and unfavourable factors, the former to 

pursue his objectives and the latter to extricate himself from difficulties.” [Sun Tzu, 
-500 B.C.!
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“In almost every game of chess there comes a crisis that must be recognized. In 
one way or another a player risks something — if he knows what he’s doing, we call it 
a ‘calculated risk’.

“If you understand the nature of this crisis; if you perceive how you’ve commit
ted yourself to a certain line of play; if you can foresee you’ve committed yourself to 
a certain line of play; if you can foresee the nature of your coming task and its ac
companying difficulties, all’s well. But if this awareness is absent, then the game will 
be lost for you, and fighting back will do no good.” [Reinfeld, 1959]

“Genius . . . means transcendent capacity of taking trouble.” [Carlyle, 1795
1881]

Preparation, experimental design, experiment execution, data analysis, and interpretation are all 
essential aspects of most research projects. Earlier sections of this chapter discussed experimental 
design with minimal reference to these companion facets of research, but here we will consider ex
perimental design in the context of the overall experiment. Drawing on useful summaries by Wil
son [1952], Killeffer [1969], and Open University [1970], I list the main initial steps in a research 
project (from conception through experiment), along with tips and guidelines on successful execu
tion of each step:

1) state the general problem.
* What is the objective? Focus on a specific hypothesis; don’t undertake a fishing expedition.
* Is the experiment necessary? Can the question that the experiment hopes to address be an

swered by simply evaluating the hypothesis and its implications critically? Can the problem be 
solved by finding relevant data that are already published? Is it merely a puzzle that interests you (a 
perfectly valid reason) or does it affect interpretation of other problems? If the latter, is it a minor or 
major factor?

* Can the problem be restated in a form that makes it more feasible to solve? Should one test 
a simplified perspective or include refinements? Does the problem need to be broken down into 
components that are tested individually?
* What assumptions are implicit in the experimental design? Could the outcome of the hypothesis 
test be affected by an invalid assumption?
* What is the crux of the problem, the critical unknown aspect? What is the crucial, decisive ex
periment? Don’t settle for one that is merely incrementally useful, but don’t reject all potential ex
periments as not decisive enough.

2) thoroughly review existing data on the research topic. Review evidence on the more general 
problem, to the extent that time permits.

* Methodically summarize assumptions, data, interpretations, and speculations of previous 
relevant studies. Include your evaluation of reliability and possible weaknesses of each.

* Identify the critical deficiency of previous work.

3) select the most promising experiment.
* Seek a compromise or reconciliation of critical needs with viable techniques.
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4) decide how to deal with all relevant variables.
* List all known variables that might influence the result. Classify each variable as either: (a) 

controllable, (b) uncontrollable but with an approximately known value or known influence on the 
key dependent variable, or (c) uncontrollable and unknown in influence.

* Decide which variables are of greatest interest. Try to minimize effects of all other variables 
(e.g., by keeping them constant or by randomization).

* Select one of these tactics: (1) focus on only one variable and vary it systematically; (2) 
analyze several variables simultaneously through use of a factorial design; or (3) analyze several 
variables sequentially in a series of experiments.

A later section of this chapter, ‘Control of Variables’, discusses these options in more detail.

5) choose the equipment to be used, if any.
* Consider the relative advantages of buying, borrowing, and building equipment. Prepara

tions and lead time are greatest for building, less for buying, and least for borrowing. Ability to tai
lor the equipment to your needs is greatest for building, less for buying, and least for borrowing. 
Costs are high for both building and buying compared to borrowing. Borrowing is OK for a few 
experiments but usually impractical for a protracted suite of experiments. Experiments on borrowed 
equipment tend to be done in binges, with less opportunity for intermediate analyses during ex
periments and for follow-up experiments.

* Before using equipment, learn its background theory, operations steps, operational consid
erations, and potential problems. Obviously, some compromise is needed between the ideal of com
prehensive understanding and the reality of time constraints. Generating unreliable data and then 
troubleshooting can be much more time-consuming than learning how to operate the equipment 
properly and within its limitations. One need not become an electronics technician to use electronic 
equipment, but pitfalls abound for those who use equipment that they understand only minimally. 
For example, the dilettante may omit implied operations steps, use the equipment outside its design 
range, overlook variables that affect equipment results, and misinterpret results.

6) calibrate equipment, both before and during the experiment.
* Test the equipment before starting the experimental series. Do not assume that it can be 

trusted simply because someone else recently used it successfully. Their samples may have been 
subtly different, or the equipment response may have changed.

* Choose standards and a calibration procedure appropriate for the equipment, samples, and 
anticipated data range.

* Recalibrate after the equipment is repaired, moved, or changed, and after any substantial 
hiatus.

* Run calibration samples regularly, preferably in a randomized mixture with the experimental 
samples. If equipment response changes with time or warm-up, calibrating at the start or end of 
each day is insufficient.

* Run blanks if feasible.
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7) include replicate measurements in your design, if possible. Normally it is unnecessary to rep
licate every measurement. Replicating perhaps 5% of measurements, on randomly chosen samples 
and standards, gives a good estimate of overall precision.

8) in the experimental design, never change more than one variable or experimental aspect at 
the same time (unless you are using a factorial design).

9) list the entire planned experimental procedure. Do not simply try to visualize the entire 
procedure in your head.

* Calculate how many measurements or samples will be needed.
* Visualize every step, imagine what could go wrong, and seek a way of avoiding the potential 

problem. Possibly the experimental procedure needs revision, or perhaps all that is needed is in
creased caution at key points. What affects precision at each step? What affects accuracy? Which 
steps must be done painstakingly, and which are more robust? The ideal of doing every step of 
every experiment as painstakingly as possible is not only unrealistic; it is a recipe for scientific pro
gress that is so slow and inefficient that the scientist will have trouble keeping a job.

* Seek ways of streamlining the list of steps without jeopardizing the integrity and reliability 
of the experiment. Could some steps be done more efficiently as batch process rather than in se
ries? Are there long wait times during which other steps can be done? Where are the natural break 
points for each day’s work?

10) do a gedanken experiment, a thought experiment, before the actual experiment. Try to 
predict all of the possible outcomes of the experiment, how you would interpret them, what the 
weaknesses would be, and what the alternative explanations would be for each interpretation. Can 
the experimental design be changed to provide a more diagnostic, less ambiguous interpretation of 
each result? Pretend that you are a reviewer, intent on finding a fatal flaw because the results are 
contrary to prevailing theory. Remember that the gedanken experiment takes up a small fraction of 
the time of the actual experiment. When writing up results, we usually wish that we had done some 
part of the experiment differently; often a more careful gedanken experiment would have helped.

11) avoid last-minute changes to the experiment, unless you have carefully thought through all 
of their possible implications.
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12) use identification labels on samples. 
Use indelible ink for labeling, and assure that 
either labels cannot be lost or labeling is re
dundant. If samples are in containers and if 
feasible, label both the sample and container.

13) take methodical, detailed notes dur
ing the experiment.

• Do not trust your memory for any
thing. Remember that you may come back to 
these notes months later, long after short
term memory of temporarily obvious factors 
has faded.

• Do not use scraps of paper. Ideally, 
use a lab notebook; some researchers say 
that a lab notebook is essential. At least, use 
dated sheets of paper and either a 3-ring 
binder or manila folder.

• Sketches may be useful.
• Decide whether or not to use a check

list during the experiment.
• Prepare and use a standard form for 

routine measurements, both to facilitate later analysis and to assure that all relevant information is 
recorded.

• Note times of steps, sample ID’s, experimenter (if more than one), and anything else that 
remotely could be considered a variable (e.g., source and grade of chemicals) in later review of the 
experiment.

• Note units of all data. A frequent pitfall is to assume that the units are so obvious or familiar 
that you could not forget them.

• Note any changes to the experimental procedure or equipment.
• Document calibrations.
• Record raw data, not just corrected data, because you may decide later to use different cor

rections. Record correction equations, because you may wonder later whether or not you did all cor
rections properly. Raw data are better than corrected data, if the corrections are untrustworthy or of 
unknown accuracy. For example, in using ‘temperature compensated’ equipment, I have been con
fronted with the challenge of evaluating whether the compensation actually introduced error because 
of its inaccurate measurement of temperature.

• Record bad data, unreliable results, and abortive experiments, using obvious flags to avoid 
mistaking them for trustworthy data (e.g., draw a large X through them). Add a notation on why 
they failed. Possibly, later analysis will show that information can be salvaged from these discards. 
Certainly, one wants to minimize the chances of making the same mistake twice.

"What the? . . .  This is lemonade! Where's 
my culture of amoebic dysentery?"

[Larson, 1989]
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* Remember in note-taking that some ‘facts’ assumed during the experiment may later be 
rejected. Associated data therefore may be inaccurate or imprecise and need unanticipated correc
tions. Whether these corrections are possible probably will depend on completeness of the notes.

* Flag any unexpected observations. Immediately consider whether they may indicate a prob
lem with experimental procedure. Later, consider whether or not they can offer a new insight 
(Chapter 8).

* In deciding whether or not to record something, remember how cheap paper is compared to 
the cost of redoing an experiment.

* Similarly, paper is too cheap to warrant tiny, crowded marginal notations that might later be 
overlooked or found to be unreadable.

* Keep and regularly update a 
backup of your most vital notes and data. 
Be prepared for the eventuality of losing 
notes, data listings, or data files. Take steps 
to postpone that eventuality: do not take 
prime data on airplanes as checked bag
gage; be cautious about carrying prime 
data around with you routinely; both lock 
and back up your personal computer; keep 
backups in a different room from origi
nals.

14) protect your experimental setup, ex
periment, and samples from accidental 
damage by yourself or others.
* Make a sign such as “Experiment in 
progress, do not disturb” and display it 
whenever the experiment is untended. I 
have seen incidents where using a seem
ingly overcautious sign could have pre
vented heartbreaking setbacks.
* When leaving a shared computer while 
it is number-crunching or otherwise in use, 
put a sheet of paper saying “In use” over 
the screen or keyboard.

I know of incidents of janitors innocently discarding:
* data or samples stored in a container that resembled a trash can;
* delicate samples wrapped in Kleenex and left on a desk;
* boxes that were almost empty.

15) avoid minor changes during the experiment. They separate data obtained before and after 
the change with a gulf of ambiguous comparison.
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16) before the experiment is completed, begin preliminary data reduction and analysis.
• Allow time to think about what you are observing, regardless of how busy you are just col

lecting data.
• Rough, first-order corrections and analysis, including back-of-envelope plots, are acceptable 

at this stage.
• Determine whether or not you are generating unreliable data.
• Seek clues to needed improvements (e.g., finding a major unremoved variable). While 

avoiding minor changes, consider the advisability of restarting the experiment with a substantial im
provement.

• Beware of potential bias to subsequent results caused by expectations from the preliminary 
analysis.

• Do not let these preliminary analyses substitute for post-experiment, systematic data reduc
tion and analysis.

• Some experimenters or their managers find it fruitful to write progress reports regularly 
during the experiment.

17) handle calculations scientifically:
• Omit meaningless digits. Usually the final result will have no more significant digits than 

the least-accurate variable in the calculation. Carrying one superfluous digit is preferable to omitting 
a meaningful digit. A propagation-of-errors analysis is even better.

• Average raw data rather than final processed data, to save steps.
• Check your calculations. If using a calculator, use a different keying sequence than for the 

initial calculation, to avoid making the same mistake twice. If using a computer, check results with a 
calculator for one or two of the samples. Computers usually make no mistake or make the same 
mistake for every sample, if they are correctly interpreting the input format of all of the data. How
ever, exceptions exist (e.g., calculations that work OK for data values greater than zero but not for 
data less than zero).

• Ask yourself whether or not the result looks reasonable. In the old slide-rale days, quick- 
and-dirty estimation was essential; now, this skill is rare.

Subsequent experimental steps are less relevant to the subject of experimental design and can be 
left to other chapters. These include: analyzing data, interpreting the experimental results, drawing 
conclusions, comparing these conclusions to those of other studies, and designing a modified ex
periment to test the conclusions.

* * *

Pitfalls of Experimental Design
“Faulty execution of a winning combination has lost many a [chessl game on the 

very brink of victory. In such cases a player sees the winning idea, plays the winning
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sacrifice and then inverts the order of his follow-up moves or misses the really 
clinching point of his combination.” [Reinfeld, 19591

When the exorcist arrived at the house, he almost immediately started upstairs to 
begin the exorcism. “Wait,” interrupted the attending priest, “Don’t you want to 
learn the personalities of the demons?” “There is only one,” replied the exorcist.
[Blatty, 19721

Many of the potential pitfalls to optimum experimental design are obvious from earlier parts of 
this chapter,particularly the section, ‘Tips on Experimental Design and Execution’. Most of these 
pitfalls, however, are manifestations of the same demon: a rogue, or uncontrolled, variable.

* * *

Control of Variables
Rogue variables are a frequent scientific problem. Suspect such a problem when trouble

shooting equipment or an experimental setup, if none of the initial troubleshooting techniques 
helps. Also suspect such a problem whenever an experiment gives surprising, unexpected results. 
Such problems are always a nuisance, but sometimes their solution can foster scientific insight.

“The notion of a finite number of variables is an idealization” [Wilson, 1952] that is essential 
to practical science. Most ‘relevant’ variables have only a trivial influence on the phenomenon of 
interest. Often, they have no direct causal relationship to this phenomenon or variable, but they do 
have some effect on one of the primary causal variables. Such variables are second or third-order 
problems that are ordinarily ignored. Usually the scientific focus is on identifying and characteriz
ing the primary causal variables — those that have the greatest influence on the phenomenon of in
terest.

In the so-called ideal experiment, the investigator holds all relevant variables constant except for 
a single variable. This independent variable is deliberately varied while measuring the resulting 
changes in a dependent variable. Simplicity gives power to such experiments, but they are based 
on the often dubious assumption that one knows all relevant variables. Usually, we hold as many 
relevant variables constant as possible and cope with the non-constant variables through randomiza
tion. Unfortunately, the variables that we can control are not necessarily the ones that are most im
portant to control.

In Chapters 2 and 3, we considered statistical techniques for quantitatively estimating the influ
ence of variables. Here the focus is on several methods for determining whether or not a variable is 
crucial. Selection of the most appropriate procedure depends on feasibility and on time and effort 
needed to remove or measure a variable.

Common techniques for dealing with a problem variable are:

* stabilization: Keeping a variable constant prevents it from influencing other variables. This ap
proach is best for variables that are a disruptive influence (e.g., voltage or temperature variations), 
rather than scientifically interesting. Rarely, it is feasible to monitor the problem variable, then make 
measurements only when it has a certain value. The technique does not work for intermittent prob
lems.
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* standard sample: A control or standard sample is a way of coping simultaneously with abundant 
uncontrollable or even unknown variables that might otherwise bias the measurements or mask the 
target relationship. Repeated measurements of this standard indicate how much data variability is 
generated by other variables. Sometimes one must accept that the observations are relative rather 
than absolute, because of the biasing effects of uncontrolled variables. Often, however, a suite of 
standards can allow calibration of the observations. They also can enable comparison to measure
ments by other investigators.

* control group: Dividing the experiment into two groups can demonstrate the effect of a variable 
of interest, even when many uncontrollable or unknown variables are present. Use of a control 
group is standard in social sciences such as psychology, but it may also be useful wherever one 
must cope with several uncontrolled variables.

The two groups should be as similar as possible, except that the problem variable is missing 
from the ‘control group’ and present in the ‘experiment group’. Such an experiment is called a 
controlled experiment. Note that this term does not mean that the experiment is under control 
(almost all experiments are controlled in that sense), but that it employs experiment and control 
groups.

The two-group experiment described here is the simplest controlled experiment; often it is not 
the most efficient experiment. Multivariate experiments using a factorial design permit one to ex
plore the possible effects of several variables and their interactions in one experiment, rather than in 
sequential experiments. Design of such experiments is described in most statistics books.

An essential ingredient of most controlled experiments is randomization. Random assignment 
of individual samples to the two groups avoids bias and permits statistical determination of confi
dence levels for the effect of the variable of interest. For example, drug tests routinely use a con
trolled experiment with randomization and double blinds: subjects are randomly assigned to receive 
either the drug or a placebo, and neither the subject nor the drug dispenser knows which type is re
ceived.

Understanding the effects of acid rain on lakes has been hampered by the com
plexity of lake systems and the very high variability among lakes. Thus even when a 
lake with rising acid levels undergoes ecologic change, it is not possible to establish 
causality between the two.

Recent experiments in Canada have been able to detect ecologic changes caused 
by only minor acidification. They demonstrated, for example, that acidification 
causes a decrease in species diversity without changing total biomass — an observation 
consistent with the more general ecologic pattern that environmental extremes affect 
diversity but not necessarily numbers. The experiments used the following drastic 
technique: choose a remote region of Canada where lakes are plentiful, select a pair of 
environmentally similar lakes, make one of each pair a control and deliberately acid
ify the second lake, then monitor the changes in both [Luoma, 19921.

* randomization: If an experimental design randomly selects samples or randomly matches treat
ment to samples, then potential biasing effects of uncontrolled variables are converted into random 
unbiased error that can be averaged out. For example, time often is an influential variable, because 
instruments may drift or subtle changes may creep into the experimental setup. By randomizing the 
sequence of sample measurements, the investigator can prevent undetected temporal changes from 
biasing the result. Randomization is the most powerful tool for dealing with uncontrolled variables;
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it succeeds whether or not you are aware of their presence. Randomization is less efficient that the 
other methods, however, because it converts bias into random noise, rather than quantifying or re
moving bias.

• correlation: If you cannot control a problem variable but can measure it, measure and record its 
value at each data measurement. Later, crossplot the variable of interest versus this problem variable. 
This technique succeeds even if the relationship between variables is nonlinear. It has disadvantages 
(Chapter 3): both types of measurement may change as a function of time, leading to a noncausal 
correlation, or a time lag may obscure the relationship.

• artificial variation: Deliberately change the problem variable by more than it is likely to change 
normally, in order to estimate the conditions under which this variable is prominent, as well as its 
maximum possible effect. The advantage of this technique is its ability to detect effects that are or
dinarily subtle, by exaggerating them. The main disadvantage is that ordinarily trivial effects can be 
misinterpreted as disruptive. When the relationship between two variables is highly nonlinear, artifi
cial variation is a poor predictor of the normal relationship.

When Irving Langmuir was trying to develop a new light bulb, he knew that ide
ally its interior should have a perfect vacuum. Faced with the impossibility of attain
ing that ideal, Langmuir deliberately added different gases to assess their effects. He 
discovered the gas-filled (fluorescent) light. Langmuir [1928] said,

“This principle of research I have found extremely useful on many occasions.
When it is suspected that some useful result is to be obtained by avoiding certain un
desired factors, but it is found that these factors are very difficult to avoid, then it is a 
good plan to increase deliberately each of these factors in turn so as to exaggerate 
their bad effects, and thus become so familiar with them that one can determine 
whether it is really worthwhile avoiding them.”

Another example: if you suspect that changes in equipment readings are caused 
by a temperature-sensitive electronic component, remove the equipment housing and 
blast various components with either a heat gun (e.g., a hair dryer) or coolant gas, 
while monitoring equipment readings.

An alternative to artificial variation is to investigate naturally occurring extreme points. The ad
vantage is the same: maximizing an ordinarily subtle effect, to evaluate its potential impact.

Numerous studies of type-Ia supernovae during the past several years have shown 
a consistent pattern of increasing redshift with decreasing apparent magnitude (i.e., 
greater speed at greater distance) that implies that the expansion of the universe is ac
celerating. This unexpected conclusion was not compelling, however. The observed 
pattern could also be produced by dust or chemical evolution. A single new data 
point, from a supernova with a redshift of 1.7, far beyond the 0.3-0.9 range of previ
ous data, excludes the alternative ideas and confirms that the universe is accelerating 
[Schwarzschild, 2001].

• sequential removal: When more than one variable may be influential, remove the dominant one 
and look at the effect of the next variable on the data of interest. Then remove this variable as well, 
so that possible effects of additional variables can be examined. This technique works only when 
the problem variables are controllable and their relative importance can be estimated. Nevertheless, it
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can be quite valuable or even essential. For example, if you think that variables X j, X2, and X j  may 
be disrupting your readings of D as a function of A, then temporarily keep A constant and record 
variations of D, X], X2 , and Xj. At this reconnaissance stage, these problem variables need not be 
controllable. If they are controllable, however, factorial design is a more powerful experimental 
technique: it allows us to both isolate and quantify the influence of these variables. A related ap
proach is the method of residuals (Chapter 3): measure variations caused by the dominant variable, 
remove its estimated effects, then compare data residuals to second-order variables.

Studies of the causes of spread of the AIDS disease long ago established that most 
U.S. cases are attributable to homosexual or intravenous transmission. But does het
erosexual transmission occur, and if it does, how abundant is it? One technique to ex
amine these questions is clearly biased, yet it is apparently the best available. Any 
AIDS instance that could be either homosexually or intravenously transmitted is at
tributed to those origins rather than to heterosexual transmission, regardless of the 
relative abundance of heterosexual versus other encounters. Only cases in which ho
mosexual or intravenous transmission are impossible are attributed to heterosexual 
transmission. Because (we think) heterosexual transmission is much less likely per en
counter than are other forms of transmission, this accounting bias toward the domi
nant variables is considered to be acceptable [Hilts, 1992].

* * *

Problem: the Noisy Widgetometer
You need to measure some widgets on your new high-precision widgetometer. Before starting, 

however, you prudently run some standard samples and find that the precision and accuracy are far 
below what is advertised. In desperation, you connect the widgetometer to a chart recorder and let it 
run for 24 hours, obtaining the record in Figure 21. How do you interpret this record, and what 
techniques and experimental designs could you use to deal with the problem?

Figure 21. Chart recording of widgetometer readings over a 24-hour period. 
Note the long-term instrument drift and occasional noise spikes.
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Answer: The instrument is exhibiting a daily drift plus occasional noise spikes. First priority is 
to try to identify and remove the drift. Second priority is to minimize the disruptive effects of any 
residual drift. Possible sources of daily cycles are daily temperature fluctuations and voltage fluc
tuations; try changing these and alternative variables substantially while running the chart recorder. 
If you can identify the variable, try to prevent it from affecting your measurements (e.g., voltage 
regulator), or quantify the relationship and monitor that variable during all measurements, so that 
you can apply a correction.

If the cause of the daily variations is unknown or unmeasurable, choose an experimental design 
that minimizes its effect. The most obvious is to take either a zero reading or a calibration-standard 
measurement along with each widget measurement, depending on whether drift is in zeroing or in 
sensitivity, respectively.

The cause of the intermittent noise spikes is likely to be quite elusive. Because they are sudden 
and short-lived, they could make some measurements much less accurate than most, and they could 
affect only one of a paired measurement. One approach would be to measure the zero or standard 
both immediately before and immediately after the sample. If the two zero/standard measurements 
differ by more than a predetermined threshold, reject this measurement set and do another.

* * *

Computation and Information Handling
Computers are wonderful productivity enhancers. Whether for word processing, figure prepar

ing, calculating, or extracting the most information from data, computers are essential to modem 
science. When I was a young scientist, I would give a draft manuscript to a secretary for typing, 
have one or at most two rounds of revisions, and submit it. I would give a roughed-out figure to a 
draftsperson, flag the most glaring drafting errors for revision, and submit it. Now I do my own 
typing and drafting, and I do dozens of revisions! The process as a whole may be slower, but the 
final product is certainly more polished.

Basic computer literacy for scientists includes proficiency in all of the following:
* an operating system (Windows®, Macintosh®, Unix®, or Linux®);
* word processing (e.g., Word® or Word Perfect®);
* spreadsheet analy sis (e .g., Excel®); and
* a web browser (Netscape® or Internet Explorer®).

Most scientists also need one or more of the following:
* a graphics program (e.g., Kaleidagraph®);
* presentation software for slides and transparencies (e.g., PowerPoint®);
* image handling software (Photoshop® or Canvas®); and
* a statistical package (WinStat®, MINITAB®, SAS®, or SYSTAT®).

* * *

For some kinds of computation, speed is power. The current generation of computers is capable 
of solving more complex problems, involving more dimensions or variables, than were feasible even 
five years ago. The fastest vector machines, such as the Cray, are approaching their ultimate speed 
limits. Parallel processing, in contrast, is not bound by those limitations. Today’s largest computa
tional tasks are massive because of the size of matrices or datasets, rather than because of the num
ber of different kinds of computations. Such problems are well suited to parallel processing. The 
CM-2 Connection Machine, introduced in 1987, is an example of massive parallel processing: ef
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fectively it is 65,536 processors, each capable of associating both with its neighbors and with an 
individual data point [Boghosian, 1990].

Giant and expensive parallel computers are an exception to the overall trend toward small per
sonal computers. An emerging alternative to the parallel-processor supercomputers is distributed 
computing. Ten to twenty high-performance workstations (e.g., Suns) are used simultaneously, via 
message-passing software and a local area net, to run different parts of the same problem. Effec
tively, the workstations become a virtual parallel computer, and they do so at night or in the back
ground so that their metamorphosis disturbs nobody.

The acceleration of processing capability is generating opportunities for scientific projects that 
were previously impossible. Modeling can encompass complex systems (e.g., econometric models) 
and three dimensions (e.g., global climate models). Inversion can involve huge datasets (e.g., Hu
man Genome Project) and three-dimensional, non-invasive tomographic imaging (e.g., CT scans, 
tomography of Earth’s interior). Image analysis of immense datasets is feasible (e.g., astronomy).

For most scientists, personal computers are sufficient and in fact superior to supercomputers. 
Scientists value control, and having one’s own computer, with a simple enough operating system to 
eliminate system managers, provides that control. Indeed, the major obstacle to further expansion of 
distributed computing may be the reluctance of individuals to relinquish a fraction of their supervi
sion of their own computers.

* * *

Neither large nor small computers have removed the need for a vintage type of scientific calcu
lation: back-of-the-envelope calculations. Computers have 8-digit or more accuracy, but the back- 
of-the-envelope calculation recognizes that the reliability of many calculations depends instead on 
huge uncertainty in one or two of the needed variables. Even the most advanced computer is naive 
about pivotal concerns such as estimation and the difference between random and systematic errors. 
The scientist must provide the missing sophistication, either explicitly in a back-of-the-envelope cal
culation or implicitly in the data input to a computer algorithm. Chapter 2 addresses some of these 
concerns.

Late at night, sharing a Coke, feeling guilty about its 130 calories, my wife and I 
recalled the cryogenic diet, which we had seen long ago in a Journal of Irreproducible 
Results. Total dietary impact is not 130 calories, but 130 calories minus the calories 
required to heat the liquid from ice-cold (0°C) to body temperature (~35°C). A calo
rie, I knew from recently preparing an Oceanography lecture, is the heat required to 
raise 1 cc of water 1°C. A back-of-an-envelope calculation showed the benefit of a 
12-ounce ice-water diet:
12 oz x ~35g/oz x 1 cc x 35°C x 1 calorie/cc°C » 13,000 calories!

We realized that a ‘Popsicle diet’ (2 6-oz Popsicles) would be even better: 13,000 
calories for warming from 0°C to 35°C, plus 32,000 calories (400 cc x 80 calories/cc) 
heat of transformation from ice to water! Clearly, there was a problem, and not one 
that a calculator or computer could solve. Days later, my wife found the answer: 
oceanographers use ‘small’ calories (1 g heated 1°C), but dietary calories are ‘large’ 
calories (1 kg heated 1°C). Neither anticipated the loss of sleep that a factor of 1000 
could cause in a couple of hapless scientists.

When using calculators and personal computers, extra attention is needed concerning signifi
cant digits. Significant digits, or significant figures, are an implicit statement about the precision of a 
measurement. In general, a measurement of completely unknown precision is virtually worthless.
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Ideally, each measurement given in a publication would be accompanied by a calculated estimate of 
its precision. Precision estimates, however, generally require replicate measurements, which may not 
be available. The use of significant digits may have to suffice. The number o f significant digits is 
equal to the number o f digits that are reliably known, ignoring leading zeros.

Although the rules concerning significant digits are simple, few of the current software pack
ages honor them. Some follow the conservative approach of assuming that all digits are significant 
(e.g., 1h-3=0.333333...). Some strip off trailing zeros whether or not they are significant; for exam
p le ^  series of numbers accurate to ±0.01 might appear as 1.14, 1.1, 1.07, and 1. Most maintain a 
user-selectable constant number of digits to the right of the decimal place. None of these conven
tions is appropriate for publication.

* * *

The word computer is no longer appropriate. The proportion of computer usage devoted to 
computation is steadily decreasing. Many of the recent computer developments have had little to do 
with computation. Of particular interest to scientists is the extent to which computer networking is 
revolutionizing information handling.

Efficient information handling has always been an essential aspect of scientific method. Even 
the early days of science had more observations -  mostly irrelevant — than a mind could encom
pass; an example is Leonardo da Vinci’s quicksilver mind and notes. Today, information handling 
is a mantra of our technological society. Are we witnessing another transient enthusiasm, or are we 
truly challenged to adapt or be left behind?

Research faces two information problems -  locating and organizing relevant information. These 
problems are relatively minor in the course of one’s own experiments, although they certainly are 
felt while writing up results. The real hurdle is in dealing with the vast published literature. All 
memories are fallible, especially my own. Where was I?

The first step in information handling is skimming or digesting a scientific publication. These 
days, we usually have a personal copy of the paper rather than the library’s, so we are free to mark 
up the paper with underlines and marginal comments. To organize information from several papers, 
many people simply group and rescan a stack of reprints. Others prefer to take notes, either on a 
pad or laptop. A virtue of the latter is easy reorganization, because association is essential to pattern 
recognition. Furthermore, typing is faster than writing, and the Find command is a great time saver.

Ambitious schemes for information handling tend to fail. First the scientist falls behind in en
tering data into the system. Later, the backlog is so great that the system atrophies.

Is information handling by computers more efficient than by scientists? For straightforward 
sorting, bookkeeping, and information archiving, the answer is yes. The quantity, or content, of sci
ence is doubling every five years, so the need for efficient data handling is undoubted. Use of the 
Internet and the World Wide Web is growing exponentially, and every scientist faces the question 
of how much to employ these valuable tools. Both publications and published data are becoming 
more available on the Internet. We can anticipate, as a result, increased awareness of relevant publi
cations and more analyses of data by individuals other than the one who collected the data. Where 
better to exploit the Information Age than in the quest for answers to scientific questions?

Whenever one develops a hypothesis, the first step is to see whether or not it survives the test of 
existing data. If we decide that none of the previous relevant experiments was appropriately de
signed to provide a diagnostic test of the hypothesis, only then do we conduct a new experiment. 
Scientific progress does not imply, however, that the same person who generates hypotheses tests 
them. Already, many scientists are tapping the information river to produce papers that present no



1 2 4

new data. Instead, they use a variety of published data to test hypotheses and develop syntheses. 
For the experienced Internet traveler, an easy path to scientific productivity is to read a newly pro
posed hypothesis and then extract data from the Internet to test it.

Scientists who rarely employ the Web may find that they are left behind, even in exploring their 
own hypotheses. Other scientists, however, are falling victim to the other extreme — net surfing. Too 
often, Internet and the Web are used just for browsing rather than for goal-oriented information re
trieval. The hallway refrain is “Did you see . . .?” And there is much to browse. Some scientists 
respond by devoting weeks to developing their own web pages. I, who published this book on-line 
rather than on paper, am in a poor position to criticize. Perhaps there is no cause for concern. Pre
sumably, those whom I have watched wandering off into the Web will return.
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Chapter 6: The Myth of Objectivity
Scientists seek concepts and principles, not subjective perspectives. Thus, we cling to a myth of 

objectivity: that direct, objective knowledge of the world is obtainable, that our preconceived notions 
or expectations do not bias this knowledge, and that this knowledge is based on objective weighing 
of all relevant data on the balance of critical scientific evaluation. In referring to objectivity as a 
myth, I am not implying that objectivity is a fallacy or an illusion. Rather, like all myths, objectivity 
is an ideal -  an intrinsically worthwhile quest.

“One aim of the physical sciences has been to give an exact picture of the mate
rial world. One achievement of physics in the twentieth century has been to prove that 
that aim is unattainable.

“There is no absolute knowledge. . . All information is imperfect. We have to 
treat it with humility.” [Bronowski, 19731

In this chapter we first will examine several case studies that demonstrate ways in which per
ception is much less objective than most people believe. Our primary means of scientific perception 
is visual: 70% of our sense receptors are in the eyes. Thus our considerations of perception will 
focus particularly on visual perception. We then will examine theories of how perception operates, 
theories that further undermine the fantasy of objectivity. These perspectives allow us to recognize 
the many potential pitfalls of subjectivity and bias, and how we can avoid them. Finally, we will ad
dress a critical question: can a group of subjective scientists achieve objective scientific knowledge?

* * *

Perception: Case Studies
“Things are, for each person, the way he perceives them.” [Plato, ~427-347 B.C., bl

What do the following topics have in common: football games, a car crash, flash cards, a capital- 
punishment quiz, relativity, and quantum mechanics? The study of each provides insight into the 
perception process, and each insight weakens the foundation of objectivity.

I was never much of a football fan. I agree with George Will, who said that football combines 
the two worst aspects of American life: it is violence punctuated by committee meetings. Yet, I will 
always remember two games that were played more than 20 years ago. For me, these games illumi
nate flaws in the concept of objective perception, suggesting instead that: 1) personal perception can 
control events, and 2) perceptions are, in turn, controlled by expectations.

It was a high school game. The clock was running out, and our team was slightly behind. We 
had driven close to the other team’s goal, then our quarterback threw a pass that could have given us 
victory; instead the pass was intercepted. Suddenly the interceptor was running for a touchdown, 
and our players merely stood and watched. All of our players were at least 20 yards behind the in
terceptor.

Though it was obvious to all of us that the attempt was hopeless, our star halfback decided to go 
after him. A few seconds later he was only two yards behind, but time had run out for making up 
the distance -  the goal was only 10 yards ahead. Our halfback dived, and he chose just the right 
moment. He barely tapped his target’s foot at the maximum point of its backward lift. The halfback
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cratered, and the interceptor went on running. But his stride was disrupted, and within two paces he 
fell -  about two yards short of a touchdown.

I prefer to think that our team was inspired by this event, that we stopped the opponents’ ad
vance just short of a touchdown, and that we recovered the ball and drove for the winning touch
down. Indeed, I do vaguely remember that happening, but I am not certain. I remember that the 
halfback went on to become an All Star. Of this I am certain: I could read the man’s thoughts, those 
thoughts were “No, damn it, I refuse to accept that,” and willpower and a light tap at exactly the 
right moment made an unforgettable difference.

* * *

The game that affected me most I never saw. I read about it in a social anthropology journal ar
ticle 27 years ago. The paper, called ‘They saw a game,’ concerned a game between Harvard and 
perhaps Yale or Dartmouth. The authors, whose names I don’t remember, interviewed fans of both 
teams as they left the game.

Everyone agreed that the game was exceedingly dirty, and the record of the referees’ called 
fouls proves that assertion. Beyond that consensus, however, it was clear that fans of the two teams 
saw two different games. Each group of fans saw the rival team make an incredibly large number of 
fouls, many of which the referees ‘missed’. They saw their own team commit very few fouls, and 
yet the referees falsely accused their team of many other fouls. Each group was outraged at the bias 
of the referees and at the behavior of the other team.

The authors’ conclusion was inescapable and, to a budding scientist imbued with the myth of 
scientific objectivity, devastating: expectations exert a profound control on perceptions. Not in
variably, but more frequently than we admit, we see what we expect to see, and we remember what 
we want to remember.

Twenty-three years later, I found and reread the paper to determine how accurate this personally 
powerful ‘memory’ was. I have refrained from editing the memory above. Here, then, are the ‘ac
tual’ data and conclusions, or at least my current interpretation of them.

In a paper called ‘They saw a game: a case study,’ Hastorf and Cantril [1954] analyzed percep
tions of a game between Dartmouth and Princeton. It was a rough game, with many penalties, and it 
aroused a furor of editorials in the campus newspapers and elsewhere, particularly because the 
Princeton star, in this, his last game for Princeton, had been injured and was unable to complete the 
game. One week after the game, Hastorf and Cantril had Dartmouth and Princeton psychology stu
dents fill out a questionnaire, and the authors analyzed the answers of those who had seen either the 
game or a movie of the game. They had two other groups view a film of the game and tabulate the 
number of infractions seen.

The Dartmouth and Princeton students gave discrepant responses. Almost no one said that 
Princeton started the rough play; 36% of the Dartmouth students and 86% of the Princeton stu
dents said that Dartmouth started it; and 53% of the Dartmouth students and 11% of the Princeton 
students said that both started it. But most significantly, out of the group who watched the film, the 
Princeton students saw twice as many Dartmouth infractions as the Dartmouth students did.

Hastorf and Cantril interpreted these results as indicating that, when encountering a mix of oc
currences as complex as a football game, we experience primarily those events that fulfill a familiar 
pattern and have personal significance.

Hastorf and Cantril [1954] conclude: “In brief, the data here indicate that there is 
no such ‘thing’ as a ‘game’ existing ‘out there’ in its own right which people merely 
‘observe.’”
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Was my memory of this paper objective, reliable, and accurate? Apparently, various aspects had 
little lasting significance to me: the teams, article authors, the question of whether the teams were 
evenly guilty or Dartmouth was more guilty of infractions, the role of the Princeton star in the de
bate, and the descriptive jargon of the authors. What was significant to me was the convincing evi
dence that the two teams ‘saw’ two different games and that these experiences were related to the 
observers’ different expectations: I remembered this key conclusion correctly.

I forgot the important fact that the questionnaires were administered a week after the game 
rather than immediately after, with no attempt to distinguish the effect of personal observation from 
that of biasing editorials. As every lawyer knows, immediate witness accounts are less biased than 
accounts after recollection and prompting. I forgot that there were also two groups who watched for 
infractions as they saw a film, and that these two groups undoubtedly had preconceptions concern
ing the infractions before they saw the film.

The experiment is less convincing now than it was to me as an undergraduate student. Indeed, it 
is poorly controlled by modem standards, yet I think that the conclusions stand unchanged. The 
pattern of my selective memory after 23 years is consistent with these conclusions.

I have encountered many other examples of the subjectivity and bias of perception. But it is of
ten the first unavoidable anomaly that transforms one’s viewpoints. For me, this football game -  
although hearsay evidence -  triggered the avalanche of change.

Hastorf and Cantril [1954] interpreted their experiment as evidence that “out of all the occur
rences going on in the environment, a person selects those that have some significance for him from 
his own egocentric position in the total matrix.” Compare this ‘objective statistical experimental 
result’ to the much more subjective experiment and observation of Loren Eiseley [1978]:

“Curious, I took a pencil from my pocket and touched a strand of the [spider] 
web. Immediately there was a response. The web, plucked by its menacing occupant, 
began to vibrate until it was a blur. Anything that had brushed claw or wing against 
that amazing snare would be thoroughly entrapped. As the vibrations slowed, I could 
see the owner fingering her guidelines for signs of struggle. A pencil point was an in
trusion into this universe for which no precedent existed. Spider was circumscribed by 
spider ideas; its universe was spider universe. All outside was irrational, extraneous, at 
best raw material for spider. As I proceeded on my way along the gully, like a vast 
impossible shadow, I realized that in the world of spider I did not exist.”

Stereotypes, of football teams or any group, are an essential way of organizing information. An 
individual can establish a stereotype through research or personal observation, but most stereotypes 
are unspoken cultural assumptions [Gould, 1981]. Once we accept a stereotype, we reinforce it 
through what we look for and what we notice.

The danger is that a stereotype too easily becomes prejudice -  a stereotype that is so firmly es
tablished that we experience the generalization rather than the individual, regardless of whether or 
not the individual fits the stereotype. When faced with an example that is inconsistent with the 
stereotype, the bigot usually dismisses the example as somehow non-representative. The alternative 
is acceptance that the prejudice is imperfect in its predictive ability, a conclusion that undermines 
one’s established world-view [Goleman, 1992c].

Too often, this process is not a game. When the jury verdict in the O J . Simpson trial was an
nounced, a photograph of some college students captured shock on every white face, joy on every
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black face; different evidence had been emphasized. The stakes of prejudice can be high, as in the 
following example from the New York Times.

“JERUSALEM, Jan. 4 — A bus driven by an Arab collided with a car and killed 
an Israeli woman today, and the bus driver was then shot dead by an Israeli near the 
Gaza Strip.

“Palestinians and Israelis gave entirely different versions of the episode, agreeing 
only that the bus driver, Mohammed Samir al-Katamani, a 30-year-old Palestinian 
from Gaza, was returning from Ashkelon in a bus without passengers at about 7 A.M. 
after taking families of Palestinian prisoners to visit them in jail.

“The bus company spokesman, Mohammed Abu Ramadan, said the driver had 
accidentally hit the car in which the woman died. He said the driver became fright
ened after Israelis surrounded the bus and that he had grabbed a metal bar to defend 
himself.

“But Moshe Caspi, the police commander of the Lachish region, where the events 
took place, said the driver had deliberately rammed his bus into several cars and had 
been shot to death by a driver of one of those vehicles.

“The Israeli radio account of the incident said the driver left the bus shouting 
‘God is great!’ in Arabic and holding a metal bar in his hand as he tried to attack 
other cars.” [Ibrahim, 1991]

* * *

“What a man sees depends both upon what he looks at and also upon what his 
previous visual-conceptual experience has taught him to see.” [Kuhn, 1970]

The emotional relationship between expectation and perception was investigated in an elegantly 
simple and enlightening experiment by Bruner and Postman [1949], They flashed images of play
ing cards in front of a subject, and the subject was asked to identify the cards. Each card was 
flashed several times at progressively longer exposures. Some cards were normal, but some were 
bizarre (e.g., a red two of spades).

Subjects routinely identified each card after a brief exposure, but they failed to notice the anom
aly. For example, a red two of spades might be identified as a two of spades or a two of hearts. As 
subjects were exposed more blatantly to the anomaly in longer exposures, they began to realize that 
something was wrong but they still had trouble pinpointing the problem. With progressively longer 
exposures, the anomalous cards eventually were identified correctly by most subjects. Yet nearly 
always this period between recognition of anomaly and identification of anomaly was accompanied 
by confusion, hesitation, and distress. Kuhn [1970] cited a personal communication from author 
Postman that even he was uncomfortable looking at the bizarre cards. Some subjects never were 
able to identify what was wrong with the cards.

The confusion, distress, and near panic of attempting to deal with observations inconsistent with 
expectations was eloquently expressed by one subject:

“I can’t make the suit out, whatever it is. It didn’t even look like a card that time.
I don’t know what color it is now or whether it’s a spade or a heart. I’m not even sure 
now what a spade looks like. My God!”

* * *

Let us now consider a critical aspect of the relationship between expectation and perception: 
how that relationship is reinforced. Lord et al. [1979] investigated the evolution of belief in an hy
pothesis. They first asked their subjects to rate how strongly they felt about capital punishment. 
Then they gave each subject two essays to read: one essay argued in favor of capital punishment
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and one argued against it. Subsequent quizzing of the subjects revealed that they were less critical 
of the essay consistent with their views than with the opposing essay. This result is an unsurprising 
confirmation of the results of ‘They saw a game’ above.

The surprising aspect of Lord et al.’s [1979] finding was this: reading the two essays tended to 
reinforce a subject’s initial opinion. Lord et al. [1979] concluded that examining mixed, pro-and- 
con evidence further polarizes initial beliefs. This conclusion is particularly disturbing to scientists, 
because we frequently depend on continuing evaluation of partially conflicting evidence.

In analyzing this result, Kuhn et al. [1988] ask the key question: what caused the polarization to 
increase? Was it the consideration of conflicting viewpoints as hypothesized by Lord et al. [1979] 
or was it instead the incentive to reconsider their beliefs? Kuhn et al. [1988] suspect the latter, and 
suggest that similar polarization might have been obtained by asking the subjects to write an essay 
on capital punishment, rather than showing them conflicting evidence and opinions. I suspect that 
both interpretations are right, and both experiments would increase the polarization of opinions. 
Whether one is reading ‘objective’ pro-and-con arguments or is remembering evidence, one per
ceives a preponderance of confirming evidence.

Perception strengthens opinions, and perception is biased in favor of expectations.
* * *

Though the preceding case studies demonstrate that perception is much less objective and much 
more belief-based than we thought, they allow us to maintain faith in such basic perceptual assump
tions as time and causality. Yet the next studies challenge even those assumptions.

“Henceforth space by itself, and time by itself, are doomed to fade away into 
mere shadows, and only a kind of union of the two will preserve an independent real
ity .”

With these stunning initial words, the Russo-German mathematician Hermann Minkowski 
[1908] began a lecture explaining his concept of space-time, an implication of Albert Einstein’s 
1905 concept of special relativity.

Einstein assumed two principles: relativity, which states that no conceivable experiment would 
be able to detect absolute rest or uniform motion; and that light travels through empty space with a 
speed c that is the same for all observers, independent of the motion of its source. Faced with two 
incompatible premises such as universal relative motion yet absolute motion for light, most scien
tists would abandon one. In contrast, Einstein said that the two principles are “only apparently ir
reconcilable,” and he instead challenged a basic assumption of all scientists — that time is universal. 
He concluded that the simultaneity of separated events is relative. In other words, if two events are 
simultaneous to one observer, then they are not simultaneous to a second observer at a different lo
cation. Clocks in vehicles going at different speeds do not run at the same speed.

Although Einstein later relaxed the assumption of constant light velocity when he subsumed 
special relativity into general relativity in 1917, our concept of an objective observer’s independence 
from what is observed was even more shaken. Space and time are, as Minkowski suggested, so in
terrelated that it is most appropriate to think of a single, four-dimensional, space-time. Indeed, mod
em physics finds that some atomic processes are more elegant and mathematically simple if we as
sume that time can flow either forward or backward. Gravity curves space-time, and observation 
depends on the motion o f the observer .

* * *

Even if, as Einstein showed, observation depends on the motion of the observer, cannot we 
achieve objective certainty simply by specifying both? Werner Heisenberg [1927], in examining the
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implications of quantum mechanics, developed the principle of indeterminacy, more commonly 
known as “the Heisenberg uncertainty principle.” He showed that indeterminacy is unavoidable, 
because the process of observation invariably changes the observed object, at least minutely.

The following thought experiments demonstrate the uncertainty principle. We know that the 
only way to observe any object is by bouncing light off of it. In everyday life we ignore an implica
tion of this simple truth: bouncing light off of the object must impart energy and momentum to the 
object. Analogously, if we throw a rock at the earth we can ignore the fact that the earth’s orbit is 
minutely deflected by the impact. But what if we bounce light, consisting of photons, off of an elec
tron? Photons will jolt the electron substantially. Our observation invariably and unavoidably af
fects the object being observed. Therefore, we cannot simultaneously know both where the electron 
is and what its motion is. Thus we cannot know exactly where the particle will be at any time in the 
future. The more accurately we measure its location, the less accurately can we measure its mo
mentum, and vice versa.

“Natural science does not simply describe and explain nature; . . .  it describes 
nature as exposed to our method of questioning.” [Heisenberg, 1958]

Our concepts of reality have already 
been revised by Einstein, Bohr, Heisenberg, 
and other atomic physicists; further revi
sions seem likely. We now know that ob
servations are relative to the observer, that 
space is curved and time is relative, that ob
servation unavoidably affects the object ob
served, that probability has replaced strict 
determinism, and that scientific certainty is 
an illusion. Is the observational foundation 
of science unavoidably unreliable, as some 
non-scientists have concluded?

Seldom can we blame uncontrolled ob- 
server-object interaction on atomic physics.
The problem may be unintentional, it may 
be frequent (see the later section on ‘Pitfalls 
of Subjectivity’), but it is probably avoid
able. In our quest for first-order phenomena 
(such as controls on the earth’s orbit), we 
can safely neglect trivial influences (such as 
a tossed rock).

Scientists are, above all, pragmatists. In 
practice, those of us who are not theoretical „  iocm
particle physicists or astronomers safely [Larson, iysul
assume that time is absolute, that observation can be independent of the object observed, and that 
determinism is possible. For the vast majority of experimental situations encountered by scientists, 
these assumptions, though invalid, are amazingly effective working hypotheses. If we are in error by 
only one quantum, it is cause for celebration rather than worry. The fundamental criterion of science 
is, after all, what works.

We cannot, however, cling to the comfortable myth of detached observation and impartial 
evaluation of objectively obtained evidence. The actual process is much more complex and more 
human (Figure 22):

Expectations, rooted in previous experience or in stereotypes, exert a hidden in
fluence -  usually even a control -  on both our perceptions and our evaluation of evi-



1 3 1

dence. We tend to overlook or discount information that is unexpected or inconsistent 
with our beliefs. Anomaly, once recognized, can transform our perspectives funda
mentally, but not without an emotional toll: “My God!” was the subject’s response, 
when the stakes were only recognition of a playing card!

Ideal: Actual:

Figure 22. Flowcharts of ideal and actual interactions concerning experimental observations.

“Twenty men crossing a bridge,
Into a village,
Are twenty men crossing twenty bridges,
Into twenty villages.”
[Wallace Stevens, 193II

The scientific challenge is to use admittedly subjective means, coupled with imperfect assump
tions, yet achieve an ‘objective’ recognition of patterns and principles. To do so, we must under
stand the limitations of our methods. We must understand how the perception process and memory 
affect our observations, in order to recognize our own biases.

* * *

Perception, Memory, and Schemata
Perception and memory are not merely biased; even today, they are only partially understood. In 

the mid-17th century Rene Descartes took the eye of an ox, scraped its back to make it transparent, 
and looked through it. The world was inverted. This observation confirmed Johannes Kepler’s 
speculation that the eye resembles a camera, focusing an image on its back surface with a lens 
[Neisser, 1968]. Of course, ‘camera’ had a different meaning in the 17th century than it does today; 
it was a black box with a pinhole aperture, and it used neither lens nor film. Nevertheless, the anal
ogy between camera and eye was bom, and it persists today.

If the eye is like a camera, then is memory like a photograph? Unfortunately it is not; the mis
taken analogy between memory and photographs has delayed our understanding of memory. The 
eye does not stand still to ‘expose’ an image; it jumps several times per second, jerkily focusing on 
different regions. The fovea, the portion of eye’s inner surface capable of the highest resolution,
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sharply discerns only a small portion of the field of view. A series of eye jerks constructs a com
posite, high-resolution image of the interesting portion of the visual field.

Consciousness and memory do not record or notice each jerky ‘exposure’. Indeed, if we were 
to make a motion picture that jumped around the way the eye does, the product would be nerve- 
wracking or nauseating. Our vision does not bother us as this movie would, because attention con
trols the focus target; attention does not passively follow the jumps.

A closer analogy to functioning of the eye and mind is the photomosaic, a composite image 
formed by superimposing the best parts of many overlapping images. To make a photomosaic of a 
region from satellite photographs, analysts do not simply paste overlapping images. They pick the 
best photo for each region, discarding the photos taken during night or through clouds. Perhaps the 
eye/mind pair acts somewhat similarly; from an airplane it can put together an image of the land
scape, even through scattered small clouds. Furthermore, it can see even with stroboscopic light. 
Both motion pictures and fluorescent light are stroboscopic; we do not even notice because of the 
high frequency of flashes.

Julian Hochberg suggested a simple exercise that offers insight into the relationship of vision to 
memory: remember how many windows are on the front of your house or apartment house [Neis- 
ser, 1968], You may be able to solve this problem ‘analytically’, by listing the rooms visible from 
the front and remembering how many windows face front in each room. Instead, you probably will 
use more obvious visualization, creating a mental image of the front of your house, and then scan
ning this image while counting windows. This mental image does not correspond to any single 
picture that the eye has ever seen. There may be no single location outside your house where you 
could stand and count every window; trees or bushes probably hide some windows.

During the last thousand years, various cultures have grappled with the discrepancy between 
construct and reality, or that between perspective and reality. More than six centuries before Des
cartes’ experiment with the eye of an ox, Arab scientists were making discoveries in optics. Al- 
hazen, who wrote Optics | ~ 1 000 A.D.], realized that vision consists of light reflecting off of ob
jects and forming a cone of light entering the eye. This first step toward an understanding of 
perspective was ignored by western scientists and artists. Artists tried to paint scenes as they are 
rather than as they appear to the eye. Beginning in the 15th century and continuing into the 16th 
century, artists such as Filippo Brunelleschi began to deliberately use Arab and Greek theories of 
perspective to make paintings appear more lifelike.

The perspective painting is lifelike in its mimicry of the way an eye or camera sees. In contrast, 
the older attempts to paint objects ‘as they are’ are more analogous to mental schemata. In this 
sense, the evolution of physics has paralleled that of art. Newton described dynamics as a picture of 
‘how things are’, rather than how they appear to the observer. In contrast, Einstein demonstrated 
that we can only know things from some observer’s perspective.

* * *

The electrical activity in the brain is not designed to store a photograph in a certain location, the 
way that one can electrically (or magnetically) store a scanned image in a computer. True, visual im
aging is generally located in one part of the brain called the visual cortex, but removal of any small 
part of the brain does not remove individual memories and leave all others unchanged; it may 
weaken certain types of memories. Memories are much more complex than mental images. They 
may include visual, auditory, and other sensual data along with emotional information. Recollection 
involves their simultaneous retrieval from different parts of the brain. A memory consists of mental 
electrical activity, more analogous to countless conductors in parallel than to a scanned image. 
However, this analogy offers little or no real insight into how the mind/brain works.
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A more illuminating perspective on both perception and memory is the concept of schemata, 
the meaningful elements of our visual environment. You or I can identify a friend’s face in a group 
photo in seconds or less. In contrast, if you had to help someone else find your friend by describ
ing the friend’s characteristics, identification would be dilatory and uncertain. Evolutionary pressure 
favors fast identification: survival may depend on rapid recognition of predators. Obviously our 
pattern recognition techniques, whether of predators or friends, are extremely efficient and uncon
scious. Schemata achieve that needed speed.

Schemata are the building blocks of memories and of pattern recognition. An individual schema 
is somewhat like one of Plato’s forms: an idealized representation of an object’s essence. It may 
not match any specific object that we have seen. Instead, it is a composite constructed from our 
history of observing and recognizing examples of the object. A group of neural pathways fires 
during our first exposure to the object, thereby becoming associated with the object. Later recogni
tion of the object triggers re-firing along these paths.

Schemata are somewhat like the old rhyme,

“Big fleas have little fleas 
On their backs to bite 'em,
And little fleas have smaller fleas 
And so ad infinitum.”

Even a schema as ‘simple’ as pencil is made up of many other schemata: textural (e.g., hard), 
morphological (e.g., elongated, cylindrical, conical-ended), and especially functional. And an indi
vidual schema such as cylindrical is composed of lower-level schemata. Another example of a 
schema is a musical composition, composed of lower-level patterns of a few bars each, and -  at the 
lowest level -  notes.

It all sounds hopelessly cumbersome, but the process is an elegantly efficient flow of electrical 
currents in parallel. Identification of a pattern does not require identification of all its elements, and 
identification of a higher-level schema such as pencil does not await identification of all the lower- 
level schemata components. If I see a snake, then I do not have the luxury of a casual and com
pletely reliable identification: the schemata sinuous, cylindrical, 6" to 6 ' (however that information is 
stored as schema), and moving may trigger a jump response before I realize why I am jumping. I’ve 
seen a cat jump straight up into the air on encountering a sinuous stick.

* * *

We filter out all but the tiniest fraction of our sensory inputs; otherwise we would go mad. One 
by one, we label and dismiss these signals, unconsciously telling them, “You’re not important; 
don’t bother me.”

“Novelty itself will always rivet one’s attention. There is that unique moment 
when one confronts something new and astonishment begins. Whatever it is, it looms 
brightly, its edges sharp, its details ravishing, in a hard clear light; just beholding it is a 
form of revelation, a new sensory litany. But the second time one sees it, the mind 
says, Oh, that again, another wing walker, another moon landing. And soon, when it’s 
become commonplace, the brain begins slurring the details, recognizing it too 
quickly, by just a few of its features.” [Ackerman, 1990]

Schema modification begins immediately after first exposure, with a memory replay of the inci
dent and the attempt to name it and associate it with other incidents. Schema development may be 
immediate or gradual, and this rate is affected by many factors, particularly emotion and pain. Con
sider the following three experiments:
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A slug is fed a novel food, and then it is injected with a chemical that causes it to 
regurgitate. From only this one learning experience, it will immediately react to every 
future taste of this food by regurgitating. [Calvin, 1986]

A rat is trained to press a lever for food. If it receives food every time that it 
presses the lever, it will learn much faster than if it is only intermittently reinforced.

A rat is trained to press a lever for food. Randomly, however, it receives a shock 
rather than food when it presses the lever. If this is the only food source, the rat will 
continue to press the lever, but it is likely to develop irrational behavior (e.g., biting its 
handler) in other respects.

Emotional content and conflict enhance schema formation and memory:

Consider two nearly identical physics lectures on ballistics. The only difference is 
that the instructor begins one by silently loading a gun and placing it on the lectern 
so that it is visible to the students throughout the lecture. Which class will remember 
ballistics better?

A schema may include non-relevant aspects, particularly those neural patterns that happened to 
be flowing during the first experience of the schema. Thus is superstition born, and in Chapter 4 we 
discussed the associated inductive fallacy of ‘hasty generalization.’ Non-relevant aspects, once es
tablished in the schema, are slow to disappear if one is not consciously aware of them. For example, 
a primary aim of psychotherapy is identification of behavior patterns formed in childhood and no 
longer appropriate. Deliberate schema modification can backfire:

I once decided to add some enjoyment to the chore of dish washing by playing 
my favorite record whenever I washed dishes. It helped for a while, but soon I found 
that listening to that music without washing dishes seemed more like work than like 
recreation. I had created an associative bridge between the two sets of neural patterns, 
so that each triggered the emotional associations of the other.

Identification of a pattern does not require an exact match with the schema. Because we are 
identifying the schema holistically rather than by listing its components, we may not notice that 
some components are missing. Nor are extra, noncharacteristic components always detected. For 
example, people tend to overlook aspects of their own lives that are inconsistent with their current 
self-image [Goleman, 1992b], The conditioned schema of previous experiences adds the missing 
component or ignores the superfluous component.

Memory can replay one schema or a series of schemata without any external cues, simply by 
activating the relevant neural pathways. Memory recollects the holistic schema that was triggered by 
the original experience; it does not replay the actual external events. Missing or overlooked ele
ments of the schema are ignored in the memories. Thus eyewitness testimony is notoriously poor. 
Thus scientists trust their written records much more than their recollections of an experiment. Neu
ral pathways are reinforced by any repeat flow — real or recalled. Each recollection has the potential 
of modifying a memory. I may think that I am remembering an incident from early childhood, but 
more likely I am actually recalling an often-repeated recollection rather than the initial experience. 
Recollection can be colored by associated desire. Some individuals are particularly prone to self
serving memory, but everyone is affected to some degree. Thus, when I described the first football 
game near the start of this chapter, I said:

“I prefer to think that our team was inspired by this event, that we stopped the 
opponents’ advance just short of a touchdown, and that we recovered the ball and 
drove for the winning touchdown. Indeed, I do vaguely remember that happening, 
but I am not certain.”



1 3 5

The individual always attempts schema identification based on available cues, whether or not 
those cues are sufficient for unique identification. In such cases the subconscious supplies the an
swer that seems most plausible in the current environment. Ittelson and Kilpatrick [1951] argue 
persuasively that optical illusions are simply a readily investigated aspect of the much broader phe
nomenon of subconsciously probabilistic schema identification.

“Resulting perceptions are not absolute revelations of ‘what is out there’ but are 
in the nature of probabilities or predictions based on past experience. These predic
tions are not always reliable, as the [optical illusion] demonstrations make clear.” [It
telson and Kilpatrick, 1951]

“Perception is not determined simply by the stimulus patterns; rather it is a dy
namic searching for the best interpretation of the available data. . . Perception in
volves going beyond the immediately given evidence of the senses: this evidence is as
sessed on many grounds and generally we make the best bet. . . Indeed, we may say 
that a perceived object is a hypothesis, suggested and tested by sensory data.” [Greg
ory, 1966]

* * *

No wonder expectations affect our observations! With a perceptual system geared to under
standing the present by matching it to previous experience, of course we are prone to see what we 
expect to see, overlook anomalies, and find that evidence confirms our beliefs (Figure 22). Re
markably, the scientist’s propensity for identifying familiar patterns is combined with a hunger for 
discovering new patterns. For the fallible internal photographer, it doesn’t matter whether the spec
tacle is the expansion of the universe or the fate of a bug:

“So much of the fascinating insect activity around escapes me. No matter how 
much I see, I miss far more. Under my feet, in front of my eyes, at my very finger’s 
end, events are transpiring of fascinating interest, if I but knew enough or was fortu
nate enough to see them. If the world is dull, it is because we are blind and deaf and 
dumb; because we know too little to sense the drama around us.” [Fabre, cited by 
Teale, 1959]

* * *

Postmodernism
“Science is a social phenomenon. . . It progresses by hunch, vision, and intuition.

Much of its change through time is not a closer approach to absolute truth, but the 
alteration of cultural contexts that influence it. Facts are not pure information; culture 
also influences what we see and how we see it. Theories are not inexorable deductions 
from facts; most rely on imagination, which is cultural.” [Gould, 1981]

In the mid-twentieth century, the arts were dominated by modernism, which emphasized form 
and technique. Many people thought modernism was excessively restrictive. In reaction, the post
modern movement was bom in the 1960’s, embracing a freedom and diversity of styles. Postmod
ern thinking abandoned the primacy of linear, goal-oriented behavior and adopted a more empa- 
thetic, multipath approach that valued diverse ethnic and cultural perspectives. Postmodernism 
encompassed the social movements of religious and ethnic groups, feminists, and gays, promoting 
pluralism of personal realities.

According to the postmodern critique, objective truth is a dangerous illusion, developed by a 
cultural ‘elite’ but sold as a valid multicultural description. Cultural influences are so pervasive that 
truth, definite knowledge, and objectivity are unobtainable. Consequently, we should qualify all
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findings by specifying the investigator’s cultural framework, and we should encourage development 
of multiple alternative perspectives (e.g., feminist, African American, non-Western).

During the last two decades, postmodernism has become the dominant movement of literature, 
art, philosophy, and history. It has also shaken up some of the social sciences, especially anthropol
ogy and sociology. It is, at the moment, nearly unknown among physical scientists. However, some 
proponents of postmodernism claim that it applies to all sciences. Most postmodernists distrust 
claims of universality and definite knowledge, and some therefore distrust the goals and products of 
science.

“The mythology of science asserts that with many different scientists all asking 
their own questions and evaluating the answers independently, whatever personal bias 
creeps into their individual answers is cancelled out when the large picture is put to
gether. . . But since, in fact, they have been predominantly university-trained white 
males from privileged social backgrounds, the bias has been narrow and the product 
often reveals more about the investigator than about the subject being researched.” 
[Hubbard, 19791

Postmodern literary criticism seeks deconstruction of the cultural and social context of literary 
works. More broadly, deconstruction analysis is thought to be appropriate for any claim of knowl
edge, including those of scientists. For example, postmodern anthropologists recognize that many 
previous interpretations were based on overlaying twentieth-century WASP perspectives onto cul
tures with totally different worldviews. They reject the quest for universal anthropological generali
zations and laws, instead emphasizing the local perspective of a society and of groups within that 
society [Thomas, 1998].

The major issues for the sciences are those introduced earlier in this chapter. Theories and con
cepts inspire data collection, determining what kinds of observations are considered to be worth
while. Resulting observations are theory-laden, in the sense of being inseparable from the theories, 
concepts, values, and assumptions associated with them. Many values and assumptions are univer
sal (e.g., space and time) and some are nearly so (e.g., causality) and therefore reasonably safe. If, 
however, some values and assumptions are cultural rather than universal, then associated scientific 
results are cultural rather than universal. Other scientists with different backgrounds might reach 
incompatible conclusions that are equally valid.

Bertrand Russell [1927] commented wryly on how a group’s philosophical ap
proach can affect its experimental results:“Animals studied by Americans rush about 
frantically, with an incredible display of hustle and pep, and at last achieve the desired 
result by chance. Animals observed by Germans sit still and think, and at last evolve 
the solution out of their inner consciousness.”

The postmodern critique challenges us to consider the extent to which social constructions may 
bias our scientific values, assumptions, and even the overall conceptual framework of our own sci
entific discipline. Many hypotheses and experiments are legitimately subject to more than one in
terpretation; would a different culture or ethnic group have reached the same conclusion?

Most scientists are likely to conclude that their scientific discipline is robust enough to be un
shaken by the postmodern critique. True, observations are theory-laden and concepts are value
laden, but the most critical data and hypotheses are powerful enough to demonstrate explanatory 
power with greater scope than their origins. Politics and the economics of funding availability un
doubtedly affect the pace of progress in the various sciences, but rarely their conclusions. Social 
influences such as a power elite are capable at most of a temporary disruption of the scientific pro
gress of a science.

In the first section of this chapter, Jarrard’s case-study examples include two 
football games and a murder. In the previous chapter, Jarrard uses three military
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quotes, a naval example, an analogy to military strategy and tactics, and two competi- 
tive-chess quotes. Clearly, Jarrard is an American male.

Wilford [1992a] offers a disturbing insight into a scientific field that today is 
questioning its fundamentals. The discipline is anthropology, and many anthropolo
gists wonder how much of the field will survive this self analysis unscathed. The trig
ger was an apparently innocuous discovery about the Maori legend of colonization of 
New Zealand, a legend that describes an heroic long-distance migration in seven great 
canoes. Much of the legend, anthropologists now think, arose from the imaginative 
interpretation of anthropologists. Yet significantly, the Maoris now believe the legend 
as part of their culture.

Can anthropologists hope to achieve an objective knowledge of any culture, if that 
culture’s perceptive and analytical processes are inescapably molded by a different 
culture? Are they, in seeking to describe a tradition, actually inventing and sometimes 
imposing one? If cultural traditions are continuously evolving due to internal and 
external forces, where does the scientist seek objective reality?

Are the anthropologists alone in their plight?
* * *

Pitfalls of Subjectivity
“The nature of scientific method is such that one must suppress one’s hopes and 

wishes, and at some stages even one’s intuition. In fact the distrust of self takes the 
form of setting traps to expose one’s own fallacies.” [Baker, 1970]

How can we reconcile the profound success of science with the conclusion that the perception 
process makes objectivity an unobtainable ideal? Apparently, science depends less on complete ob
jectivity than most of us imagine. Perhaps we do use a biased balance to weigh and evaluate data. 
All balances are biased, but those who are aware of the limitations can use them effectively. To im
prove the accuracy of a balance, we must know its sources of error.

Pitfalls of subjectivity abound. We can find them in experimental designs, execution of experi
ments, data interpretations, and publications. Some can be avoided entirely; some can only be re
duced.

Experimental Design
* ignoring relevant variables: Some variables are ignored because of sloppiness. For example, 
many experimental designs ignore instrument drift, even though its bias can be removed. Often, 
however, intentions are commendable but psychology intervenes.

1) We tend to ignore those variables that we consider irrelevant, even if other scientists have 
suggested that these variables are significant.

2) We ignore variables if we know of no way to remove them, because considering them forces 
us to admit that the experiment has ambiguities.

3) If two variables may be responsible for an effect, we concentrate on the dominant one and 
ignore the other.

4) If the influence of a dominant variable must be removed, we are likely to ignore ways of re
moving it completely. We unconsciously let it exert at least residual effects [Kuhn et al., 1988].
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1) During the literature review that precedes experiment, we may preferentially seek and find 
evidence that confirms our beliefs or preferred hypothesis.

2) We select the experiment most likely to support our beliefs. This insidiously frequent pitfall 
allows us to maintain the illusion of objectivity (for us as well as for others) by carrying out a rig
orous experiment, while nevertheless obtaining a result that is comfortably consistent with expecta
tions and desires.

This approach can hurt the individual more than the scientific community. When two conflicting 
schools of thought each generate supporting information, the battling individuals simply grow more 
polarized, yet the community may weigh the conflicting evidence more objectively. Individuals 
seeking to confirm their hypothesis may overlook ways of refuting it, but a skeptical scientific 
community is less likely to make that mistake.

* confirmation bias:

* biased sampling: Subjective sampling that unconsciously favors the desired outcome is easily 
avoided by randomization. Too often, however, we fail to consider the relevance of this problem 
during experimental design, when countermeasures are still available.

* wish-fulfilling assumption: In conceiving an experiment, we may realize that it could be valu
able and diagnostic if a certain assumption were valid or if a. certain variable could be controlled. 
Strong desire for an obstacle to disappear tempts us to conclude that it is not really an obstacle.

Experiment Execution
* biased abortive measurements: Sometimes a routine measurement may be aborted. Such data 
are rejected because of our subjective decision that a distraction or an intrusion by an uncontrolled 
variable has adversely affected that measurement’s reliability. If we are monitoring the measurement 
results, then our data expectations can influence the decision to abort or continue a measurement. 
Aborted measurements are seldom mentioned in publications, because they weaken reader confi
dence in the experiment (and maybe even in the experimenter).

The biasing effect can be reduced in several ways: (1) ‘blind’ measurements, during which we 
are unaware of the data’s consistency or inconsistency with the tested hypothesis; (2) a priori se
lection of criteria for aborting a measurement; and (3) completion of all measurements, followed by 
discussion in the publication of the rationale for rejecting some.

* biased rejection of measurements: Unanticipated factors and uncontrolled variables can intrude 
on an experiment, potentially affecting the reliability of associated data. Data rejection is one solu
tion. Many data-rejection decisions are influenced by expectations concerning what the data 
‘should be’.

Rejection may occur as soon as the measurement is completed or in the analysis stage. As with 
aborted data, rejected measurements should be, but seldom are, mentioned in publication. Data- 
rejection bias is avoidable, with the same precautions as those listed above for reducing bias from 
aborted measurements.

* biased mistakes: People make mistakes, and elaborate error checking can reduce but not totally 
eliminate mistaken observations. Particularly in the field of parapsychology where subtle statistical
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effects are being detected (e.g., card guessing tests for extrasensory perception, or ESP), much re
search has investigated the phenomenon of ‘motivated scoring errors.’ Scoring hits or misses on 
such tests appears to be objective: either the guess matched the card or it did not. Mistakes, how
ever, are more subjective and biased: believers in ESP tend to record a miss as a hit, and nonbe
lievers tend to score hits as misses.

Parapsychology experimenters long ago adapted experimental design by creating blinds to pre
vent motivated scoring errors, but researchers in most other fields are unaware of or unworried by 
the problem. Motivated scoring errors are subconscious, not deliberate. Most scientists would be 
offended by the suggestion that they were vulnerable to such mistakes, but you and I have made and 
will make the following subconsciously biasing mistakes:

1) errors in matching empirical results to predictions,
2) errors in listing and copying results,
3) accidental omissions of data, and
4) mistakes in calculations.

• missing the unexpected: Even ‘obvious’ features can be missed if they are unexpected. The 
flash-card experiment, discussed earlier in this chapter, was a memorable example of this pitfall. 
Unexpected results can be superior to expected ones: they can lead to insight and discovery of ma
jor new phenomena (Chapter 8). Some common oversights are: (1) failing to notice disparate re
sults among a mass of familiar results; (2) seeing but rationalizing unexpected results; and (3) re
cording but failing to follow-up or publish unexpected results.

• biased checking of results: To avoid mistakes, we normally check some calculations and ex
perimental results. To the extent that it is feasible, we try to check all calculations and tabulations, 
but in practice we cannot repeat every step. Many researchers selectively check only those results 
that are anomalous in some way; such data presumably are more likely to contain an error than are 
results that look OK. The reasoning is valid, but we must recognize that this biased checking im
parts a tendency to obtain results that fulfill expectations. If we perform many experiments and sel
dom make mistakes, the bias is minor. For a complex set of calculations that could be affected sub
stantially by a single mistake, however, we must beware the tendency to let the final answer 
influence the decision whether or not to check the calculations. Biased checking of results is closely 
related to the two preceding pitfalls of making motivated mistakes and missing the unexpected.

• missing important ‘background’ characteristics: Experiments can be affected by a bias of 
human senses, which are more sensitive to detecting change than to noticing constant detail 
[Beveridge, 1955], In the midst of adjusting an independent variable and recording responses of a 
dependent variable, it is easy to miss subtle changes in yet another variable or to miss a constant 
source of bias. Exploitation of this pitfall is the key to many magicians’ tricks; they call it misdirec
tion. Our concern is not misdirection but perception bias. Einstein [1879-1955] said, “Raffiniert is 
der Herrgott, aber boshaft ist er nicht” (“God is subtle, but he is not malicious”), meaning that 
nature’s secrets are concealed through subtlety rather than trickery.

• placebo effect: When human subjects are involved (e.g., psychology, sociology, and some biol
ogy experiments), their responses can reflect their expectations. For example, if given a placebo (a 
pill containing no medicine), some subjects in medical experiments show a real, measurable im
provement in their medical problems due to their expectation that this ‘medicine’ is beneficial.
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Many scientists avoid consideration of mind/body interactions; scientific recognition of the placebo 
effect is an exception. This pitfall is familiar to nearly all scientists who use human subjects. It is 
avoidable through the use of a blind: the experimenter who interacts with the subject does not know 
whether the subject is receiving medicine or placebo.

* subconscious signaling: We can influence an experimental subject’s response involuntarily, 
through subconsciously signaling. As with the placebo effect, this pitfall is avoidable through the 
use of blinds.

Data Interpretation
* confirmation bias in data interpretation: Data interpretation is subjective, and it can be domi
nated by prior belief. We should separate the interpretation of new data from the comparison of 
these data to prior results. Most publications do attempt to distinguish data interpretation from rec
onciliation with previous results. Often, however, the boundary is fuzzy, and we bias the immediate 
data interpretation in favor of our expectations from previous data.

* hidden control of prior theories on conclusions: Ideally, we should compare old and new data 
face-to-face, but too often we simply recall the conclusions based on previous experiments. Conse
quently, we may not realize how little chance we are giving a new result to displace our prior theo
ries and conclusions. This problem is considered in more detail in that part of the next chapter de
voted to paradigms.

* biased evaluation of subjective data: Prior theories always influence our evaluation of subjec
tive data, even if we are alert to this bias and try to be objective. We can avoid this pitfall through an 
experimental method that uses a blind: the person rating the subjective data does not know whether 
the data are from a control or test group, or what the relationship is of each datum to the variable of 
interest. However, researchers in most disciplines never even think of using a blind; nor can we use 
a blind when evaluating published studies by others.

* changing standards of interpretation: Subjectivity permits us to change standards within a 
dataset or between datasets, to exclude data that are inconsistent with our prior beliefs while includ
ing data that are more dubious but consistent with our expectations [Gould, 1981], A similar phe
nomenon is the overestimation of correlation quality when one expects a correlation and underesti
mation of correlation quality when no correlation is expected [Kuhn et al., 1988],

Publication
* language bias: We may use different words to describe the same experimental result, to mini
mize or maximize its importance (e.g., ‘somewhat larger’ vs. ‘substantially larger’). Sarcasm and 
ridicule should have no place in a scientific article; they undermine data or interpretations in a man
ner that obscures the actual strengths and weaknesses of evidence.

* advocacy masquerading as objectivity: We may appear to be objective in our interpretations, 
while actually letting them be strongly influenced by prior theories. Gould [1981], who invented 
this expression, both criticizes and falls victim to this pitfall.
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* weighting one’s own data preferentially: This problem is universal. We know the strengths 
and weaknesses of personally-obtained data much better than those of other published results. Or 
so we rationalize our preference for our own data. Yet both ego and self-esteem play a role in the 
frequent subjective decision to state in print that one’s own evidence supersedes conflicting evi
dence of others.

* failure to publish negative results: Many experimental results are never published. Perhaps 
the results are humdrum or the experimental design is flawed, but often we fail to publish simply 
because the results are negative: we do not understand them, they fail to produce a predicted pattern, 
or they are otherwise inconsistent with expectations. If we submit negative results for publication, 
the manuscript is likely to be rejected because of unfavorable reviews (‘not significant’). I have 
even heard of a journal deliberately introducing this bias by announcing that they will not accept 
negative results for publication. Yet a diagnostic demonstration of negative results can be extremely 
useful — it can force us to change our theories.

* concealing the pitfalls above: The myth of objectivity usually compels us to conceal evidence 
that our experiment is subject to any of the pitfalls above. Perhaps we make a conscious decision 
not to bog down the publication with subjective ambiguities. More likely, we are unaware or only 
peripherally cognizant of the pitfalls. Social scientists recognize the difficulty of completely avoid
ing influence of the researcher’s values on a result. Therefore they often use a twofold approach: 
try to minimize bias, and also specifically spell out one’s values in the publication, so that the reader 
can judge success.

* * *

“The great investigator is primarily and preeminently the man who is rich in hy
potheses. In the plenitude of his wealth he can spare the weaklings without regret; and 
having many from which to select, his mind maintains a judicial attitude. The man 
who can produce but one, cherishes and champions that one as his own, and is blind 
to its faults. With such men, the testing of alternative hypotheses is accomplished only 
through controversy. Crucial observations are warped by prejudice, and the triumph 
of the truth is delayed.” [Gilbert, 18861

* * *

Pitfall Examples

Penzias and Wilson [19651 discovered the background radiation of the universe 
by accident. When their horn antenna detected this signal that was inconsistent with 
prevailing theories, their first reaction was that their instrument somehow was gener
ating noise. They cleaned it, dismantled it, changed out parts, but they were still un
able to prevent their instrument from detecting this apparent background radiation.
Finally they were forced to conclude that they had discovered a real effect.

Pitfalls: biased checking of results;
biased rejection of measurements;

Throughout the 20th century, scientists from many countries have sought tech
niques for successfully predicting earthquakes. In 1900 Imamura predicted that a 
major earthquake would hit Tokyo, and for two decades he campaigned unsuccess
fully to persuade people to prepare. In 1923, 160,000 people died in the Tokyo
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earthquake. Many predictions have been made since then, by various scientists, based 
on diverse techniques. Still we lack reliable techniques for earthquake prediction. Said 
Lucy Jones [ 1990] of the U.S. Geological Survey, “When people want something too 
much, it’s very easy to overestimate what you’ve got.” Most of the altruistic predic
tions suffered from one of the following pitfalls:

wish-fulfilling assumption or treatment of a variable; 
biased sampling; or
confirmation bias in data interpretation.

* * *

The following examples were used by Gould [1981] to illustrate the severe societal damage that 
lapses in scientific objectivity can inflict.

If an objective, quantitative measure of intelligence quotient (IQ), independent of 
environment, could be found, then education and training possibly could be opti
mized by tailoring them to this innate ability. This rationale was responsible for de
velopment of the Army Mental Tests, which were used on World War I draftees.
Among the results of these tests were the observations that white immigrants scored 
lower than white native-born subjects, and immigrant scores showed a strong correla
tion with the number of years since immigration. The obvious explanation for these 
observations is that the tests retained some cultural and language biases. The actual 
interpretation, which was controlled by desire for the tests to be objective measures of 
IQ, was the following: a combination of lower intelligence in Europeans than in 
Americans and of declining intelligence of immigrants. This faulty reasoning was 
used in establishing the 1924 Immigration Restriction Act. [Gould, 1981]

Pitfalls: wish-fulfilling assumption or treatment of variable; 
ignoring relevant variables; 
hidden control of prior theories on conclusions.

Bean ‘proved’ black inferiority by measuring brain volumes of blacks and whites 
and demonstrating statistically that black brains are smaller than white brains. His 
mentor Mall replicated the experiment, however, and found no significant difference 
in average brain size. The discrepancy of results is attributable to Mall’s use of a 
blind: at the time of measurement, he had no clues as to whether the brain he was 
measuring came from a black or white person. Bean’s many measurements had sim
ply reflected his expectations. [Gould, 1981]

Pitfalls: biased evaluation of subjective data; 
advocacy masquerading as objectivity.

In order to demonstrate that blacks are more closely related to apes than whites 
are, Paul Broca examined a wide variety of anatomical characteristics, found those 
showing the desired correlation, and then made a large number of careful and reliable 
measurements of only those characteristics. [Gould, 1981]

Pitfalls: confirmation bias in experimental design
(selecting the experiment most likely to support one’s beliefs); 
confirmation bias in data interpretation; 
hidden control or prior theories on conclusions; 
advocacy masquerading as objectivity.
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* * *

Group Objectivity
“The objectivity of science is not a matter of the individual scientists but rather 

the social result of their mutual criticism.” [Popper, 1976]

“Creating a scenario may be best done inside a single head; trying to find excep
tions to the scenario is surely best done by many heads.” [Calvin, 1986]

One can reduce deliberately the influence of the pitfalls above on one’s research. One cannot 
eliminate the effects of personal involvement and personal opinions, nor is it desirable to do so. Re
liability o f conclusions, not objectivity, is the final goal. Objectivity simply assists us in obtaining 
an accurate conclusion. Subjectivity is essential to the advance of science, because scientific con
clusions are seldom purely deductive; usually they must be evaluated subjectively in the light of 
other knowledge.

But what of experimenter bias? Given the success of science in spite of such partiality, can it 
actually be a positive force in science? Or does science have internal checks and balances to reduce 
the adverse effects of bias? Several philosophers of science [e.g., Popper, 1976; Mannoia, 1980; 
Boyd, 1985] argue that a scientific community can make objective consensus decisions in spite of 
the biases of individual proponents.

It’s said [e.g., Beveridge, 1955] that only the creator of a hypothesis believes it (others are du
bious), yet only the experimenter doubts his experiment (others cannot know all of the experimental 
uncertainties). Of course, group evaluation is much less credible and unanimous than this generali
zation implies. The point, instead, is that the individual scientist and the scientific community have 
markedly different perspectives.

Replication is one key to the power of group objectivity. Replicatability is expected for all ex
perimental results: it should be possible for other scientists to repeat the experiment and obtain 
similar results. Published descriptions of experimental technique need to be complete enough to 
permit that replication. As discussed in Chapter 2, follow-up studies by other investigators usually 
go beyond the original, often by increasing precision or by isolating variables. Exact replication of 
the initial experiment seldom is attempted, unless those original experimental results conflict with 
prior concepts or with later experiments. Individual lapses of objectivity are likely to be detected by 
the variety of perspectives, assumptions, and experimental techniques employed by the scientific 
community.

Perhaps science is much more objective than individual scientists, in the same way that Ameri
can politics is more objective than either of the two political parties or the individual politicians 
within those parties. Politicians are infamous for harboring bias toward their own special interests, 
yet no doubt they seek benefits for their constituents more often than they pursue personal power 
or glory. Indeed, concern with personal power or glory is more relevant to scientists than we like to 
admit (Chapter 9).

The strength of the political party system is that two conflicting views are advocated by two 
groups, each trying to explain the premises, logic, and strengths of one perspective and the weak
nesses of the other point of view. I f one pays attention to both viewpoints, then hopefully one has 
all of the information needed for a reliable decision. Conflicting evidence confronts people with the
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necessity of personally evaluating evidence. Unfortunately, both viewpoints are not fully developed 
in the same place; we must actively seek the conflicting arguments.

Suppose a scientist writes a paper that has repeated ambivalent statements such as “X may be 
true, as indicated by Y and Z; on the other hand,. . . ” That scientist may be objective, but the paper 
probably has little impact, because it leaves most readers with the impression that the subject is a 
morass of conflicting, irreconcilable evidence. Only a few readers will take the time to evaluate the 
conflicting evidence.

Now suppose that one scientist writes a paper saying, “X, not Y, is probable because. . .” and 
another scientist counters with “Y, not X, is probable because.. .” Clearly, the reader is challenged 
to evaluate these viewpoints and reach a personal conclusion. This dynamic opposition may gener
ate a healthy and active debate plus subsequent research. “All things come into being and pass 
away through strife” [Heraclitus, ~550-475 B.C.]. Science gains, and the only losers are the advo
cates of the minority view. Even they lose little prestige, because their role is remembered more for 
its active involvement in a fascinating problem than for being ‘wrong’, if the losers show in print 
that they have changed their minds because of more convincing evidence. In contrast, the loser who 
continues as a voice in the wilderness does lose credibility (even if he or she is right).

“It is not enough to observe, experiment, theorize, calculate and communicate; we 
must also argue, criticize, debate, expound, summarize, and otherwise transform the 
information that we have obtained individually into reliable, well established, public 
knowledge.” [Ziman, 1969]

Given two contradictory datasets or theories (e.g., light as waves vs. particles), the scientific 
community gains if some scientists simply assume each and then pursue its ramifications. This in
cremental work eventually may offer a reconciliation or solution of the original conflict. Temporary 
abandonment of objectivity thus can promote progress.

Science is not democratic. Often a lone dissenter sways the opinions of the scientific commu
nity. The only compulsion to follow the majority view is peer pressure, which we first discovered in 
elementary school and which haunts us the rest of our lives.

A consensus evolves from conflicting individual views most readily if the debating scientists 
have similar backgrounds. Divergent scientific backgrounds cause divergent expectations, substan
tially delaying evolution of a consensus. For example, geology has gone through prolonged polari
zations of views between Northern Hemisphere and Southern Hemisphere geologists on the ques
tions of continental drift and the origin of granites. In both cases, the locally observable geologic 
examples were more convincing to a community than were arguments based on geographically re
mote examples.

This heterogeneity of perspectives and objectives is an asset to science, in spite of delayed con
sensus. It promotes group objectivity and improves error-checking of ideas. In contrast, groups that 
are isolated, homogeneous, or hierarchical tend to have similar perspectives. For example, Soviet 
science has lagged Western science in several fields, due partly to isolation and partly to a hierarchy 
that discouraged challenging of the leaders’ opinions.

* * *

The cold-fusion fiasco is an excellent example of the robustness of group objec
tivity, in contrast to individual subjectivity. In 1989 Stanley Pons and Martin Fleisch- 
mann announced that they had produced nuclear fusion in a test tube under ordinary 
laboratory conditions. The announcement was premature: they had not rigorously 
isolated variables and thoroughly explored the phenomenon. The rush to public an
nouncement, which did not even wait for simultaneous presentation to peers at a sci
entific meeting, was generated by several factors: the staggering possible benefit to 
humanity of cheap nuclear power, the Nobel-level accolades that would accrue to the
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discoverers, the fear that another group might scoop them, executive decisions by the 
man who was president of my university, and exuberance.

The announcement ignited a fire-storm of attempts to replicate the experiments.
Very few of those attempts succeeded. Pons and Fleischmann were accused of multi
ple lapses of objectivity: wish-fulfilling assumptions, confirmation bias, ignoring rele
vant variables, mistakes, missing important background characteristics, and optimistic 
interpretation.

In a remarkably short time, the scientific community had explored and discred
ited cold fusion. Group objectivity had triumphed: fellow scientists had shown that 
they were willing to entertain a theoretically ridiculous hypothesis and subject it to a 
suite of experimental tests.

Groups can, of course, temporarily succumb to the same objectivity lapses as individuals. N 
rays are an example.

Not long after Roentgen’s discovery of X rays, Rene Blondlot published a related 
discovery: N rays, generated in substances such as heated metals and gases, refracted 
by aluminum prisms, and observed by phosphorescent detectors. If one sees what one 
expects to see, sometimes many can do the same. The enthusiastic exploration of N 
rays quickly led to dozens of publications on their ‘observed’ properties. Eventually, 
of course, failures to replicate led to more rigorous experiments and then to aban
donment of the concept of N rays. The scientific community moved on, but Blondlot 
died still believing in his discovery.

We began this section with a paradox: how can it be possible for many subjective scientists to 
achieve objective knowledge? We concluded that science does have checks and balances that permit 
it to be much more objective than the individual scientists. The process is imperfect: groups are 
temporarily subject to the same subjectivity as individuals. Group ‘objectivity’ also has its own pit
falls. We shall postpone consideration of those pitfalls until the next chapter, however, so that we 
can see them from the perspective of Thomas Kuhn’s remarkable insights into scientific paradigm.
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Chapter 7: Evidence Evaluation and Scientific Progress
Scientists and philosophers of science 

share a concern for evidence evaluation and 
scientific progress. Their goals, however, are 
quite different. The philosophers find the 
process of science intrinsically interesting.
Most are not trying to ‘straighten out’ the 
scientists and tell them how science should 
be done. Some of their conclusions do have 
possible implications for future scientific 
methods, but scientists seldom listen. Per
haps scientists’ reactions are somewhat 
analogous to those of creative writers to
ward literary critics and academic literary 
analysts: often the doer is unappreciative of 
the outside reviewer.

Each scientist unconsciously selects 
criteria for evaluating hypotheses. Yet 
clearly it would be both confusing and pro
fessionally hazardous to adopt substantially 
different criteria than those used by one’s 
peers. Judgment, not irrefutable evidence, is 
a foundation of science. Judgments that ob
servations confirm or refute hypotheses are 
based on personal values: accuracy, sim
plicity, consistency, scope, progressiveness, 
utility, and expediency.

Inadvertently, Roy dooms the entire earth 
to annihilation when, in an attempt to be 

friendly, he seizes their leader by the 
head and shakes vigorously.

[Larson, 1987]Different types of laws, or hypotheses, 
require different evaluation criteria [Carnap, 1966]. A universal law such as ‘all ravens are black’ 
is best tested by seeking a single exception. In contrast, a statistical law such as ‘almost all ravens 
are black’ or ‘99% of ravens are black’ requires a statistical test that compares observed frequen
cies to hypothesized frequencies. Theoretical and empirical hypotheses call for contrasting evalua
tion techniques and standards. For example, a theoretical-physics hypothesis may concern proper
ties that are not directly measurable and that must be inferred indirectly, and it may be judged more 
on simplicity and scope than on accuracy of fit to observations.

This chapter considers all of these aspects of evidence evaluation.
* * *

Critical thinking skills and mistakes begun in childhood survive the transition to adult. Naive 
conceptions do not simply disappear when a more mature thinking skill is developed; they must be 
consciously recognized as wrong and deliberately replaced. For example, children learn about cau
sality first by treating all predecessors as causal (“if I wear a raincoat and avoid getting wet, I won’t 
get a cold”). Only later and rather haphazardly is this superstitious approach supplanted by the 
skill of isolation of variables.
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The most important childhood development in reasoning skill is obtaining conscious control 
over the interaction between theory and evidence [Kuhn et al., 1988]. Immature thinking fails to 
distinguish between theory and evidence. Scientific thinking requires critical evaluation of observa
tions and of their impact on the validity of hypotheses. This skill is polished by practice — particu
larly by coping with contradictory evidence and contradictory hypotheses.

In order to relate evidence to hypotheses effectively, the researcher needs three related skills 
[Kuhnetal., 1988]:
• The evidence must be analyzed independently of the hypothesis, before evaluating the relation
ship between data and hypothesis.
• One must be able to think about a hypothesis rather than just with it. If one allows the hypothe
sis to guide interpretation of the evidence, objective evidence evaluation is impossible.
• While considering the impact of evidence on the hypothesis, one must be able to ignore per
sonal opinion of the affected hypothesis. Favorable and unfavorable evidence must be given a 
chance to affect the final conclusion.

Kuhn et al. [1988] find that these three skills, which are absent in children and are developed 
gradually during middle adolescence and beyond, are still below optimum even in most adults.

Like most college students, I memorized facts and absorbed concepts, but I was seldom faced — 
at least in class-work -  with the ‘inefficient’ task of personally evaluating evidence and deciding 
what to believe. Imagine my surprise when I went to graduate school, began reading the scientific 
literature, and discovered that even some ridiculous ideas have proponents. Textbook learning does 
not teach us the necessity of evaluating every conclusion personally — regardless of how famous 
the writer is, regardless of how meager one’s own experience is.

Effective evidence evaluation requires active critical thinking, not passive acceptance of someone 
else’s conclusion. The reader of a publication must become a reviewer who judges the evidence for 
and against the writer’s conclusion.

Effective evidence evaluation is far more comprehensive than discrimination of whether state
ments are correct. It also involves assessment of the scope and ambiguities of observations, gener
alizations, and deductions, as well as the recognition of implicit and explicit assumptions. Have all 
perspectives been considered? Is any conclusion warranted by the evidence?

The evaluation techniques of this chapter can aid in this wresting of control from subconscious 
feelings and toward rational decision-making.

* * *

Judgment Values
Evidence evaluation, like scientific research in general, involves not only technique but also 

style. One’s judgment of an hypothesis or evidence set is more a product of subjective values than 
of objective weighting factors. Those values, like scientific research style, are based on personal 
taste.

Prediction of observations is perhaps the most compelling type of confirmation or refutation. 
As discussed later in this chapter, the confirmatory power of evidence depends on how surprising 
the prediction is. A rule of thumb is:
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In forming a hypothesis, value minimum astonishment; 
in testing hypothesis predictions, value maximum astonishment.

Thus hypotheses that are simple and, at least in hindsight, obvious are valued over convoluted ones. 
In contrast, the more unexpected and outlandish a prediction is, the more compelling it is if found to 
be correct. For example, Einstein was a master at forming theories that were based on the simplest 
of premises, yet yielded seemingly absurd but verifiably correct predictions.

Prediction is always valued over retrodiction, the ability of a hypothesis to account for data al
ready known. This difference in values is because prediction constitutes an independent test of an 
idea, whereas existing data may have been incorporated in concept formation. For example, a poly
nomial may fit a set of time-series data excellently, yet generate bizarre predictions for regions out
side the range of the input data. On shakier ground are retrodictions consisting of data that existed 
when the hypothesis was developed but of which the discoverer was unaware. The discoverer 
rightly considers them to be independent and successful predictions; the fact that the experiment 
preceded the hypothesis is irrelevant. The reviewer, however, cannot know whether or not the idea’s 
author was indirectly influenced by these data.

Comparison of a hypothesis to existing data is the first step in its testing, but this evaluation 
could have a hidden bias. The experiments were not designed specifically to test this hypothesis, so 
one must subjectively select ‘appropriate’ experiments and interpret departures from ideal experi
mental design. Predictions, in contrast, minimize these problems.

* * *

All scientists accept that hypothesis generation is subjective, but most cling to the myth that their 
evaluations of evidence are objective. Yet in recent decades the illusion of totally rational decision
making has collided with the technical difficulty of developing artificial intelligence (Al) programs. 
The successes and failures of Al suggest the scope of the problem. Al achieved rapid success in 
medical diagnosis, where each of an enormous number of potential symptoms has established sta
tistical implications for potential diagnoses. In contrast, Al has progressed surprisingly slowly, in 
spite of great effort, in duplicating human language. Apparently, the ‘rules’ of grammar and ‘defi
nitions’ of words are fuzzier and more qualitative than we had thought.

Al undoubtedly will expand dramatically during the next two decades, but its start has been 
sluggish, probably because of the subjectivity implicit in much scientific decision-making. “Every 
individual choice between competing theories depends on a mixture of objective and subjective fac
tors, or of shared and individual criteria” [Kuhn, 1977], These scientific decisions involve the 
weighing of competing advantages that are really not comparable or weighable. And even if one 
could develop a set of such weighting factors, we would find that they differ among individuals.

To identify these subjective weighting factors used in evidence evaluation, Kuhn [1977] asked 
“What are the characteristics of a good theory?” He identified five: accuracy, consistency, scope, 
simplicity, and fruitfulness. I add two others: utility and expediency. These are the seven main val
ues on which we base our judgments concerning confirmation or refutation of hypotheses.

Accuracy -  and especially quantitative accuracy -  is the king of scientific values. Accuracy is 
the closest of the seven to an objective and compelling criterion. Accuracy is the value that is most 
closely linked to explanatory ability and prediction; hypotheses must accord with observations. In
deed, 2500 years after Pythagoras’ fantasy of a mathematical description of nature, quantitative ac



curacy is now the standard of excellence in all sciences that are capable of pragmatically embracing 
it.

The value placed on quantitative accuracy extends beyond the judging of hypotheses; it can af
fect one’s choice of scientific field. Highly quantitative sciences are not intrinsically superior to 
nonquantitative sciences; individual tastes are not comparable.
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Simplicity is a value that is implicit to the scientist’s objective of identifying patterns, rules, 
and functional similarity among unique individual events. Yet all hypotheses seek order amid appar
ent complexity, so how does one apply the criterion of simplicity? William of Occam, a 14th- 
century English philosopher, developed ‘Occam's Razor’ as a method of cutting to the truth of a 
matter: “The simplest answer is the one most likely to be correct.” Also known as the maxim of 
parsimony, Occam’s Razor is an imperfect rule of thumb, but often it does select correctly among 
hypotheses that attempt to account for the same observations. The ‘simplest answer’ is not neces
sarily the one most easily comprehended. Often it is the one with the fewest assumptions, rationali
zations, and particularly special cases, or it is the most elegant idea.

Sherlock Holmes countered the emphasis on simplicity by saying, “When all 
other contingencies fail, whatever remains, however improbable, must be the truth”
[Doyle, 19171. Yet when scientists resort to hypothesizing the improbable, they usu
ally discover the actual truth later, among options that had been overlooked.

I still remember a sign that I saw on a restroom paper-towel dispenser twenty years ago: “Why 
use two when one will do?” The advice is in accord with Occam’s Razor: two or more hypotheses, 
each of which explains part of the observations, are less likely to be correct that one umbrella hy
pothesis that accounts for all of the data. Similarly, if an explanation becomes more and more com
plex as it is modified to account for incompatible observations, it becomes more suspect according 
to Occam’s Razor.

Complexity can result, however, from the interactions among two or more simple phenomena. 
For example, simple fractal geometric rules of repetition, when applied at different scales, can result 
in apparently complex patterns such as branching river systems and branching trees. Molecular bi
ologists have long puzzled over how simple amino acids made the evolutionary leap to complex 
DNA; now these researchers are exploring the possibility that a few simple rules may be responsi
ble [Gleick, 1992c].

The value on simplicity leads most scientists to be distrustful of coincidences. We recognize 
that they occur, but we suspect that most mask simple relationships.

Not everyone values simplicity similarly. Georg Ohm, a mathematics professor in 
Cologne, proposed in 1827 that electrical current in a wire is simply proportional to 
the potential difference between the wire ends. His colleagues considered this idea to 
be simplistic, and he was forced to resign his position. Eventually, his hypothesis was 
accepted and he resumed his academic career — this time as professor of experimental 
physics. Today Ohm’s Law, which says that potential difference equals the product of 
current and resistance (in ohms), is the most useful equation in electricity.

Consistency, an aspect of simplicity, is valued in all sciences. The hypothesis should be con
sistent with relevant concepts that have already been accepted, or else it will face the formidable hur
dle of either overthrowing the established wisdom or uneasily coexisting with incompatible hy
potheses. Such coexistence is rare; one example is the physics concept of complementarity,
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discussed later in this section. An explanation must also be self-consistent: for example, all hy
potheses are wrong, including this one.

In 320 B.C., Pytheas of Massilia sailed beyond the northernmost limits of the 
known world, to the land of Thule north of Britain. When he returned, he claimed that 
in Thule the midsummer sun did not set. His contemporaries called this observation 
preposterous.

Scope is another aspect of simplicity. A hypothesis that only accounts for the observations that 
inspired it has little value. In contrast, a hypothesis with a broad explanatory power inspires confi
dence through its ability to find order in formerly disparate types of observations. Scope is the anti
dote to Popper’s [1963] criticism that many similar confirmations can only marginally increase 
confidence in a hypothesis. A hypothesis with broad scope tends to be more amenable to diversified 
testing.

Progressiveness, or fruitfulness, is a seldom discussed value. Kuhn [1977] says simply that “ a 
theory should be fruitful of new research findings: It should, that is, disclose new phenomena or 
previously unnoted relationships among those already known.” Most hypotheses seek to disclose 
previously unnoted relationships. Yet some are dead ends, sparking no further research except the 
confirmation or refutation of that specific conjecture. In contrast, progressive hypotheses are valued 
because of their exciting implications for a variety of new research directions. Even if a fruitful idea 
is later determined to be wrong, it can constructively steer future research efforts. Oliver [1991] 
thinks that the best criterion for the value of a scientific publication is the “impacts of the paper on 
the flow of science,” the extent to which it changes what other scientists do.

“A great discovery is a fact whose appearance in science gives rise to shining 
ideas, whose light dispels many obscurities and shows us new paths.” [Bernard, 1865]

“A great discovery is not a terminus, but an avenue leading to regions hitherto 
unknown. We climb to the top of the peak and find that it reveals to us another higher 
than any we have yet seen, and so it goes on.” [Thomson, 1961]

Utility is not just a crucial value for applied scientists; it is a common concern of all scientists. 
We scan journals and focus almost exclusively on articles that may be of some utility to us. To re
sults that are not personally useful, we apply the most lethal hypothesis-evaluation technique: we 
ignore them. Similarly, the depth of our evaluation depends on the perceived relevance and utility of 
the hypothesis. When choosing between two hypotheses, we normally select the more pragmatic 
and useful one. For example, a useful empirical equation is often preferred over a rigorous theoreti
cal equation, if the latter includes several variables that we are unable to estimate.

Expediency is concern for what is immediately advantageous, and scientific expediency favors 
acceptance of promised solutions to worrisome problems. Scientific anxiety is created when a rul
ing theory is threatened, or indeed whenever a discipline is faced with an apparently irreconcilable 
conflict — perhaps between two incompatible hypotheses or perhaps between a strong hypothesis 
and a compelling dataset. Any evidence or ancillary explanation that promises remedy for the anxi
ety is likely to be received favorably — almost gratefully — because of the expediency factor. Valu



ing expediency can pose a pitfall, leading us beyond objective evidence evaluation and obscuring a 
broader question: how much do I want the idea to be confirmed, for other reasons?

* * *

Like all values, these seven are “effective guidance in the presence of conflict and equivoca
tion” [Kuhn, 1977], not rigid criteria that dictate an unambiguous conclusion. “The criteria of 
choice .. . function not as rules, which determine choice, but as values, which influence it.” Like all 
values, these differ among individuals. Thus the disagreements between scientists about a hypothe
sis do not imply that one has misinterpreted data or made an error. More likely, they employ differ
ent subjective weightings of conflicting evidence. In Chapter 6 ,1 argued that such disagreements are 
actually scientifically healthy and that they are an efficient means for advancing science; group ob
jectivity grows from individuals’ subjectivity.

Scientific values differ between fields, and they may evolve within a field. For example, engi
neers and applied scientists emphasize the value of social utility as a key evaluation criterion, and 
they differ with physicists concerning the relative value of fruitfulness and simplicity. Kuhn [1977] 
notes that quantitative accuracy has become an evaluation criterion for different sciences at different 
times: it was achievable and valued by astronomy many centuries ago; it reached mechanics three 
centuries ago, chemistry two centuries ago, and biology in this century.

Like all human values and unlike rules, the scientific values are implicitly imprecise and often 
contradictory. For example, more complex hypotheses are usually more accurate than simple ones, 
and hypotheses with a narrow scope tend to be more accurate than those with a broad scope. Even a 
single value such as accuracy may have contradictory implications: a hypothesis may be more accu
rate than a competing idea in one respect and less accurate in another, and the scientist must decide 
which is more diagnostic.

An extreme example of the conflict between values is the quantum mechanics 
concept of complementarity, which achieves utility and expediency by abandoning 
consistency. According to complementarity, no single theory can account for all as
pects of quantum mechanics. Concepts such as light as waves and light as particles are 
complementary. Similarly, the concepts of determining position precisely and deter
mining momentum precisely are complementary. Furthermore, the concept of deter
mining location in space-time is complementary to the concept of determinacy. In 
each case the pair of concepts is apparently contradictory; assuming one seems to ex
clude the other in an individual experiment. But full ‘explanation’ requires both con
cepts to be embraced, each in different situations. Complementary concepts only 
seem to be contradictory, because our perceptions are unable to reconcile the contra
dictions. The actual physical universe, independent of our observing process, has no 
such contradictions.

* * *
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Evaluation Aids
Scientific progress depends on proper appraisal of evidence, on successful rejection of incorrect 

hypotheses and adoption of correct (or at least useful) hypotheses. Yet the evaluation techniques 
employed most often are incredibly haphazard, leading to conclusions such as ‘sounds reasonable’ 
or ‘seems rather dubious’.

Evaluation of evidence is a scientific skill, perhaps the most important ability of a successful 
scientist. Like any skill, its techniques must be practiced deliberately and systematically, before one
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can trust its subconscious or casual use. For those who are mastering evidence evaluation, and even 
occasionally for experienced scientists, evaluation aids are useful. Here we describe three such 
techniques: model/observation tables, outlines, and concept maps.

* * *

A model/observation table succinctly compares several competing hypotheses. Usually various 
observations are relevant, with some favoring one idea while others favor another. Ideally, the scien
tist would examine each hypothesis systematically, reject those refuted by one or more evidence 
sets, and conclude that only a single hypothesis survives unscathed. In practice, we generally must 
weigh many inconclusive and partially contradictory data. The challenge to the scientist is to con
sider simultaneously this variety of evidence; a model/observation table is one way.

The model/observation table is a specialized and somewhat qualitative version of a truth table: 
list the models (or hypotheses) horizontally, list the relevant observations vertically, and then sym
bolically summarize the consistency of each observation with each model. Select symbols that are 
readily translatable into position along the continuum from strong confirmation to strong refutation:

+: strong confirmation
+: weak or ambiguous confirmation
0: not relevant, or no data available

(alternatively, use a blank if ‘0’ implies ‘no’ to you) 
weak or ambiguous refutation 

—: strong refutation.

Table 11. Example of a model/observation table.
Observation [A,'75] [B&C,'76] [D, '80] [D&E,'81]

x/y correlation + - + +
y=3.7x + - + +

no y/z correlation — + + +
w= 5.2 0 0 + +

x<w + + + +

For example, Table 11 summarizes the consistency of four published models with a group of 
five experimental findings. A quick scan of this table permits us to see that the leading hypotheses 
are those of D [1980] and of D & E [1981]; the latter is somewhat more successful but not deci
sively so. The hypothesis of A [1975], though consistent with many observations, is refuted by the 
observation of no y/z correlation. The hypothesis of B&C [1976] has mixed and unimpressive con
sistency with the observations. This quick overview allows identification of which observations are 
the most useful and consequently warrant the most careful attention. For example, the observation 
that x<w obviously is of no help in distinguishing among the possibilities.

The model/observation table is an easy way to focus one’s attention onto the most diagnostic 
relationships among observations and hypotheses. It counteracts the universal tendency toward let
ting one relationship dominate one’s thoughts. It encourages systematic evaluation of all relevant 
types of evidence. The table is not meant to be a simple tabulation of consistency scores, resulting
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in a bottom line success/failure score for each hypothesis. It cannot be that quantitatively objective, 
for the various observations are of unequal reliability and significance, in ways not readily reducible 
to a +/- symbol. Nevertheless, even experienced scientists often are surprised at how effectively this 
underused technique can draw their attention to the crux of a problem.

An outline is a familiar technique that is readily adapted for evidence evaluation. An outline 
works effectively for analysis of one or two major hypotheses. For multiple hypotheses, it has con
siderable redundancy because different hypotheses are affected by the same arguments. In contrast, 
the model/observation table is more compact and is concentrated on identifying differences among 
hypotheses. Like the model/observation table, an outline permits both arguments for and arguments 
against a hypothesis. It also permits nested hypotheses: often the premise for one conclusion has its 
own premises, strengths, and weaknesses. An evidence-evaluation outline might look like the fol
lowing:

I. Hypothesis
A) argument for hypothesis

1) primary confirmation of A
2) secondary confirmation of A
3) ambiguity

B) strong argument for hypothesis
1) primary confirmation of B
2) secondary confirmation of B
3) But evidence against B

a) confirmation of #3
b) But alternative explanation for #3

A less structured alternative to outlines and model/observation tables is the concept map, a flow
chart that summarizes the known (or inferred) relationships among a suite of concepts. It is adapt
able as a learning aid or as a method of evidence evaluation; at present it is used primarily as the 
former. Figure 23 illustrates the technique with a high-school-level concept map of sports [Ar- 
naudinetal., 1984].

Concept mapping is based on a learning theory called cognitive association [Ausubel et al., 
1978]. Cognitive association goes beyond the fixed patterns of simple memorization; like science, it 
evolves to encompass new knowledge. It employs the synergy of linking a new idea to existing 
ones: the new concept is easier to remember, and it subtly changes one’s perceptions of previously 
known ones. Additional ideas are subsumed into the existing conceptual framework and, like analo
gies, gain meaning from familiarity of patterns.

Based on teaching concept mapping to several hundred students, Arnaudin et al. [1984] reach 
the following conclusions about this technique:
* it is an effective study technique.
* it improves one’s ability to comprehend complex phenomena, by dissecting them into graspable 
components and links.
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* it helps one to identify gaps in knowledge and understanding, thereby lending a goal-oriented 
aspect to further learning.

A scientific publication can be concept mapped with the following seven-step procedure, 
adapted from one developed by J. D. Novak [Amaudin et al., 1984]:
1) read the publication, highlighting or underlining key ‘concepts’ as you go. ‘Concepts’ can be 
hypotheses, assumptions, equations, or experiments, but not relationships.
2) skim back through the publication, systematically highlighting previously overlooked concepts 
that seem relevant to the overall context.
3) transfer all of the highlighted concepts to a list. Try to list the most general ones near the top and 
the less inclusive, more specific ones near the bottom. Sometimes an entire suite of related concepts 
can be encompassed in a larger-scale box representing a packaged general theory.
4) transfer the list onto a concept ‘map’, where broad categories are placed near the top of the map 
and successively more restrictive categories are placed successively lower on the map. Place similar 
concepts or categories on the same level, grouping related ones. Draw lines linking concepts on dif
ferent levels. Label each line with a simple linking word that identifies the relationship between the 
pair of ideas.
5) ‘branch out’, adding concepts and links that were not in the publication but are suggested by ex
amination of the map.
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6) create ‘cross-links’, identifying connections between concepts that may be more distant than the 
simple downward branching of the overall concept map. This cross-linking procedure may even 
suggest a radical redrawing of the map, thereby simplifying its structure.
7) highlight, or weight, key concepts and links with bold lines or boxes, and use dashed lines and 
question marks for suspect portions.

Am I insulting the reader by 
suggesting that a high-school or 
college learning technique such as 
in Figure 23 is also useful for the 
professional scientist? Long be
fore the term concept mapping was 
invented, a very similar flowchart 
technique was used by scientists 
and other professionals, for the 
identical purpose of visualizing the 
relationships among complex phe
nomena. For example, Figure 24 
[Bronowski, 1973] is a page from 
the notes of John von Neumann, 
one of the most outstanding 
mathematicians of the 20th cen
tury; apparently his photographic 
memory did not preclude the use
fulness of conceptual flowcharts. 
Figures 4 and 22 are additional 
examples. For the scientist who is 
analyzing and evaluating a scien
tific article, or who is trying to 
work through a complex idea, con
cept mapping can be a visualiza
tion and evaluation aid.

* * *

Model/observation tables, out
lines, and concept maps are quite 
different in format but similar in 
function. Each provides a visual 
structure that attempts to assure 
that all relevant information and relationships are considered, that focuses attention on pivotal con
cerns, and that identifies strengths and weaknesses. Popular memory aids such as underlining, note- 
taking, and paraphrasing do not fulfill these objectives as reliably.

The scientist who attempts to visualize the entire pattern of evidence risks neglecting a crucial 
relationship. Writing it in a systematized form may reveal that gap.

Because model/observation tables, outlines, and concept maps compel the scientist to organize 
knowledge, they are a wonderful first step toward writing up scientific results for publication.

* * *



1 5 6

Confirmation and Refutation of Hypotheses
The evaluation aids can organize a set of evidence effectively. The crux of evidence evaluation, 

however, is scientific judgment concerning the implications of datasets for hypotheses. Evaluation 
aids, like scientific progress, constantly demand this judgment: do the data confirm or refute the hy
pothesis?

Confirmation and verification are nearly synonymous terms, indicating an increase in confi
dence that a hypothesis is correct. Unfortunately, the terms confirmation and verification are widely 
misused as simple true/false discriminators, like prove and disprove. Rarely are experiments so di
agnostic as to prove or disprove a hypothesis. More frequently, evidence yields a qualitative confir
mation or its converse, refutation.

It is often said (e.g., by Einstein, Popper, and many others) that no quantity of tests confirming 
a hypothesis is sufficient to prove that hypothesis, but only one test that refutes the hypothesis is 
sufficient to reject that hypothesis. This asymmetry is implicit to deductive logic. Two philosophical 
schools -  justificationism and falsificationism -  begin with this premise and end with very differ
ent proposals for how science ‘should’ treat confirmation and refutation of hypotheses.

* * *

The philosophical school called justificationism emphasizes a confirmation approach to hy
pothesis testing, as advocated by proponents such as Rudolf Camap. Any successful prediction of 
an hypothesis constitutes a confirmation -  perhaps weak or perhaps strong. Each confirmation 
builds confidence. We should, of course, seek enough observations to escape the fallacy of hasty 
generalization.

Carnap [1966] recommended increasing the efficiency or information value of hypothesis test
ing, by making each experiment as different as possible from previous hypothesis tests. For exam
ple, he said that one can test the hypothesis “all metals are good conductors of electricity” much 
more effectively by testing many metals under varied conditions than by testing different samples of 
the same metal under rather similar conditions. This approach is analogous to the statistical tech
nique of using a representative sample rather than a biased one, and its goal is the same: to assure 
that the properties exhibited by the sample are a reliable guide to behavior of the entire population.

Carnap seems to take this analogy seriously, for he argued that it is theoretically possible to ex
press confirmation quantitatively, by applying a ‘logical probability’ to each of a suite of hypothe
sis tests and calculating a single ‘degree of confirmation’ that indicates the probability that a hy
pothesis is correct. Jeffrey [1985] proposed adoption of ‘probabilistic deduction’, the quantitative 
assessment of inductive arguments, based on calculating the odds that a hypothesis is correct both 
before and after considering a dataset.

Justificationism and probabilistic deduction have been abandoned by philosophers of science 
and ignored by scientists, for several reasons. The decision on how many observations are needed 
is, unfortunately, a subjective one dependent on the situation. The quest for heterogeneous experi
mental conditions is worthwhile, but it is subjective and theory-dependent. Even if we could confine 
all of our hypothesis tests to statistical ones with representative samples, we cannot know that the 
tests are representative of all possibly relevant ones. The confirming observations are fallible and 
theory-dependent; we look mainly for what the hypothesis tells us is relevant. Furthermore, we have 
no way of knowing whether a different hypothesis might be proposed that explains all of the results 
just as well. Thus we can infer from a large number of confirmations that a hypothesis is probably 
correct. We cannot, however, quantify this probability or even know that it is greater than 50%.

*  *  *
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Karl Popper focused on these weaknesses of confirmation and concluded that additional ‘con
firmations’ do not necessarily and substantially increase confidence in a hypothesis. In reaction, he 
created a philosophy for hypothesis testing known as falsificationism. Starting from the premise 
that the only compelling experiment is one that disproves a hypothesis, he argued that the task of 
science should be falsification, the rejection of false theories.

First proposed in 1920 and eloquently advocated by Popper, falsificationism had a substantial 
following among philosophers of science for several decades, and many aspects of it survive. Yet 
falsifiability has been virtually ignored by scientists. Popper’s vision of science is generation of a 
myriad of ideas followed by ruthless falsification and rejection of the majority. This vision does not 
correspond with the experience of scientists, but of course our subjective experience could be mis
leading.

Most scientists do agree that testability is a fundamental criterion for deciding which hypothe
ses are worthy of attention, but none agree with Popper’s assessment that falsifiability is supreme, 
nor that minor supporting roles are played by confirmation, discovery, insight, and subjective con
text-dependent evaluation. “An idea may be neither demonstrably true nor false, and yet be useful, 
interesting, and good exercise” [Trotter, 1941]. A concept may be embraced even without falsifi
ability, if it is capable of finding elegance of pattern among anomalous observations. Virtually the 
only mention of falsifiability that I have seen in my field (geology/geophysics) was Ken Hsii’s 
claim that Darwinian evolution is nonscientific because it is not falsifiable. Is the scientific method 
nonscientific, because its assumption of causality is neither provable nor disprovable?

Falsifiability is a tool, not a rule. The logical flaw in falsificationism is its deductive conclusion 
that a single inconsistent observation disproves a hypothesis. Scientists do not agree to follow this 
simple path for evaluating hypotheses, because the source of the inconsistency may be problems in 
the data, assumptions, or experimental conditions. Kuhn [1970], several other philosophers of sci
ence, and Wilson [1952] have cited numerous examples of theories surviving in spite of ‘falsifying 
observations’:

Newton’s laws exhibited incredible predictive value. Although they failed to ac
count completely for planetary orbits, they were not rejected.

The chemical ‘law’ of Dulong and Petit is that the specific heat of each solid ele
ment multiplied by its atomic weight is approximately 2 calories per degree. This em
pirical relationship was used for many years, in spite of the early recognition that it 
did not work for either silicon or carbon. The exceptions were neither ignored nor 
used to reject the hypothesis. Ultimately they helped to guide establishment of a law 
more founded in theory. From the perspective of that new law, Dulong and Petit’s law 
was a special limiting case.

Copernicus’ 1543 proposal that the earth revolves around the sun initially con
flicted with many observations. The ‘tower argument’ was particularly damning: if 
the earth really is spinning, then an object dropped from a tower should land west of 
the tower, not — as observed — at its foot. Fortunately the theory was not discarded.

* * *

Power of Evidence
The successful middle ground between avid justificationism and falsificationism is a concern 

with the power of evidence. Information is proportional to astonishment, or, in terms of informa
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tion theory, the value of a piece of information is proportional to the improbability of that informa
tion.

The most powerful and therefore most useful experiment depends on the situation: it may be the 
experiment most likely to confirm, or to refute, a hypothesis. The fate of most novel, sweeping hy
potheses is a quick death, so their refutation has little impact on science. Confirmation of such a 
hypothesis, on the other hand, does have substantial information value. Similarly, many hypotheses 
are only incremental modifications of previous theories and so their confirmations are expected to 
be pro forma. Refutation of such a hypothesis may force us to rethink and revise our core assump
tions. Well established theories are not normally tested directly, but when such a theory is found to 
be irreconcilable with an apparently rigorous experiment, this powerful and informative anomaly 
fosters intensive analysis and experimentation.

Ronald Giere [e.g., 1983] is one of the leading proponents of the ‘testing paradigm’, more 
popularly known as the diagnostic experiment. A diagnostic experiment avoids the ambiguity of 
weak true/false tests such as those of justificationism and falsificationism, and it avoids qualitative 
value judgments. The diagnostic test is the key test, the scalpel that cuts to the heart of a hypothesis 
and yields a result of ‘true’ if the prediction is confirmed, and ‘false’ if the prediction is refuted.

For normal science, the diagnostic experiment is generally a myth — an ideal to be sought but 
seldom achieved. The diagnostic experiment is, nevertheless, a worthy goal, for it is far better to fall 
short of the perfectly diagnostic experiment than to fire random volleys of experiments in the gen
eral direction of an hypothesis.

Jonas Salk [1990] has the ideal of a diagnostic experiment in mind when he says: 
“Solutions come through evolution. It comes from asking the right question. The 
solution preexists. It is the question that we have to discover.”

Clausewitz [1830] gives analogous advice to military planners: “A certain center 
of gravity, a center of power and movement, will form itself, on which everything de
pends. . . We may, therefore, establish it as a principle, that if we can conquer all our 
enemies by conquering one of them, the defeat of that one must be the aim of the 
War, because in that one we hit the common center of gravity of the whole War.”

* * *

The Raven’s Paradox [e.g., Lambert and Brittan, 1970; Mannoia, 1980] is an inductive prob
lem that provides a surprising and useful perspective on the power of evidence. Suppose we wish to 
test this hypothesis: ‘All ravens are black.’ Symbolically, we can express this hypothesis as R=>B 
(Raven implies Black) or ‘R, .\B ’ (Raven, therefore Black). Any example of a raven that is black 
provides confirmatory evidence for the validity of the hypothesis. Even one instance of a raven that 
is not black proves that the hypothesis is wrong.

The paradox arises when we consider the implications of the following rule of logic: each 
statement has logically equivalent statements (Chapter 4), and if a statement is true, its logically 
equivalent statement must also be true. A logical equivalent of the hypothesis ‘All ravens are black’ 
is ‘All non-black things are not ravens.’ Caution (or practice) is needed to be certain that one is cor
rectly stating the logical equivalent. ‘All non-ravens are not black’ superficially sounds equivalent 
to ‘All ravens are black,’ but it is not.

The Raven’s Paradox is this: anything that is both not black and not a raven helps confirm the 
statement that all ravens are black. Without ever seeing a raven, we can gather massive amounts of 
evidence that all ravens are black.
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The Raven’s Paradox has been the subject of much discussion among philosophers of science. 
Some of this discussion has concluded that seemingly absurd types of evidence (not-Black + not- 
Raven confirms R=>B) are nevertheless valid, but most arguments have centered on the intrinsic 
weakness of the confirmation process. In contrast, I see the tests of the Raven’s Paradox, like all 
scientific evidence, in terms of information value. Observations of non-ravens do help confirm the 
hypothesis that ‘All ravens are black,’ but the information value or evidential power of each obser
vation of a non-raven is miniscule. Even thousands of such observations are less useful than a sin
gle observation of a raven’s color. Were this not so, we could use the concept of logical equivalence 
to ‘confirm’ more outrageous hypotheses such as ‘All dragons are fierce.’

Like the example in Chapter 3 of the ‘cause’ of Archimedes’ death, many inferences form a 
pattern: X 1=>X2 =>X3 =>X4. All elements of the pattern are essential; all elements are not of equal 
interest. Familiar relationships warrant only peripheral mention. The pattern link of greatest scien
tific interest is the link that has the maximum information value: the most unusual segment of the 
pattern.

* * *

Scientific research is intimately concerned with the power of evidence. Inefficient scientists are 
transient scientists. The demand for efficiency requires that each researcher seek out the most pow
erful types of evidence, not the most readily available data. In the case of the Raven’s Paradox, this 
emphasis on experimental power means first that only ravens will be examined. Furthermore, a sin
gle instance of a non-black raven is much more important than many instances of black ravens, so 
the efficient scientist might design an experiment to optimize the chance of finding a non-black ra
ven. For example, the hypothesis ‘All dogs have hair’ could be tested by visiting several nearby 
kennels, but a single visit to a Mexican kennel, after some background research, might reveal several 
examples of Mexican hairless dogs.

To the logician, a single non-black raven disproves ‘All ravens are black’, and a single Mexican 
hairless disproves ‘All dogs have hair.’ The scientist accepts this deductive conclusion but also 
considers the total amount of information value. If exceptions to the hypothesis are rare, then the 
scientist may still consider the hypothesis to be useful and may modify it: ‘99.9% of ravens are 
black and 0.1% have non-black stains on some feathers,’ and ‘All dogs except Mexican hairlesses 
have hair.’

* * *

Hypothesis Modification
The distinction between scientists’ and logicians’ approaches does not, of course, mean that the 

scientist is illogical. Confirmation and refutation of hypotheses are essential to both groups. They 
usually do not, however, lead simply to approval or discarding of scientific hypotheses. In part, this 
outcome is progressive: the hypothesis as originally stated may be discarded, but the scientific 
companion of refutation is modification. In many cases, simple acceptance or rejection is not possi
ble, because hypotheses are usually imperfect.

Confirmation or falsification of a hypothesis, like the ‘diagnostic experiment’, can be difficult 
to achieve, for several reasons:
* Many hypotheses have inherent ambiguities that prevent simple confirmation or falsification. 
An experiment may favor one interpretation of a hypothesis, but the door is left open for other in
terpretations.
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* Most experiments, in spite of careful experimental design, have at least some inherent ambigu
ity.
* Most hypotheses and their tests have associated assumptions and concepts. Refuting evidence 
indicates inadequacy of either the main hypothesis or corollaries, and one may not know confi
dently which to reject. Typically, the ‘hard core’ of a theory is relatively invulnerable to attack, and 
we refute or modify the ‘protective belt’ of ancillary hypotheses, assumptions, and conditions 
[Lakatos, 1970].
* Instead of directly testing a hypothesis, we usually test deductive or inductive predictions de
rived from the hypothesis. This prediction may be wrong rather than the hypothesis.

Proof or disproof of a hypothesis is often impossible; rarely, search for proof or disproof can 
be undesirable. Frequently the scientific community loses interest in endless tests of a hypothesis 
that is already judged to be quite successful; they change the focus to characterization of the phe
nomenon. Then inductive predictions are the target of experiments, because little ambiguity remains 
about whether one is testing the hypothesis or its inferred implications. Symbolically, if h is a hy
pothesis, pi is an inductive prediction, andp^ is a deductive prediction, then some possible hypothe
sis tests are:

h, directly testable;
h=>pd,Pd testable so h testable;
h=>pi pi testable but h is not directly tested.

A school of thought known as conventionalism recognizes the networked nature of most hy
potheses and the associated ambiguity of most confirmation/refutation evidence, as well as the se
ductiveness of modifying an otherwise successful hypothesis to account for inconsistent observa
tions. Conventionalists conclude that subjective judgment is required in evaluating hypotheses, and 
they suggest that values such as simplicity and scope are used in making these judgments.

If the conventionalists are correct about how science works, then the subjectivity of evidence 
evaluation is a major obstacle to our quest for reliable knowledge. The weakness of conventionalism 
is its fluidity. Two scientists can examine the same evidence and embrace opposing views, because 
of different criteria for evidence evaluation. Most hypotheses are wrong, but demonstration of their 
errors leads more often to a modification of the hypothesis than to its rejection. This band-aid ap
proach, though powerful and often successful, can lead the researcher into evaluating how reason
able each slight modification is, without detecting how cumbersome and unreasonable the compos
ite hypothesis has become. Unless one holds tightly to the criterion of simplicity, there is the danger 
that any wrong hypothesis will stay alive by cancerously becoming more and more bizarre and con
voluted to account for each successive bit of inconsistent data.

When Galileo aimed his telescope at the moon and described mountains and cra
ters, his observations conflicted with Aristotelian cosmology, which claimed that all 
celestial objects are perfect spheres. A defender of the old view had this ad hoc ex
planation: an invisible, undetectable substance fills the craters and extends to the top 
of the mountains.

Imre Lakatos [1970] attempted to put a brake on this unconstrained ad hoc hypothesis modifi
cation by imposing a standard: if a hypothesis is modified to account for a conflicting observation, 
then it must not only account for all previous results just as well as did the original hypothesis, but 
also make at least one new and successful prediction.
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Lakatos’ goal is worthwhile: steering the evolution of hypotheses toward those that have greater 
explanatory power. His method is feasible, if a bit awkward. Usually the hypothesis revision occurs 
after a project has obtained its research results, so the actual test of the new prediction is deferred 
for a later paper by the same or different authors. Lakatos’ criterion is virtually unknown and un
used among scientists, however. Its problem is the same as that of falsificationism: it is an outside 
judgment of what scientists should do (according to the proponent), rather than a description of 
what they actually do, and we scientists are not persuaded of the need to change. We can, however, 
be alert for ad hoc hypotheses, and we do expect a modified hypothesis to explain more than its 
predecessor.

I and many other scientists are close to this conventionalist view. We are, perhaps, even closer to 
Thomas Kuhn’s perspective, described in the next section.

* * *

Paradigm and Scientific Revolution
Thomas Kuhn’s 1963 (and 1970) book The Structure of Scientific Revolutions overthrew our 

perception of scientific change. We had imagined scientific change as a gradual process, involving 
incremental advancement in techniques, evidence, and hypotheses, which resulted in a steady in
crease in scientific knowledge.

Our textbooks reinforced this view by portraying the history of scientific thought from our pre
sent perspective. Early ideas are judged to be important and relevant only to the extent that they 
contribute to the continuous evolution toward the current ideas. Textbooks express the outcomes of 
scientific revolutions as discoveries of new ideas; they avoid confusing this picture with discussion 
of the process of scientific upheavals and of the ideas that have been superseded. Because most sci
ence students read textbooks rather than scientific articles prior to initiating their own graduate re
search, their perception of scientific change is fossilized even before they have a chance to contrib
ute to that change.

Kuhn said that we must consider scientific results in the context of the sociological factors and 
scientific perspectives of their time. He saw the advance of science more as a staircase than a ramp. 
Within each scientific field, long periods of stability and consolidation are followed by short peri
ods of major conceptual revision, or paradigm change. I think that this view of science is progres
sive: not only is it a more realistic perspective, but also it offers insights into which scientific meth
ods are most appropriate at different points in the evolution of a science.

A paradigm is a suite of “universally recognized scientific achievements that for a time pro
vide model problems and solutions to a community of practitioners” [Kuhn, 1970], Kuhn realized 
that this definition is vague and sloppy. To me, a paradigm is a coherent suite of theories or con
cepts that guide interpretations, choice of relevant experiments, and development of additional theo
ries in a field or discipline. Physics paradigms, for example, included Newtonian dynamics, general 
relativity, and quantum mechanics.

We can understand paradigms better by considering a field in its pre-paradigm state. Data col
lection is unfocused, a fishing expedition rather than a hunter’s selection of prey. Facts are plenti
ful, but the overall patterns and organizing principles are unclear. Several schools of thought com
pete, none agreeing on what phenomena warrant study and none providing broad-scope hypotheses. 
Research is overwhelmed by the apparent complexity of the subject.

*  *  *
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When a paradigm guides a scientific field, nearly all research is considered in relation to that 
paradigm. Research is focused; the paradigm indicates which research topics are appropriate and 
worthwhile. Both theoretical and experimental studies are largely confined to three foci:
1) collecting data to test predictions of the paradigm;
2) pursuing aspects that may elucidate seminal phenomena. These investigations often require de
velopment of more sophisticated, more accurate equipment; and
3) attempts to ‘articulate’ the paradigm, including efforts to extend it and account for other phe
nomena, and attempts to resolve apparent problems or ambiguities.

Paradigm change is rare; working under a guiding paradigm is the norm. These ‘mopping-up 
operations’ are exciting because they promise goal-oriented, steady progress rather than a frustrat
ing floundering. Often the results of experiments are readily predictable, but the work is still chal
lenging. Ingenuity and insight are needed to determine how to conduct the experiment most suc
cessfully and elegantly.

* * *

Researchers ignore most data that appear to be unrelated to or unexplained by the paradigm. 
Moreover, we tend to ignore evidence that conflicts with the paradigm. No paradigm explains all 
observations, because no paradigm provides ultimate and final truth. Yet the immense explanatory 
power of the paradigm leads scientists to think of the contradictory data either as mistaken or as 
explicable by future elaborations of the paradigm. In either case, the results can be ignored for the 
moment -  or so we tell ourselves, if we even notice the contradictions. Publication of evidence that 
seems to conflict with the paradigm is hazardous, for the authors risk being branded as nonbelievers 
or outsiders.

An established paradigm is insulated from overthrow, by both the tendency to ignore discrepant 
facts and by the habit of refining hypotheses and paradigms [Kuhn, 1970]. Even when many 
anomalies are found, we do not discard the paradigm, for rejection leaves a vacuum. Rejection im
plies that all the predictive successes of the paradigm were coincidental. Only when a new potential 
paradigm appears will abandonment of the old be considered. Scientific inertia is conservative: a 
new paradigm is accepted only if it is demonstrably superior — not merely equal in success -  to the 
old paradigm.

Timing of the new paradigm’s appearance is critical. It must be considered when anxiety over 
anomalies in the old paradigm is high. Without the leverage of anomaly anxiety, attempts to chal
lenge the paradigm’s authority are likely to fail (e.g., Plato vs. democracy, Aristotle vs. slavery, 
Descartes vs. experimental science, and Einstein vs. quantum mechanics). Introduction of a new 
theory too early will encounter complacency with the old one. Indeed, sometimes the new paradigm 
is a reintroduction and slight refinement of a previously proposed idea, which had failed to gain 
momentum.

Discovery “commences with the awareness of anomaly (i.e., with the recognition 
that nature has somehow violated the paradigm-induced expectations), continues with 
extended exploration of the area of anomaly, [and] concludes when the paradigm has 
been adjusted so that the anomalous has become the expected.” [Kuhn, 1970]

* * *

Paradigm change begins with a single anomaly that cannot be ignored. Anomaly creates a sense 
of trauma or crisis, as we saw in the card-flashing experiment [Bruner and Postman, 1949] when
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the subject said, “I’m not even sure now what a spade looks like. My God!” The sense of crisis 
and anxiety grows with recognition of the many smaller anomalies that had been overlooked. The 
entire foundation of the field seems unstable, and doubts arise about the value of familiar paradigm- 
inspired experiments.

Anxiety creates a willingness, even a need, to consider alternative paradigms. The field splits 
into two camps: that which suggests competing piecemeal solutions to the various anomalies, 
clinging to the old paradigm, and that which considers alternative paradigms. This second group of 
investigators refuses to accept rationalizations of the major anomaly. These scientists explore the 
anomaly more deeply and attempt to characterize it, simultaneously looking for invalid assumptions.

“That is in the end the only kind of courage that is required of us: the courage to 
face the strangest, most unusual, most inexplicable experiences that can meet u s .”
[Rilke, 1875-19261

Reconciliation of the problems seldom comes rapidly. The period of paradigm crisis can last for 
years or decades, and anxiety may become discouragement. Perhaps the new paradigm will require 
new technology and its attendant new insights. Almost always, the new paradigm is discovered by 
someone young or new to the field, someone less hampered than most by perspectives and as
sumptions of the old paradigm. The new paradigm may be a radical modification of the old para
digm. The old paradigm may be seen as a special limiting case of the new one, as was the case for 
Newtonian dynamics when seen from the perspective of Einstein’s dynamics.

Paradigm change may be led by a few people, but usually it involves many people working over 
a period of several years. Within the subgroup that had been bothered by the anomalies, a consen
sus of both experimenters and theoreticians emerges, concerning the advantages of a new paradigm 
over the old one. Simultaneous independent discoveries are likely. Now is the most exciting time, 
with the (mostly young) proponents of the new paradigm exploring the range of its applications. 
The pace of change is extremely fast: only those who are attending conferences, receiving preprints, 
and learning the new jargon are fully aware of these changes.

Polarization of old and new schools continues well beyond the acceptance by the majority of the 
new paradigm. The old and new paradigms identify different subjects as appropriate for research 
and emphasize controlling different variables. Communication between the two schools breaks 
down. Neither paradigm accounts for every observation; thus each group can point to anomalies or 
weaknesses in the other paradigm. But with time the demand of the new majority is fulfilled: “con
vert or be ignored” [Kuhn, 1970].

* * *

These interpretations of the pattern of change in science are those of Thomas Kuhn; they are 
not accepted universally. Stephen Toulmin [1967] suggested that scientific change is more evolu
tionary than Kuhn has pictured it. Toulmin used the analogy of biological evolution, emphasizing 
that competing theories abound, and the more successful ones eventually triumph. The analogy was 
unfortunate, for most paleontologists now see evolution as dominantly episodic or revolutionary -  a 
punctuated equilibrium [Eldredge and Gould, 1972].

Scientific change is punctuated illumination. For both scientific and biological evolution, rela
tively stable periods alternate with periods of dynamic change, but no one suggests that the stabler 
times are stagnant. Mannoia [1980] summarized the philosophical trend of the seventies as moving 
away from the Kuhn/Toulmin perspectives, toward an ‘historical realism’, but I think that the jury is 
still out.
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Few books in philosophy of science have attracted the interest of scientists; Kuhn’s [1970] 
book is an exception. His vision of scientific change — continuous incremental science, plus rare 
revolution -  is fascinating to those in fields undergoing this punctuated illumination. The changes 
associated with the 1968 geological paradigm of plate tectonics appear to fit his model, as does the 
recent paradigm of chaos, described by Gleick [1987] as a “revolution in physical sciences”. Suc
cessful prediction always confirms a model more persuasively than does detection of apparent pat
tern within existing data.

* * *

“Yet when we see how shaky were the ostensible foundations on which Einstein 
built his theory [of general relativityl, we can only marvel at the intuition that guided 
him to his masterpiece. Such intuition is the essence of genius. Were not the founda
tions of Newton’s theory also shaky? And does this lessen his achievement? And did 
not Maxwell build on a wild mechanical model that he himself found unbelievable?
By a sort of divination genius knows from the start in a nebulous way the goal toward 
which it must strive. In the painful journey through uncharted country it bolsters its 
confidence by plausible arguments that serve a Freudian rather than a logical pur
pose. These arguments do not have to be sound so long as they serve the irrational, 
clairvoyant, subconscious drive that is really in command. Indeed, we should not ex
pect them to be sound in the sterile logical sense, since a man creating a scientific 
revolution has to build on the very ideas that he is in the process of replacing.” 
[Hoffmann, 1972]

* * *

Pitfalls of Evidence Evaluation
Scientific progress under a guiding paradigm is exhilarating. Paradigm-driven science can, 

however, undermine the objectivity with which we evaluate hypotheses and evidence.

Hidden Influence of Prior Theory on Evidence Evaluation
Data evaluation should consist of three separate steps: (1) objective appraisal of the observa

tions, (2) confirmation or refutation of a hypothesis by these data, and (3) overall evaluation of a 
hypothesis in the context of these and other observations. All too often, we allow our prior opinion 
of a hypothesis to influence the evaluation of new evidence (steps #1 & 2), without being aware of 
the bias. This hidden influence is a pitfall, whereas it is completely valid to weight prior evidence 
more than the new data (step #3). In both cases, the impact of evidence depends on the perceived 
strength of the hypothesis it affects. Evidence sufficient to uproot a weakly established hypothesis 
may fail to dislodge a well established one.

We value simplicity, and it is much simpler and more comfortable if new evidence confirms 
previous beliefs than if it creates conflict. Ideally, one (and only one) hypothesis is consistent with 
all observations. To obtain this ideal, we may subconsciously reject evidence that conflicts with the 
hypothesis, while overemphasizing evidence that supports it. We must beware this subconscious 
theory-based rejection of data.

Children and adults use similar strategies to cope with evidence that is inconsistent with their 
prior beliefs [Kuhn et al., 1988]:
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* consciously recognize the discrepancy and conclude that either the hypothesis or the evidence is 
wrong;
* consciously recognize the discrepancy, then deliberately revise the hypothesis to make it more 
compatible with the evidence;
* reduce the inconsistency by biased interpretation of the evidence;
* subconsciously revise the hypothesis to make it more compatible with the evidence.

All four strategies also are employed by scientists, but only the first two are valid. The first three 
have been discussed already and are also familiar in daily experience. Subconscious revision of a 
hypothesis, in contrast, is a surprising pitfall. Kuhn et al. [1988] found that subjects usually modi
fied the hypothesis before consciously recognizing the relationship of the evidence to the hypothe
sis. They seldom realized that they were changing the hypothesis, so they failed to notice when their 
theory modification was implausible and created more problems than it solved. Fortunately for sci
ence but unfortunately for the scientist who succumbs to the pitfall of subconscious hypothesis 
modification, someone usually detects the error.

Kuhn et al. [1988] found that hypotheses of causal relationships between variables are particu
larly resistant to overthrow by new data. The new data must overcome the expectation of a correla
tion; even if the data set as a whole does so, nonrepresentative subsets may still appear to confirm 
the correlation. Furthermore, the original proposal of a causal relationship probably also included a 
plausible explanation. To discard the correlation is also to reject this explanation, but the new data 
do not even address that argument directly.

The hidden influence of accepted hypotheses on evidence evaluation harms scientists as well as 
science. A scientist’s beliefs may fossilize, leading to gradual decrease in creative output (though 
not in productivity) throughout a professional career.

As we saw in the previous section on paradigms, hidden influence of prior theory has other 
manifestations: (I) ignoring data inconsistent with the dominant paradigm; (2) persistence of 
theories in spite o f disproof by data; and (3) failure to test long-held theories.

* * *

Incremental Hypotheses and Discoveries
Because the dominant paradigm molds one’s concepts, it largely controls one’s expectations. 

Hypotheses and discoveries, therefore, tend to be incremental changes and elaborations of the ex
isting theories, rather than revolutionary new perspectives. Mannoia [1980] says that “the answers 
one obtains are shaped by the questions one asks.”

* * *

‘Fight or Flight’ Reaction to New Ideas
The expression ‘fight or flight’ describes the instinctive reaction of many animal species to 

anything new and therefore potentially threatening. Beveridge [1955] pointed out that ‘fight or 
flight’ is also a scientific pitfall. When presented with new ideas, some individuals fight: the theory 
is immediately rejected, and they only listen to pick out flaws. Their biased attitude should not be 
confused with the scientifically healthy demand, ‘show me’, suspending judgment until the evi
dence is heard. Other scientists flee, ignoring any new idea until more conclusive, confirming evi
dence can be provided. A scientist who rejects relevant evidence, on the grounds that it leaves ques
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tions unanswered or it fails to deliver a complete explanation, is confusing the responsibilities of 
evidence and hypothesis.

“The mind likes a strange idea as little as the body likes a strange protein, and re
sists it with a similar energy. . . If we watch ourselves honestly we shall often find that 
we have begun to argue against a new idea even before it has been completely 
stated.” [Trotter, 19411

“In the 1790’s, philosophers and scientists were aware of many allegations of 
stones falling from the sky, but the most eminent scientists were skeptical. The first 
great advance came in 1794, when a German lawyer and physicist, E.F.F. Chladni, 
published a study of some alleged meteorites. . . Chladni’s ideas were widely rejected, 
not because they were ill conceived, for he had been able to collect good evidence, 
but because his contemporaries simply were loathe to accept the idea that extraterres
trial stones could fall from the sky.” [Hartmann, 19831

* * *

Confusing the Package and Product
Scientists are not immune to the quality of the sales pitch for a set of evidence. Unless the 

reader is put off by blatant hype, the sales pitch exerts a subconscious influence on one’s evaluation 
of the evidence. For example, consider the statement “All hypotheses are wrong, but some are more 
wrong than others.” Catchy expressions tend to go through one’s head and thereby gain strength, 
while qualifications and supporting information are forgotten. In this one a defeatist mood is en
forced, rather than the optimistic prospect of growth and evolution of changing ideas. To separate 
the objective evidence from the effects of presentation style, paraphrasing arguments can help.

* * *

Pitfall Examples
For over 2000 years, from the ancient Egyptian, Greek, Roman, Chinese, and 

Japanese cultures to the 19th century, there persisted the myth of the oxen-born bees.
The myth, ‘confirmed’ by observation, explained that decaying carcasses of oxen 
transformed into a swarm of honeybees.

The birth that people witnessed so often was not of honeybees but rather of the 
fly Eristalis tenax, which looks similar. The flies do not generate spontaneously; they 
hatch from eggs laid in the carcasses. In all that time, though people had seen devel
oping honeybees in honeycombs, no one captured the oxen-born bees and attempted 
to raise them for honey, nor did they compare them with honeybees, nor did they ob
serve the egg laying or the eggs [Teale, 19591.
Pitfalls: failure to test long-held theories;

missing the unexpected;
missing important ‘background’ characteristics.

In 1887, physicist Albert Michelson and chemist E.W. Morley carried out an ex
periment to detect the earth’s motion through the ether. They measured the differ
ence in the travel times of light moving at different angles to the earth’s presumed di
rection through the ether. Although theory indicated that the measurements were 
sensitive enough to detect this effect, the Michelson-Morley experiment found no dif
ference. Fortunately for physics, these scientists did not suppress their negative results.
They published, although for 15 years Michelson considered the experiment a failure
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[Hoffmann, 19721. Theories assuming the existence of an ether survived the emer
gence of this and other anomalies, until Einstein’s 1905 paper on special relativity 
changed the paradigm and accounted for the Michelson-Morley results.
Pitfalls: theories persist even when disproved by data;

ignoring data inconsistent with dominant paradigm.

In the section called ‘Paradigm and Scientific Revolution’ in this chapter, Jarrard 
gives a detailed interpretation of Thomas Kuhn’s ideas, yet he dismisses Stephen 
Toulmin’s arguments by attacking his analogy, and he dismisses alternative opinions 
with a single reference.
Pitfalls:

ignoring data inconsistent with dominant paradigm; 
advocacy masquerading as objectivity; 
biased evaluation of subjective data.
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Chapter 8: Insight

[Watterson, 1993]

“To see a World in a Grain of Sand
And a heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour.”
[Blake, -1803]

Rain fell in the mountains, and a brook was born. The young brook splashed and 
slithered over rocks and under branches, meeting other brooks and merging with 
them, growing and slowing. No longer a brook, a powerful river emerged from the 
mountains in a final waterfall, which encountered the desert.

“You cannot pass,” said the desert. But nothing had ever stopped the river, so it 
flowed forward, now out across the desert. The desert passively soaked up the river's 
water, stopping the river's advance. “You cannot pass,” said the desert.

The river had learned persistence. It continued to flow out into the desert, ex
pecting eventually to win passage. But the desert was no stranger to persistence.

The river accumulated floating debris at the mouth of the waterfall, forming a 
temporary dam, building up a huge backlog of water, then bursting upon the desert. 
The desert seemed to be overwhelmed by the torrent, but only temporarily.

The river tried to avoid the desert, skirting it by flowing along the base of the 
mountain's foothills. The desert found and drank the river water.

The river felt defeated. Persistence, power and avoidance had always succeeded 
before but had failed to overcome this obstacle. Everything the river had ever been 
was for naught - its youthful brooks, later streams, and final river strength - in the face 
of this obstacle. Everything? Or was there a time before the brooks?

The river gave itself to the wind. And the water that fell over that final waterfall 
never touched the desert floor. The water was swept up and evaporated, carried by the 
wind out of reach of the desert, across the desert, to mountains beyond.

Rain fell in the mountains, and a brook was ‘born’.
[loosely based on a Sufi teaching story, e.g., Shah, 1970]

*  *  *
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Role of Insight in Science
Hypothesis and observation, or theory and empiricism, are only two of the three essential ingre

dients of modern scientific method. The third pillar of wisdom is insight — the sudden transcen
dence of obstacles by a new perspective, like the river transforming to vapor and crossing the desert. 
Insight changes the counterpoint of hypothesis and data into the upward spiral of hypothesis, data, 
insight, new hypothesis, different data,. ..

Other terms are used synonymously with ‘insight’: illumination, intuition, serendipity, scientific 
hunch, revelation, inspiration, enlightenment, sudden comprehension, guess, and discovery. Most of 
these terms have such a heavy connotation of either religious, psychological, or everyday secular 
meaning, however, that they are somewhat distracting to use in the current scientific discussion.

Insight brings joy to science. Without this thrill, many of us would not be scientists.

In their excellent and still timely article on the role of ‘scientific hunch’ in research, Platt and 
Baker [1931] define a scientific hunch as “a unifying or clarifying idea which springs into con
sciousness suddenly as a solution to a problem in which we are intensely interested. . . A hunch 
springs from a wide knowledge of facts but is essentially a leap of the imagination, in that it goes 
beyond a mere necessary conclusion that any reasonable man must draw from the data at hand. It is 
a process of creative thought.” This is not deduction, but induction — and sometimes induction to
tally unwarranted from the available evidence. Sometimes it is a solution to a minor technical prob
lem, and sometimes an insight so fundamental that we can never again see the world in the old way.

Helmholtz [1903], Wallas [1926], Platt and Baker [1931], Sindermann [1987] and others con
cisely describe scientific method as consisting of four stages: preparation, incubation, illumi
nation, and verification. I agree that these four stages are real, and we will come back to them 
soon in considering how insight can be encouraged or hampered. These four terms betray a strong 
bias, however, toward casting illumination as the central and most important aspect of science, with 
the other stages serving only a supporting role. Such a view is by no means universal. Indeed, when 
232 scientists replied to a questionnaire concerning insight in science, 17% said that scientific reve
lations or hunches never help them find a solution to their problems [Platt and Baker, 1931]. I sus
pect that they rely on insight as much as I do, but they dislike the connotations of the words ‘reve
lation’ and ‘hunch’, and they prefer to think of science as more rational than those terms imply. 
Possibly also, they shy from insight's ‘nonscientific’ characteristics: it is nonreproducible, non- 
quantifiable, unpredictable, unreliable, and sometimes almost mystical.

Scientists’ reliance on insight is incredibly diverse, partly because of variations in ability but 
also largely because of value judgments concerning rational data-gathering versus irrational insight. 
Some get ideas and experiment to test their ideas, some prefer to test others’ hypotheses, and some 
try to gather data until an answer emerges as virtually proved. A few types of research claim to 
thrive on minimal insight. For example, C.F. Chandler said that one could solve any problem in 
chemical research by following two simple rules: “To vary one thing at a time, and to make a note 
of all you do” [Platt and Baker, 1931], To many scientists, such an approach is either infeasible or 
boring.

The four stages of research occupy unequal proportions of our research time. We might wish 
that insight were 25% of the job volumetrically as well as conceptually, but Thomas Edison’s gen
eralization is probably more accurate: “science is 99% perspiration and 1% inspiration.” At least 
that is what a former advisor told me when, as a new graduate student, I showed little enthusiasm for 
spending countless hours doing routine measurements for his project.
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“Before illumination, carry water, chop wood.
After illumination, carry water, chop wood.” [Zen saying]

The content of the preparation and verification stages is primarily routine, straightforward, and 
mechanical, requiring different skills than are needed for the insight stage. Courses and books (in
cluding this one) usually devote much more attention to these skills than to techniques for enhanc
ing insight.

The advertising industry often uses a technique known as anxiety/relief: first create an anxiety, 
and then offer your product as a potential relief. Today part of the success of this technique is at
tributable to its strongly conditioned pattern. Why do people like myself get addicted to high anxi
ety jobs? Perhaps it is because the solutions, when found, are that much sweeter. Problem solving 
may fulfill a similar role in science, as a non-threatening pattern of anxiety and relief. And the inten
sity of the thrill of insight may depend partly on the duration and intensity of the quest that pre
ceded it.

* * *

Characteristics of Insight
Insight occupies a continuum from conscious to unconscious, from minor problem-solving to 

mystical experience. Always it involves a leap beyond the available evidence, to unforeseen paths. 
Almost always it brings a sense of certainty, a dangerous conviction of the truth of the insight.

Poincare [1914] describes insight’s “characteristics of conciseness, suddenness and immediate 
certainty.” Another typical characteristic is joy or exhilaration. We will return to the characteristic 
of immediate certainty in a later section on insight pitfalls. The following descriptions of insights 
illustrate both their variety and some of their common elements:

“He who has once in his life experienced this joy of scientific creation will never 
forget it; he will be longing to renew it.” [Kropotkin, 1899]

“The joy of discovery is certainly the liveliest that the mind of man can ever 
feel.” [Bernard, 1865]

“It came to me in a dream and it’s money in the bank. It’s so simple it’s ridicu
lous. . . Read it and weep.” [1990 fax from a colleague who is an electronics techni
cian, describing a new equipment design]

Alfred Russel Wallace [1853], who discovered evolution independently of Charles 
Darwin, described his walks in the Welsh countryside: “At such times I experienced 
the joy which every discovery of a new form of life gives to the lover of nature, al
most equal to those raptures which I afterwards felt at every capture of new butterflies 
on the Amazon.”

Albert Einstein, in a 1916 letter [cited by Hoffmann, 1972], described his discov
ery and confirmation of general relativity after an 11-year search: “Imagine my joy 
at the feasibility of the general covariance and at the result that the equations yield the 
correct perihelion motion of Mercury. I was beside myself with ecstasy for days.”

Of course, insight is neither limited to science nor always best described by scientists:
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Author Thomas Wolfe [19361 described his creation of three books as follows: 
“It was a progress that began in a whirling vortex and a creative chaos and that pro
ceeded slowly at the expense of infinite confusion, toil, and error toward clarification 
and the articulation of an ordered and formal structure. . . With a kind of hurricane 
violence that could not be held in check, . . .  the storm did break . . .  It came in tor
rents, and it is not over yet.”

“The flame of conception seems to flare and go out, leaving a man shaken, and at 
once happy and afraid. There’s plenty of precedent of course. Everyone knows about 
Newton’s [apocryphall apple. Charles Darwin said his Origin of Species flashed com
plete in one second, and he spent the rest of his life backing it up; and the theory of 
relativity occurred to Einstein in the time it takes to clap your hands. This is the great
est mystery of the human mind — the inductive leap. Everything falls into place, ir- 
relevancies relate, dissonance becomes harmony, and nonsense wears a crown of 
meaning.” [writer John Steinbeck, 1954; cited by Calvin, 19861

* * *

Conditions Favoring Insight
Perhaps the most valuable result of Platt and Baker’s [1931] survey of scientists was its recog

nition that certain conditions favor achievement of insight:

• Define the problem. The more specific one can be in identifying the paradox or problem, the 
better is one’s chance of success. Describing the problem to others sometimes helps, because it 
forces the researcher to define the problem simply. Sometimes one can solve the larger problem 
piecemeal by obtaining confident solutions for components of the problem. Yet discrepant observa
tions must not be overlooked. Do the partial solutions suggest that other facts are needed, do they 
suggest analogies, or do they have an impact on other partial solutions or facts? An exam-taking 
strategy can be useful here: start with the easiest problems, then work up to the harder ones. This 
strategy helps build momentum and confidence and it avoids overwhelming the researcher with the 
magnitude of the problems.

• Complete the initial stage of preparation. Killeffer [1969] calls this step accumulation, empha
sizing the role of accumulating needed facts. One cannot expect to solve the problem unless the 
relevant information is available and comprehended. Furthermore, the facts must be organized. In
deed, the juxtaposition of certain facts can provide the mental connection needed for insight, so it 
may be worthwhile to try arranging the facts in different ways. Sketching or outlining the relation
ships may help. Mental images may help. Many scientists find that writing a scientific paper trig
gers insights, because it forces us to organize data, assumptions, and inferences much more system
atically than we do mentally. Sometimes one of our assumptions is the obstacle to insight; deliber
ately listing and challenging all assumptions may help. In summary, preparation includes accumu
lation, comprehension, evaluation, and organization of data, assumptions, and inferences.

• Desire a solution. Having a personal stake in a problem can help or hinder insight; usually it is a 
strong asset. Preoccupation with the quest keeps the problem churning through one’s conscious 
thoughts and subconscious, providing the needed stage of incubation. Desire for a solution be
comes counterproductive if it leads to distracting worry and anxiety. Thus some researchers are
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more successful in achieving insights concerning other people’s problems than in solving their own 
problems.

“The unconscious work goes on only over problems that are important to the 
waking mind, only when the mind’s possessor worries about them, only when he 
cares, passionately.” [Gerard, 1946]

* Relax and temporarily abandon the problem. Insight can be fostered as easily as this: simply 
pause for thought whenever you encounter anomalous data in your research or reading. Even more 
conducive conditions are the combination of mental relaxation with either physical relaxation or 
mild exercise [Platt and Baker, 1931]: walking on a beach or in the forest or between work and 
home, taking a bath, relaxing in bed just before falling asleep or just after awakening. Receptivity is 
needed to achieve the goal. Abel [1930] said:

“It is an old saying ever since Archimedes [with the cry, ‘Eureka!’] solved the 
problem of specific gravity in his bath tub. . . that discoveries are not made in the 
laboratories but in the bath tub, or during an afternoon or evening walk as in the case 
of Helmholtz, or in the watches of the night when the puzzled brain will not quiet 
down.”

Charles Darwin [1876] described his discovery of evolution by natural selection 
as follows: “I can remember the very spot in the road, whilst in my carriage, when to 
my joy the solution occurred to me.”

“Did not one of the great masters attain enlightenment upon hearing the splash 
of his own turd into the water?” [Matthiessen, 1978] I don’t know, but I doubt it.

“The fact that the attack is seemingly unsuccessful shows that something is 
wrong. Sometimes merely more information is required. Often, however, the diffi
culty arises from an incorrect interpretation of the facts at hand. . . In taking up any 
problem after a period of rest, we have the chance of leaving behind an erroneous 
point of view and of seizing upon one more fruitful.” [Platt and Baker, 1931]

“The archer hitteth the mark partly by pulling, partly by letting go.” [ancient 
Egyptian saying, cited by Leuba, 1925]

Apparently the subconscious is set working on a problem by our conscious thought and desire 
for a solution. It keeps working on the problem, trying out possible patterns even when (or espe
cially when) the conscious mind has relaxed and stopped feeding it a variety of distracting extrane
ous facts.

As spring comes to the Arctic, the icebound rivers appear to be immune to the 
warming. Invisibly but pervasively, the ice slowly succumbs to spring’s warmth. With
out warning, in a few deafening seconds all of the river ice breaks up and begins to 
flow. The pace of insight is like this breakup.

Additional circumstances, related to the four above, also favor insight. For example, Beveridge 
[1955] emphasizes the value of discussing ideas with other people. They have different perspec
tives, and one may benefit from those perspectives or from combining one’s knowledge with theirs. 
Their questions, as well as our need to frame answers in the context of their backgrounds, may 
force us out of the rut of established thought patterns and into a more fruitful perspective. They or 
we may spot faulty reasoning, during the explanation of things normally take for granted. Perhaps
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the discussion with others will not lead directly to a solution, but it will increase enthusiasm or at 
least decrease discouragement at how intractable the problem seems to be. Discussions are most 
likely to encourage insight if they are carried out in a relaxed and friendly, rather than highly critical 
and defensive, atmosphere.

The Incomplete Guide to the Art of Discovery, by Oliver [1991], suggests that the best way to 
foster insight is to “try to become associated with the fresh new observations. That is where the 
discoveries are most likely.” Oliver emphasizes that almost every really novel kind of observation 
brings surprises and enhances understanding. “We need only to recognize an important unex
plored frontier and then plan and carry out a sound program of observation of that frontier.” Sim
ple!

Most insights illuminate merely the central idea, then the mind rapidly grasps all of the details 
and implications [Platt and Baker, 1931], At other times, insights can be partial or fleeting. Many 
scientists find that it is valuable to jot down such ideas for further consideration later; a pad and 
pencil near the bed can be helpful.

* * *

Obstacles to Insight
Some obstacles to insight are obvious; others are more insidious, masquerading as an essential 

part of scientific activity:

• Distractions — particularly unpleasant distractions such as domestic or business worries, anxiety, 
and fatigue — destroy the receptivity needed for insight. I have seen anxiety over possible layoffs 
cut worker productivity by about 50% and cut discoveries by nearly 100%, although management 
expected that 10% layoffs would cause only 10% reduction in overall productivity.

In the years 1665-1666, plague in England forced the closing of Cambridge Uni
versity, so Isaac Newton went home to the village of Woolsthorpe. There, in this brief 
time, he developed the calculus, discovered the relationship of color to light, and laid 
the foundation for his later elucidation of the laws of gravitation and dynamics. 
[Hoffmann, 1972]

Albert Einstein [1879-1955], whose physics eventually superseded Newton’s dy
namics, said that the ideal job for a theoretical physicist is to be a lighthouse keeper.
In 1933, living in the relatively isolated village of Cromer in England, he said, “I have 
wonderful peace here; only now do I realize how driven I usually am.” On another 
occasion he expressed similar thoughts about the same location: “I really enjoy the 
quiet and solitude here. One can think much more clearly, and one feels incompara
bly better.” Yet his most productive period for insights was 1905, during which he 
worked full-time at the Patent Office.

Pleasant distractions, such as excitement or preoccupation with something other than the imme
diate problem, can be more insidious but just as inimical to research success and insight. Minor 
problems, experimental techniques, and equipment modifications are visible and readily attacked 
forms of problem solving, but also distractions from the main research thrust. Particularly danger
ous is the black hole of computers: web crawling, software collection, and software usage can begin 
as a fascinating and justifiable diversion, then become a time-sink that eclipses their contribution to 
the primary research objective.
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* Interruptions are probably the most disruptive type of distraction. Even the expectation of possi
ble interruption is counterproductive to insight, because it prevents total immersion in the problem. 
Perhaps the most potent step that one can take toward enhancing both productivity and insights is to 
allot an interruption-free portion of each day or week to thinking about, rather than ‘doing’, science. 
Platt and Baker [1931] received many comments such as these on the problem of interruptions:

“As an example of the benefit due to freedom from interruptions try going to the 
laboratory on a holiday. Note how easily many formerly complicated problems 
straighten themselves out, how smoothly the mind works, and how much work is ac
complished with little effort.”

“Any employer of my services who wanted creative thinking oftener THAN 
ONCE A DAY, SHOULD RELIEVE ME OF MY ADMINISTRATIVE WORK, other
wise I might describe myself as a hard worker during the day on the mechanics of the 
job and a creative thinker at night on my own time.”

* Conditioned thinking can prevent a person from adopting the new perspective that may be 
needed to solve a problem. A common response in the business world is to ask employees to 
“think outside the box” . In contrast, the zoo mammal, when moved to a larger cage, continues to 
pace an area similar to that of the old cage [Biondi, 1980].

Beveridge [1955] suggests several ways to break free from conditioned thinking. Set the prob
lem aside for a while then resume; as discussed in the previous section, temporary abandonment 
helps by allowing the established thought pattern to fade, perhaps permitting a new one to start. 
More drastically, one may need to start over from the beginning with a very different approach. 
Talking over the puzzle with others or writing up the project can provide the new perspective. 
Reading related papers, or even potentially relevant papers on different subjects, at least will drive a 
wedge between conditioned thinking and the problem. They also may evoke a useful analogy. The 
value of abandoning conditioned thinking is the lesson of the Sufi story, The River, which began 
this chapter.

* * *

More dangerous than the factors preventing insight is excessive confidence in one’s insight. An 
almost universal characteristic of insight is the conviction o f truth. Unlike the scientist’s normal at
titude that hypotheses can be disproved but not proved, the flash of insight often is accompanied by 
a certainty that the discovered pattern is so elegant that it must be true. This certainty is a scientific 
pitfall that can undermine the objective undertaking of the fourth stage of research: verification. 
When Platt and Baker [1931] polled scientists and asked whether they had ever had a revelation that 
turned out to be wrong, only 7% said that their insights were always correct.

Part of this conviction of truth may be attributable to the sudden breakthrough of pattern recog
nition. The greater the breadth of the pattern and its apparent ability to account for disparate obser
vations, the greater the conviction of truth. Yet cold analysis may reveal fatal flaws in the insight.

Last winter my scientist wife and I talked often about her unexplained research re
sults. She tested and rejected many hypotheses. Then I had an exhilarating insight 
into what the ‘true’ explanation was. I explained my complex model to her, as well as 
the surprising and therefore diagnostic results that my model predicted for two ex
periments that she had not done yet. She pointed out that the model was contrary to 
conventional theory; I agreed with a smile and with unshaken conviction of my
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model’s accuracy. Although she was dubious of the model, she undertook the two 
experiments. One result fit my predictions and one contradicted them, and today only 
a dim echo of my model is accepted by either of us. Yet my exhilaration at discover
ing the model was not balanced by a corresponding disappointment at seeing the 
model proved wrong, perhaps because my emotional involvement with the problem 
was an intrigued outsider’s interest rather than an anxiety of frustrated scientific pro
gress.

About a month after my model failed, my wife was continuing the experiments at 
another lab and called me to say: “We’ve always been thinking of the energy barriers 
as peaks. What if they are troughs instead?” Immediately I felt that she was right, that 
she had solved the problem. Her answer was so much simpler than mine had been.
With this new perspective, we were amazed that we all had been obtuse for so long. Of 
course, not everyone is as certain as we are that she is right.

“When you have at last arrived at certainty, your joy is one of the greatest that 
can be felt by a human soul.” [Pasteur, 1822-1895,bl.

* * *

The Royal Way
Success or failure in reaching insight often depends on the path followed. Once the goal is 

achieved, however, the path becomes irrelevant to the evaluation of that insight.

“But any pride I might have felt in my conclusions was perceptibly lessened by 
the fact that I knew that the solution of these problems had almost always come to me 
as the gradual generalization of favourable examples, by a series of fortunate conjec
tures, after many errors. I am fain to compare myself with a wanderer on the moun
tains, who, not knowing the path, climbs slowly and painfully upwards, and often has 
to retrace his steps because he can go no farther — then, whether by taking thought or 
from luck, discovers a new track that leads him on a little, till at length when he 
reaches the summit he finds to his shame that there is a royal way, by which he might 
have ascended, had he only had the wits to find the right approach to it. In my works,
I naturally said nothing about my mistakes to the reader, but only described the made 
track by which he may now reach the same heights without difficulty.” [Helmholtz,
18911

Between 1899 and 1904 French mathematician Henri Poincare considered many 
of the same factors, including in 1904 the same term ‘principle of relativity’, that Al
bert Einstein brought together in his 1905 paper on special relativity. Yet Poincare 
was unable to reach the same insight first. Poincare says in his 1911 letter of reference 
for Albert Einstein:

“I do not mean to say that all these predictions [by Einsteinl will meet the test of 
experiment when such tests become possible. Since he seeks in all directions, one 
must, on the contrary, expect the majority of the paths on which he embarks to be 
blind alleys. But one must hope at the same time that one of these directions he has 
indicated may be the right one, and that is enough. This is exactly how one should 
proceed. The role of mathematical physics is to ask questions and only experiment 
can answer them.” [cited by Hoffmann, 19721

Concerning his 1915 discovery of general relativity, Albert Einstein [1879-19551 
said:
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“In the light of knowledge attained, the happy achievement seems almost a matter 
of course, and any intelligent student can grasp it without too much trouble. But the 
years of anxious searching in the dark, with their intense longing, their alternations of 
confidence and exhaustion, and the final emergence into the light — only those who 
have themselves experienced it can understand that.”

Helmholtz would have understood it.
* * *

How Does Insight Work?
Insight is the least controllable aspect of scientific research. It can be encouraged, however, by 

immersion in an examination of all relevant evidence, followed by relaxation and temporary aban
donment of the problem. Furthermore, we know that conditions such as interruptions can prevent 
insight. But what is the mechanism of insight? What marriage between data and pattern recognition 
is performed in the brain, resulting in the birth of insight? I don’t know, but I think we have seen 
some clues.

J.E. Teeple, a respondent to Platt and Baker’s [1931] questionnaire, may have hit upon the most 
decisive element, concentration:

“It is this deep concentration that is the most valuable asset in the solution of any 
problem. We speak of thinking and try to divide it into conscious, subconscious, and 
completely unconscious, which I think is an error. In deep concentration on any sub
ject you are not only unconscious that you are thinking but you are unconscious of 
everything else around you.”

Imagine substituting the word ‘concentration’ for ‘insight’ in the previous sections on condi
tions favoring insight and obstacles to insight; usually the discussions still would be valid. It ap
pears that concentration is a necessary but not sufficient condition for insight.

Another clue to the mechanism of insight may come from the relationships of data and hy
pothesis generation to insight. We usually feel that there are too few data to force a conclusion, or 
more likely not enough data of the needed type. In contrast, the geometric expansion of science in 
this century often creates the converse problem: there are too many data of too many relevant but 
somewhat different types to grasp and consider simultaneously. One is left with the vague hunch 
that the answer is hidden somewhere in the masses of data; perhaps, some filter or new perspective 
is needed to extract the key observations and their relationships.

Do we achieve insight through subconscious processing of all possible permutations of the evi
dence, or of only a subset? Consider the following two contrasting viewpoints on hypothesis gen
eration:

“Mathematical creation does not consist in making new combinations with 
mathematical entities already known. Anyone could do that, but the combinations so 
made would be infinite in number and most of them absolutely without interest. . .
The true work of the inventor consists in choosing among these combinations so as to 
eliminate the useless ones, or rather to avoid the trouble of making them.” [Poincare,
1905]

“The effort to solve a problem mentally is a constant series of trials and errors.
The mind in searching for a solution considers in rapid succession a long series of 
conceivable answers, each of which is almost instantly rejected on account of some
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obvious objection. Finally in this process of trial and rejection we more or less acci
dentally stumble upon an answer to which the objection is not so obvious. The 
smooth course of trial and rejection is brought to a halt. Our attention is arrested.”
[Platt and Baker, 19311

“Discovery is something a computer (if constructed and programmed well 
enough) could do, and do as well (even better) than any human who ever lived.” [Ja
son, 19891

Insight spans, I suspect, a continuum from conscious to unconscious. Platt and Baker [1931] 
may be partly right, i f  much of the filtering of ideas occurs either subconsciously, on the fringe of 
consciousness, or in such a brief conscious flash that we are barely aware of it. The less absurd 
ideas require a little more conscious focus before they can be discarded. Yet Poincare grasps a cen
tral point, missed by Platt and Baker, that the successful scientist owes as much to excluding broad 
regions from trial-and-error evaluation as to the evaluation itself. A better-trained computer is not 
the solution.

The approach of considering all possible data permutations is hopeless. What is needed is a 
leap of insight to the crux. As in chess, the best player does not simply examine all permutations 
methodically; instead the master visualizes patterns and focuses in on a small subset of the possi
bilities. I think that the pitfall of conditioned thinking offers a useful perspective: rather than sys
tematically scanning a huge number of possible explanations, scientific thoughts get trapped among 
a few patterns, like a song that you cannot get out of your head. Relaxation and temporary aban
donment may work because the problem continues to pop unbidden into the fringe of conscious
ness, interspersed with seemingly unrelated thoughts, until suddenly the mind sees the problem in 
the context of a potentially explanatory pattern.

From a neurobiologist’s perspective, the brain has a vast number of schemata-templates [Calvin, 
1986]. Each schema is a neural pattern or pathway, formed and reinforced by electrical current flow. 
Each schemata-template is triggered whenever we see or experience something that seems to fit the 
pattern. Boyd [1985] describes hypothesis creation as “finding new combinations of previously 
understood ideas and concepts.” If schemata are reinforced via electrical current flow in the brain, 
could insight be a sudden flow in parallel of schemata that had never previously flowed simultane
ously?

“It is a wondrous thing to have the random facts in one’s head suddenly fall into 
the slots of an orderly framework. It is like an explosion inside. . . I think that I spend 
half my time just talking and listening to people from many fields, searching together 
for how [plate tectonicsl might all fit together. And when something does fall into 
place, there is that mental explosion and the wondrous excitement. I think the human 
brain must love order.” [marine geologist Tanya Atwater in 1981, during the period 
in which the new paradigm of plate tectonics was revolutionizing geology; cited by 
Calvin, 19861

Even if the idea of insight as schema generation is correct, its practical usefulness may be small. 
It does, however, reveal a potential problem: those insights are favored that are similar to ideas and 
concepts that are already established. Breakthroughs to a radically new perspective are not fostered. 
Contrast these incremental advances with the following:

“In each of the 1905 papers, Einstein has totally transcended the Machian view 
that scientific theory is simply the ‘economical description of observed facts.’ None 
of these theories, strictly speaking, begins with ‘observed facts’. Rather, the theory 
tells us what we should expect to observe.” [Bernstein, 19821
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* * *

Alternative Paths to Insight
The preceding sections give the misleading impression that insight only follows a prolonged 

search for the explanation to one’s observations. Other sources of insight, however, can be just as 
fruitful. Chance can play a prominent role in discovery. Many breakthroughs are by amateurs, or at 
least by those with scanty experience of the relevant evidence. And one of the most powerful ways 
of achieving an insight is to borrow from another field.

Unexpected Results
Chance makes an influential, yet often overlooked, contribution to discovery. For example, 

Roentgen’s discovery of X-rays began with an accident: photographic plates left near a discharge 
tube were inexplicably blackened. When Alexander Fleming noticed a strange mold growing on his 
culture dish, he isolated it, purified it, and discovered penicillin, the first antibiotic.

Rather than providing a variation on existing themes, chance discovery can lead to a totally new 
perspective. One can seek insight but cannot seek chance discovery. One can, however, open one
self to this type of discovery [Beveridge, 1955]:

Be alert for any unexpected result. Resist the temptation to rationalize away or 
discard them. Remember that observations that do not fit predictions, though often 
ignored, sometimes are responsible for the new paradigm. “Remain alert and sensitive 
for the unexpected while watching for the expected” [Beveridge, 19551. Try novel 
procedures, to increase the likelihood of encountering surprises.

In seeking insight from unexpected results, we may encounter pitfalls instead. It is easy to be
come distracted and pulled in a new direction by every unexpected result, so that one seldom com
pletes a suite of experiments. This pitfall is often avoidable: simply flag the unexpected data and 
come back to them later. One can easily confuse the ‘chance-in-a-lifetime’ result with trivial results, 
failing to follow up on the former or wasting considerable time on the latter. Louis Pasteur [1822
1895, a] repeatedly said, “In the field of experimentation, chance favors only the prepared m ind.” 
One needs considerable background, to recognize the unexpected result and to evaluate correctly its 
importance and significance.

Transfer From Other Disciplines

One path to insight that is frequently successful, yet underutilized, is the extension of a tech
nique, algorithm, relationship, or equipment from one field to another:

“For every original discovery there are dozens of important advances which are 
made simply by recognizing that a scheme developed for one field or application can 
be applied to another.” [Wilson, 19521

“Making variations on a theme is really the crux of creativity.” [Hofstadter,
19851

For example, Einstein’s emphasis on reference frames was a key not only to relativity but also, 
much later, to the paradigm of plate tectonics in geology. The recent physics paradigm of chaos is 
creating breakthroughs in oceanography, meteorology, biology, and earthquake mechanics. These



179

examples are of theoretical concepts, but even more consistently productive is the application of new 
techniques and instruments to empirical research.

Many discoveries are driven by technology, by the sudden ability to make a new type of meas
urement or to make a much more accurate measurement than before. The inventors of the electron 
microscope, laser, and CT scan could never have imagined the realms that these devices would ex
plore. Recognition of the applicability of a new instrument or technique is easiest for the person 
who knows the problem, not for the person who develops the technique. One does not necessarily 
even have to match the new technique with a specific problem. Discovery can result just from a 
‘fishing expedition’ with a new kind of observation of an old phenomenon.

Because science is increasingly specialized, researchers seldom are aware of technical or con
ceptual developments in ‘unrelated’ fields. Thus a potential application may go unrecognized for 
many years. This approach also is underutilized because it is haphazard, almost always stumbled 
upon rather than deliberately sought out. Yet it can be fostered. Seeking new applications to one’s 
field is a strong incentive for reading outside of one’s field. Such goal-oriented reading can be ex
tremely productive.

Breakthroughs by Amateurs: the Outsider Perspective
Breakthroughs by ‘amateurs’ are a phenomenon that seems to run counter to the philosophy of 

acquiring all relevant data to assist in reaching an insight. Actually, the ‘amateur’ usually is not a 
scientific novice, but an experienced scientist who has just changed fields. The neophyte brings to a 
new field the established disciplines of scientific method but not the prevailing assumptions or 
prejudices of the entrenched leadership of that field. The newcomer may also bring a technique or 
concept to a different field, as mentioned above.

A related phenomenon is breakthroughs by young scientists: most revolutions within each field 
of science are led by the younger generation (in physics, for example, by those under 30 years old). 
This generation may have more energy than the older generation, but it also has less efficiency and 
much less knowledge. The higher discovery rate among relative newcomers to a field stems from 
their greater flexibility of thought, due to less ingrained assumptions and conclusions.

Published errors — whether in assumptions, data, or interpretations — are stumbling blocks to 
further insights, particularly for researchers who have long accepted them. It does not follow, 
though I have heard the argument made, that it is better for one to avoid reading intensively in one’s 
specialty. Oliver [1991] points out that seeking breakthroughs outside one’s specialty brings haz
ards as well as opportunities. For example, physicist Lord Kelvin calculated the age of the earth and 
was dogmatic that his result was correct. He ignored geologists’ evidence for a much older age, 
partly because the evidence was not from his field.

Knowing all the relevant evidence is essential, but equally essential is alertness to the basis for 
one’s assumptions and interpretations, and critical reevaluation of that basis.

Changing fields is a drastic means of chasing insights. Changing subjects within the same field 
can unleash creativity [Loehle, 1990], Another pragmatic alternative is simply to try out different 
perspectives. The following problem illustrates this approach.

A gnat flies deep into your ear and repeatedly collides with your eardrum. How 
can you solve the problem?

First, consider the consequences of initial failure on future trials (Chapter 5): 
squirting water into your ear might wash the gnat out, but a dead gnat may be even 
harder to extract than a live gnat. Instead, try the problem-solving technique of
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choosing the perspective of others — in this case, the gnat’s perspective. Does the gnat 
want to be in or out? Is there anything that you can do to influence the gnat’s be
havior? Gnats, like most flying insects, are attracted to light. So shine a light in your 
ear, and help the gnat escape.

For those who are more committed to attaining insights than to persisting with their current re
search projects, consideration of the following questions may suggest more fruitful research direc
tions [Oliver, 1991]. Is the present discipline becoming more isolated and losing touch with the rest 
of the field? What is its past and present rate of progress and discoveries, and are they accelerating 
or decelerating? Are many datasets still not understood, thereby indicating the potential for new in
sights? Is the field undergoing long-term changes, such as from observational to theoretical or per
haps toward increasing interaction with some other discipline? Do gaps between specialties create 
opportunities for dual-specialty science, and will their exploitation require intensive background 
study or selection of co-workers in that specialty? Is there an alternative research thrust to that fol
lowed by the majority of researchers in the field?

* * *

From Puzzle Solving . . .
The magnitude of the creative leap forms a continuum, from minor problem solving to major 

creative insight to mystical experience. The thrill of major creative insight or mystical experience is 
quite rare, yet most scientists capture a taste of that thrill every day in the small-scale problem solv
ing that is a characteristic part of science. Indeed, many scientists have puzzle-solving hobbies such 
as chess, bridge, and reading mysteries -  hobbies that further gratify the craving for insights of any 
size.

Some classic puzzle-solving techniques also foster both insight and scientific problem-solving:
* redefine the problem by breaking it down into several components, then attack one or more of 
these pieces individually;
* decide which thread to grasp, to start unraveling the puzzle;
* analyze all assumptions and detect inappropriate, overlooked, or invalid assumptions;
* provisionally assume an answer, then look at its implications for the problem.

Perhaps a hobby of puzzle solving can improve our ability to recognize hidden scientific as
sumptions. Killeffer [1969], among others, suggests that the practice of puzzle solving improves the 
ability of the mind to see patterns and associations. This ability, like other acquired skills, can be 
enhanced by practice.

“It began with little things, certain small clinical changes which I observed. Little 
things can be important. Even more important is the ability — call it knack, hunch, 
providence, good luck, whatever -  to know what you are looking for and to put two 
and two together. A great scientist once said that genius consists not in making great 
discoveries but in seeing the connection between small discoveries. . . Small discon
nected facts, if you take note of them, have a way of becoming connected.” [Percy,
19871

“It’s just like doing a jigsaw puzzle: whenever you think that there is no piece 
that can possibly fill a blank space, you don’t just throw up your hands and insist that
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something that links together the parts of the puzzle.” [Calvin, 19861

But in science, unlike in puzzle solving, the problem may be impossible to solve. That uncer
tainty is part of the challenge.

* * *
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. . .  to Mystical Experience
Many scientists will be bothered or even offended by my inclusion of mystical experiences on 

the continuum of insight intensity. Mystical experiences are automatically lumped with emotions 
and other non-rational and therefore non-scientific subjects. Perhaps psychologist Abraham 
Maslow’s term ‘peak experience’ or James Joyce’s term ‘epiphany’ is more palatable. I argue that 
major creative insight is a goal-oriented subset of mystical experience rather than a fundamentally 
different phenomenon. But I am content if the reader agrees that the two phenomena exhibit some 
surprisingly strong parallels, as illustrated by the following examples.

St. Augustine [354-430 A.D., bl described a mystical experience as “a moment 
of supreme exaltation, followed by gradual absorption back into the normal state, but 
with resulting invigoration and clearer perception.”

“Then followed months of intense thought, in order to find out what all the be
wildering chaos of scattered observations meant, until one day, all of a sudden, the 
whole became clear and comprehensible, as if it were illuminated with a flash of light.
. . There are not many joys in human life equal to the joy of the sudden birth of a 
generalization illuminating the mind after a long period of patient research.” [Kro
potkin, 18991

Naturalist Annie Dillard read accounts of people blind since birth who were suddenly given 
sight by cataract surgery, and of their remarkably variable and sometimes frightened reactions to 
this new vision. She was particularly captivated by the experience of one young girl who stared, as
tonished, at what she finally recognized as a tree. This was not a tree such as you or I have ever 
seen, but “the tree with the lights in it” [Dillard, 1974]:

“When her doctor took her bandages off and led her into the garden, the girl who 
was no longer blind saw ‘the tree with the lights in it.’ It was for this tree I searched 
through the peach orchards of summer, in the forests of fall and down winter and 
spring for years. Then one day I was walking along Tinker Creek thinking of nothing 
at all and I saw the tree with the lights in it. I saw the backyard cedar where the 
mourning doves roost charged and transfigured, each cell buzzing with flame. I stood 
on the grass with the lights in it, grass that was wholly fire, utterly focused and utterly 
dreamed. It was less like seeing than like being for the first time seen, knocked 
breathless by a powerful glance. The flood of fire abated, but I’m still spending the 
power. Gradually the lights went out in the cedar, the colors died, the cells unflamed 
and disappeared. I was still ringing. I had been my whole life a bell, and never knew it 
until at that moment I was lifted and struck. I have since only very rarely seen the tree 
with the lights in it. The vision comes and goes, mostly goes, but I live for it, for the 
moment when the mountains open and a new light roars in spate through the crack, 
and the mountains slam.”

“Thus my mind, wholly rapt, was gazing fixed, motionless, and intent, and ever 
with gazing grew enkindled, in that Light, . . .  for my vision almost wholly departs,
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while the sweetness that was born of it yet distills within my heart.” [Dante Alighieri, 
1313-13211

“The flame of conception seems to flare and go out, leaving a man shaken, and at 
once happy and afraid. . .” [John Steinbeck, 1954; cited by Calvin, 1986]

* * *

Living science, for me, is punctuated illumination, less blinding but more frequent than the expe
riences of Dillard and Dante. I too am struck and go on ringing, and I am so addicted that neither 
the countless minor frustrations nor occasional stagnations can fully damp the memory and obses
sion with this ringing. Perhaps someday I will pick a problem that defies solution, search for years 
without finding, and finally claim that I really became a scientist because of motivations other than 
the thrill of insight. Or perhaps I will see “the tree with the lights in it.” For now, I go on ringing.

“I feel like shouting ‘Eureka!’, awakening the camp. But caution reasserting it
self, I satisfy myself with a broad smile instead, and look overhead at the drifting 
clouds. I must try this out, see just how much of the universe’s known mechanism can 
be appreciated from this new viewpoint.” [Calvin, 1986]
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Chapter 9: The Scientist’s World
Them/us -  one of the simplest and potentially most devastating human classifications -  is the 

topic of this chapter. Here we examine our relationships as scientists to various other groups, within 
and outside science.

Scientist and Lay Person
In what way — if any — are scientists unique? In the following passages, the difference between 

scientists and other people is described by Herbert Spencer, Annie Dillard, and William Shake
speare (though scientists were not the subject of Shakespeare’s thoughts). Yet Spencer’s perspec
tive is laced with arrogance, Dillard’s with apparent envy, and Shakespeare’s with joy.

“Is it not, indeed, an absurd and almost a sacrilegious belief that the more a man 
studies Nature the less he reveres it? Think you that a drop of water, which to the vul
gar eye is but a drop of water, loses anything in the eye of the physicist who knows 
that its elements are held together by a force which, if suddenly liberated, would pro
duce a flash of lightning? . . . Think you that the rounded rock marked with parallel 
scratches calls up as much poetry in an ignorant mind as in the mind of a geologist, 
who knows that over this rock a glacier slid a million years ago? The truth is, that 
those who have never entered upon scientific pursuits know not a tithe of the poetry 
by which they are surrounded. Whoever has not in youth collected plants and insects, 
knows not half the halo of interest which lanes and hedgerows can assume. Whoever 
has not sought for fossils, has little idea of the poetical associations that surround the 
places where imbedded treasures were found. Whoever at the seaside has not had a 
microscope and aquarium, has yet to learn what the highest pleasures of the seaside 
are. Sad, indeed, is it to see how men occupy themselves with trivialities, and are indif
ferent to the grandest phenomena — care not to understand the architecture of the 
Heavens, but are deeply interested in some contemptible controversy about the in
trigues of Mary Queen of Scots!” [Spencer, 18831

“I cherish mental images I have of three perfectly happy people. One collects 
stones. Another — an Englishman, say — watches clouds. The third lives on a coast 
and collects drops of seawater which he examines microscopically and mounts. But I 
don’t see what the specialist sees, and so I cut myself off, not only from the total pic
ture, but from the various forms of happiness.” [Dillard, 19741

“And this our life exempt from public haunt
Finds tongues in trees, books in the running brooks,
Sermons in stones and good in every thing.
I would not change it.”
[Shakespeare, 16001

Many lay people hold a stereotypical view of scientists. We are perceived to be:
* very intelligent;
* myopic in interest, focusing on precise measurements of a tiny subject;
* objective in both measurements and interpretations;
* conservative, accepting no interpretation or conclusion unless it has been proved beyond doubt;
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* oblivious of the possibly harmful applications of our research results; and
* above all, completely rational and unemotional.

These perceptions are, in part, responsible for the authority of science. Like all stereotypes, 
however, they depersonalize. Scientists are above average in intelligence, and I have known individ
ual scientists who were myopic, precise, conservative, or oblivious. I have seen scanty evidence, 
however, that scientists in general fulfill the stereotypes above. Only our publications are completely 
rational and unemotional; their authors, in contrast, are passionate.

Scientists do tend to differ from most lay people in their techniques, particularly in their em
bracing of the scientific methods. But of course every kind of specialist differs from lay people in 
embracing certain techniques and achieving professionalism in exercising those techniques. Like 
many other specialists, scientists inadvertently build a barrier of jargon. The jargon permits efficient, 
exact communication among specialists but seems to the outsider to be deliberately exclusive and 
abstruse. The motivations of scientists -  to the extent that one can generalize — resemble those of 
artists; they differ only in degree from most other people.

We are craftsmen, not geniuses.
* * *

Science and Society
On seeing the culmination of the Manhattan Project (the first detonation of a nu

clear bomb) J. Robert Oppenheimer [1945] quoted from the Bhagavad Gita: “I am 
become Death, the shatterer of worlds.”

Some species are solitary and some are social. People try to gain the advantages of both strate
gies, living together in an interdependent society but encouraging individuality. Inevitably conflict 
erupts between individual and societal needs. This balancing act is acutely felt by scientists, who 
accept support but not control from society. The scientist listens to cultural guidelines but person
ally selects values and priorities [Campbell, 1988b]. The “age-old conflict between intellectual [or 
moral] leadership and civil authority” [Bronowski, 1973] was fought by Socrates, Jesus, Galileo, 
Darwin, and Gandhi, as well as by scientists whose names are forgotten. Einstein [1879-1955] may 
have underestimated the strength of the opposition in his 1953 comment:

“In the realm of the seekers after truth there is no human authority. Whoever at
tempts to play the magistrate there founders on the laughter of the Gods.”

Scientific responsibility is personal:

In 1933 Leo Szilard was stopped at a red light while walking to work, when sud
denly he realized that neutron bombardment could potentially initiate an explosive 
chain reaction. He faced the choice of keeping his discovery secret or publishing it, of 
delaying its use or allowing its abuse. Seeking secrecy, he took out a patent and as
signed it to the British admiralty [Bronowski, 1973], but of course development of the 
atomic bomb would not be slowed by a patent. In 1939 he ghost-wrote a letter, signed 
by Einstein, which warned President Roosevelt of the danger of nuclear weapons.

Szilard would have empathized with the anonymous statement [cited by Matthiessen, 1978]: 
“God offers man the choice between repose and truth: he cannot have both.” Then, as now, applied
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science was not confined to discovering what technologies are possible; it also predicted conse
quences and side effects of those technologies.

About 4% of the U.S. population has a degree in science or engineering. For most of the others, 
exposure to science is generally indirect: basic science => applied science => engineering => tech
nology [Derry, 1999]. Technology is the tangible result of combining applied science with engi
neering and business skills.

Popular opinion of science and scientists waxes and wanes with attitudes toward technology. 
After the technological enthusiasm and optimism of the sixties, the rock group Jefferson Starship 
[1970] sang: “Do you know we could go, we are free. Anyplace you can think of, we could be.” A 
decade later, however, a society that seldom can think more than four years ahead encountered the 
consequences of past technological decisions and found that the technological ‘gift’ of comfort 
actually has a price. “Comfort, that invader that enters as a visitor, stays as a guest, and becomes 
master” (Sufi saying). Someone must be blamed, and a musician said to my wife: “Oh, you’re a 
physicist. I suppose you build bombs.” Mea culpa, mea maxima culpa. In the nineties, technologi
cal development led to improved standards of living and an exuberant tech bubble. Ethical concerns 
and fears about technological developments have shifted from atomic weapons to genetic engineer
ing.

“To every man is given the key to the gates of heaven; the same key opens the 
gates of hell.” [Buddhist proverb, cited by Feynman, 1988]

“We fear the cold and the things we do not understand. But most of all we fear 
the doings of the heedless ones among ourselves.” [a shaman of the Arctic Inuit, 
cited by Calvin, 1986]

The beneficiaries of technology have the opportunity to see its shortcomings. In contrast, people 
whom I have met in underdeveloped countries simply hunger for its rewards and for its escape from 
boring drudgery. Few of the critics of science accuse it of being evil, but many accuse it of being 
amoral. One can counter such arguments by asking whether the professions of farming and car
pentry are also guilty of amorality. Or one can recall that science’s highest value is truth (Bro- 
nowski, 1978), and that we judge truth from criteria of beauty, simplicity and elegance; is this 
amorality? But such arguments miss the point. Some people simply are becoming disillusioned 
with technology, and they are replacing the illusion of technology as magic bullet with one of tech
nology as evil destroyer.

“Daedalus, who can be thought of as the master technician of most ancient 
Greece, put the wings he had made on his son Icarus, so that he might fly out of and 
escape from the Cretan labyrinth which he himself had invented. . . He watched his 
son become ecstatic and fly too high. The wax melted, and the boy fell into the sea.
For some reason, people talk more about Icarus than about Daedalus, as though the 
wings themselves had been responsible for the young astronaut’s fall. But that is no 
case against industry and science. Poor Icarus fell into the water — but Daedalus, who 
flew the middle way, succeeded in getting to the other shore.” [Campbell, 1988b]

* * *

The relationship between science and society is changing, in response not only to evolving per
ceptions by society, but also to other evolutionary pressures. Both the tasks and needs for science 
are adapting accordingly.

Science has transformed the highly generalized and adaptable human species into the most 
adaptable species that the earth has ever seen (Bronowski, 1978). Yet arguably we have increased
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our need for adaptability at an even faster pace, because each technological change can have unfore
seen interactions, either with the environment or with other technological changes. In response, 
many scientists are becoming environmental and technological troubleshooters.

Biological evolution demonstrates that specialization only survives in a static environment. Soci
ety’s needs concerning specialization versus adaptability are changing: the pace of technological 
change is increasing, professions are waxing and waning, and therefore our society needs individu
als with the ability to move into newly emerging careers. We also need individuals comfortable in 
interdisciplinary teams.

Scientific education is evolving in response to these changes. For graduate study, the change is 
less than one might expect: graduate programs entail specialized research, but the competencies 
learned actually increase the student’s adaptability. The old notion of an early academic education 
followed by a lifetime profession may be obsolete; it is certainly incomplete. The rapid pace of sci
entific and technological change means that knowledge is not static and education is never really 
finished. Increasingly, the educational system is being used for retooling and redirection. Students 
are teaching the professors by communicating the perspectives and needs of industry. Conversely, 
the students are taking practical applications of their course work to the work-place immediately, not 
years later.

* * *

Major changes of any kind are stressful — to individuals, groups, and society. The redirection of 
scientific efforts and education, in response to societal needs, is non-trivial, emotionally taxing, but 
essential.

The public and politician, having grown up with textbook-science facts, expect certainty from 
scientists. We, in contrast, savor the uncertainty implicit in forefront science, where ideas are ex
plored, modified, and usually discarded. We offer the authority of science with humility. More than 
once in the history of science, scientists have had to fight for the privilege of questioning authority. 
This popular expectation of scientific certainty creates roadblocks, when the implications of scien
tific research are that society needs to take expensive action. Scientific debate provides a political 
excuse for societal inaction, even if the key issues are agreed upon among scientists.

An example is the greenhouse effect, concisely summarized by Stevens [ 1992al. 
Researchers agree that: (1) atmospheric carbon dioxide is rising due to burning fossil 
fuels and clearing rainforests, (2) atmospheric carbon dioxide will have doubled 
within the next 60 years, (3) increased carbon dioxide warms the earth through the 
greenhouse effect, and (4) as a consequence, the earth will warm up during the com
ing decades.

Some issues are still being debated: How much greenhouse warming has already 
occurred? How fast and how much warming will the doubling of carbon dioxide in
duce? What will the local climate effects be? Uncertainty over these questions ob
scures consensus on the former concerns. We postpone remediation; ‘wait-and-see’ is 
cheaper.

Technological innovations are the most frequent and obvious contributions of science to society, 
but occasionally science has a more fundamental impact: it can change humanity’s self-image 
[Derry, 1999], by generating “the light which has served to illuminate man’s place in the universe” 
[J.F. Kennedy, 1963], The determinism of Newton’s mechanics and the indeterminacy of quantum 
mechanics challenge our assumption of free will, but this assumption is rooted too firmly to be 
damaged. The Copemican revolution did not merely overthrow the concept of Earth as center of the 
rotating universe; it dislodged humanity also from that position. Darwin’s theory of biological



187

evolution by natural selection forced another radical revision of self-image: not people as the desig
nated masters of animals, but people as distant relatives of all other animals. The Copemican revo
lution was resisted and the Darwinian revolution is still resisted because of unwillingness to 
relinquish self-importance.

“Most laymen, when they contemplate the effect physics may have had upon 
their lives, think of technology, war, automation. What they usually do not consider is 
the effect of science upon their way of reasoning.” [Baker, 19701

* * *

Science and the Arts
As scientists reach out to society, attempting to dispel misconceptions of science, shall we con

sider the arts as allies or opponents? Are there two cultures, scientific and literary, separated by a 
gulf of misunderstanding and conflicting values? C. P. Snow [1964] argued persuasively that there 
are. Most of us have met both scientists and artists whose scorn for the other culture is vast:

“It may be important to great thinkers to examine the world, to explain and de
spise it. But I think it is only important to love the world, not to despise it, . . . to re
gard the world and ourselves and all beings with love, admiration and respect.”
[Hesse, 19231

“In fact, pure science . . .  is at once a substitute for logic as a discipline for the 
mind and an expression of an insatiable desire for the conquest of all knowledge, for 
an intellectual mastery of the universe.” [Burns, 19631

“The highest Art of every kind is based upon Science -  that without Science 
there can be neither perfect production nor full appreciation.” [Spencer, 18831

Such individuals separate themselves from a potentially enriching aspect of life by a barrier built 
at least partially upon misconceptions. The barrier is permeable: many scientists, particularly physi
cists, are also amateur musicians. A few remarkable individuals, such as Leonardo da Vinci and 
Benjamin Franklin, excelled in both cultures. I suspect that today’s cultural separation is largely a 
failure to communicate.

Science and art share some key features. Creativity is the source of vitality in both. Science has 
no monopoly on subjecting that creativity to a rigorous, critical attitude, as any art critic would point 
out. Virtuosity of both design and technical performance is a hallmark of the best in science and the 
arts. Both science and poetry are “acts of imagination grounded in reality. . . These two great ways 
of seeing lie on the same imaginative continuum.” [Timpane, 1991],

The craftsmen differ more in their tools than in their skills.
* * *

Science and Pseudoscience
In examining links between science and society, or between science and art, we assume agree

ment at least on what science is and is not. But how does one distinguish science from pseudo
science? Most scientists do so on a case-by-case basis, with a demarcation that is subjective and 
value-dependent.
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The prevailing discriminator is use of the ‘scientific method’: sciences all use the scientific 
method, and pseudosciences either do not use it, misapply it, or minimize a crucial portion of it. The 
problem with this criterion, however, is its invalid premise — that a single scientific method is used 
by all sciences. This book is based on a different premise: the sciences share a suite of scientific 
methods, but the emphasis on individual techniques varies among and within sciences.

This revised discriminator -  use of the suite of scientific methods -  is employed by scientists 
with reasonable success. Astrology, UFO’s, and psychic healing are considered by many to be 
pseudosciences, because they lack a well-controlled observation base. Parapsychology, in contrast, 
is very rigorous experimentally, yet most scientists reject it because of inadequate replicatability and 
because its results challenge their key assumptions (e.g., can the outcome of an experiment be af
fected by the experimenter’s wishes?). Immanuel Velikovsky’s [1967, 1977] ideas about colliding 
planets are rejected in spite of his volumes of supporting evidence, because of his complete absence 
of objectivity in evidence evaluation.

Are political science and sociology really sciences? For many scientists, the answer to that 
question depends less on each field’s methods than on respect for their results. That decision 
should be based on reading the original literature or at least textbooks, rather than on such ‘data’ as 
newspaper editorials.

* * *

The challenge of separating science from pseudoscience has intrigued many philosophers of 
science. This goal inspired the birth of falsificationism, Karl Popper’s philosophy that science 
should concentrate on trying to falsify hypotheses (Chapter 7). Popper was uncomfortable with the 
‘scientific’ theories of Marx, Freud, and Adler, particularly in the way these theories seemed to ac
count for any observation:

“What, I asked myself, did it confirm? No more than that a case could be inter
preted in the light of the theory. But this meant very little, I reflected, since every con
ceivable case could be interpreted in the light of Adler’s theory, or equally of 
Freud’s. . . It was precisely this fact — that they always fitted, that they were always 
confirmed — which in the eyes of their admirers constituted the strongest argument in 
favor of these theories. It began to dawn on me that this apparent strength was in fact 
their weakness.” [Popper, 1963]

The line that Popper found to separate science from pseudoscience was the criterion of falsifi- 
ability: “statements or systems of statements, in order to be ranked as scientific, must be capable of 
conflicting with possible, or conceivable, observations.” Hypothesis testing certainly is an integral 
component of all sciences.

Thomas Kuhn used a quite different discriminator: every science has a ruling paradigm that ex
plains a wide variety of observations and guides research, whereas fields that lack such a paradigm 
are in the ‘pre-science’ stage. Kuhn’s discrimination of pre-paradigm and paradigm-guided re
search is useful (Chapter 7), but it does not follow that pre-paradigm fields are pre-science or pseu
doscience. For example, sociology and parts of psychology lack consensus on a unifying paradigm, 
but that lack does not constitute grounds for rejecting their findings.

* * *

Why have scientists largely ignored the efforts to identify a science/pseudoscience demarca
tion? They reject the premise of this quest: “I define the criterion that determines whether you are a 
scientist or pseudoscientist.” The label of ‘pseudoscience’ accomplishes more harm than good.
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This pejorative term substitutes for a rational discussion of the scientific strengths and weaknesses 
of fields. The result is ostracism rather than inducement for a field to respond constructively to out
side criticism.

*

Applied and Basic Research
The bridge between science and society 

is the teamwork of basic and applied re
search. Yet sometimes it seems that the dis
tance across that bridge is too great for clear 
perception.

Conflict: Applied vs. Basic Research
That some non-scientists hold distorted 

views of science and technology is not sur
prising. Even scientists sometimes succumb 
to stereotypes concerning science, particu
larly regarding applied vs. basic research.

The choice between applied and basic 
research is a watershed career decision. Per
haps it is to be expected that the individual 
will reinforce that choice, by emphasizing 
the perceived disadvantages of the rejected 
option.

My own perspective of the dichotomy 
between basic and applied research is from 
the physical sciences. The boundary is 
fuzzier and perhaps the prejudices are fewer 
in the social sciences, because study of be
havior is implicitly alert to human applica
tions. I have worked primarily in basic research, and I have often heard the academics’ stereotypes 
about industry scientists (‘materialistic’, ‘less intelligent’, ‘less creative’). This prejudice is par
ticularly obvious in the academic’s use of the term ‘pure research’ to describe basic research, as if 
applied research is somehow impure. Yet I also worked for several years in industry, where I saw 
corresponding stereotypes by industry researchers toward academics ( ‘ivory tower’, ‘dilettantes 
and dabblers’, ‘groundless pomposity’). Both sets of stereotypes had more to do with personal ego 
massage than with real differences. Some generalizations are possible, if we are mindful of frequent 
exceptions.

The methods of basic research and applied research are the same.
Basic research seeks knowledge of any kind. Applied research is alert to and partially directed 

by potential practical applications. This distinction is not absolute, however. Branches of basic re
search with obvious implications for society are more fundable than other basic research. An ap
plied researcher may devote prolonged effort to basic issues if they have been inadequately
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developed by academics. Indeed, some industrial analysts attribute Japanese technological success 
partly to the willingness of Japanese industry to establish a firm theoretical foundation. Thus ap
plied research does not merely follow up on basic research; the converse can be true.

Some basic researchers claim that they are free to explore the implications of unexpected re
sults, whereas applied researchers are compelled to focus on a known objective. Yet both pursue 
applications of their discoveries, whether industrial or scientific, and both allow potentially fruitful 
surprises to refocus their research direction.

Successful industrial competition means not only getting ahead in some areas, but also keeping 
up in others. Often, it is more efficient for a company to introduce and apply published work by 
others than to initiate experiments. Applied researchers may experience conflict between their sci
entific value of open communication and the business need for confidentiality. Applied researchers 
tend to be more alert than basic researchers to potential applications for their research of discoveries 
in a different field. Applied research is generally more mindful of economic factors, more cognizant 
that an approach may be theoretically viable yet financially or otherwise impractical.

Usually the academic researcher can maintain the illusion of having no boss, whereas the chain 
of command in industry is obvious. It may be easier to start a pilot project in industry. Go/no-go 
decisions are more frequent too; continuation of the project must be defended at every step.

Some applied researchers [e.g., Killeffer, 1969] see academic research as a ‘stroll through the 
park,’ with no pressure to produce or to work efficiently. Job security in either type of research af
fects productivity pressure; probably the most pressured are researchers on ‘soft money’ -  de
pendent on funding their own proposals. Self-motivation drives the most productive researchers in 
both applied and basic research; burn-outs are present in both.

Applied researchers have the satisfaction of knowing that their research has a concrete benefit 
for humanity. Basic researchers know that their research may have highly leveraged downstream 
applications, and that knowledge is an intrinsically worthwhile aspect of culture. What is the value 
of culture?

“To assess basic research by its application value would be awful. It would be like 
assessing the value of the works of Mozart by the sum they bring in each year to the 
Salzburg Festival.” [Lorenz, 1962]

* * *

Every scientist, basic or applied, has an implicit contract with society. Most scientists are paid 
by either industry or (perhaps indirectly) by state or federal government in the expectation that we 
will provide rewarding results. Technology is one such result; another is teaching that is enhanced 
by active participation in science. Basic researchers are in a unique position to recognize ways that 
their research might be of practical value. For a basic researcher to take salary and support services 
from the public, while neglecting possible usefulness of that research to society, is fraudulent.

The synergy between academic research and the local economy has not been quantified, but 
clues can be found in a detailed survey of the economic relationship between Stanford University 
and Silicon Valley technology. Most notable was the direct personnel influence: one third of the 
3000 small companies in Silicon Valley were created by people who were or had been associated 
with Stanford. Direct technology transfer, though important, was much more modest: only 5% of 
the technology employed by these companies came directly from Stanford research [Lubkin et al., 
1995],

*  *  *
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Changing Goals for Applied and Basic Research
Attitudes toward applied and basic research are not just a concern for individuals; they also af

fect national policy. When resources are tight, for example, how can a nation set priorities for 
funding of basic and applied science? How can funding agencies choose among such diverse re
search areas as subatomic particles and the human genome? One approach is to define the goals of 
science, from a national perspective [Gomory, 1993]. Setting goals is a powerful basis for decision
making. Unfortunately, the choice of goals for basic and applied research is hotly debated.

The goal of basic research is reliable knowledge of nature, and the goal of applied science is 
useful knowledge of nature. These objectives are, perhaps, too sweeping to guide science funding. 
Until recently, U.S. research funding has been guided by the rationale laid out by Vannevar Bush 
[1945] half a century ago: both basic and applied research inevitably serve the mission of strength
ening national security, mainly by promoting national defense but also by increasing self
sufficiency and standard of living. Bush’s vision catalyzed the subsequent growth of U.S. research 
funding and the breadth of supported disciplines. Priorities have gradually shifted toward greater 
emphasis on health and medicine, but the framework has remained intact until the last decade.

Some recent attempts to redefine U.S. scientific goals [Gomory, 1993; COSEPUP, 1993] ap
pear to me to be based on the following flawed assumption: a nation or company does not need to 
make the discoveries; it just needs to be poised to use the discoveries of others. Gomory [1993] and 
numerous government officials extend this idea even farther, arguing that the purpose of science is 
industrial competitiveness. If so, perhaps basic science can be reduced to a support service for ap
plied science. A minority [e.g., Jarrard, 1994; Cohen and Noll, 1994] respond that it would be a 
mistake to redefine the goal of science as industrial competitiveness.

Industrial competitiveness is essential to the economic welfare of the U.S., it is a high national 
priority, and it is a modem mantra. It is not -  and has never been -  the primary objective of scien
tific research. Making industrial competitiveness the purpose of applied research defines resulting 
industrial improvements in other countries as liabilities, not assets. Both individual companies and 
individual countries benefit from total technological growth, even without competitive advantage.

Pragmatism, not naivete, suggests the following criterion for national science funding: return on 
investment, not relative advantage. How much money should a nation invest in basic and applied 
science? As with all potential investments, the first step is to evaluate return on investment:

“Science is an endless and sustainable resource with extraordinary dividends.” 
[Executive Office of the President, 1994]

“Basic research . . . has been an astounding success, whether measured in terms 
of understanding natural phenomena or improving material wealth and living stan
dards of the world.” [Gomory, 1993]

Many economic studies have investigated the relationship of R&D to productivity, 
and “the main conclusions from their work are that more than half the historical 
growth in per capita income in the U.S. is attributable to advances in technology and 
that the total economic return on investment in R&D is several times as high as that 
for other forms of investment.” [Cohen and Noll, 1994]

With confidence in return on investment, one then invests as much as one can afford. More 
funded research will lead inevitably to more discoveries, increased productivity, and a higher stan
dard of living.

*  *  *
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The changing national priorities for basic and applied research affect research in many ways. 
The long-term cost-effectiveness of research remains unchallenged. The current focus of concern is, 
instead, on maximizing the efficacy and speed with which basic-research findings are transferred to 
the marketplace. One resulting trend is a reallocation of resources, with a higher proportion going to 
applied research. Today about half of the Ph.D.’s in science and engineering are employed outside 
the academic environment -  a substantial increase since the 1970’s [National Science Foundation, 
1994]. Another response is simply a more conscientious linkage between basic research and its 
potential applications to quality of life (e.g., in industry, professions, and health).

Research funding is changing. The proportion of projects funded entirely by a single grant 
from a federal agency is dropping. Increasingly, funding agencies are requiring cost sharing and 
collaboration with private industry. Joint projects between academic researchers and businesses are 
sprouting at an unprecedented rate, as both groups discover that carefully framed collaborative pro
jects permit individuals to maintain their own objectives and benefit from broader expertise. For ex
ample, companies are recognizing the R&D leverage inherent in using faculty expertise and faculty
generated government cost sharing.

Universities are implementing mechanisms for assuring technology transfer and cooperative 
research among faculty, students, and local business. Some examples are student internships, 
graduate-student summer jobs in local industry, undergraduate research opportunity programs, uni
versity research parks, technology transfer offices, and seed money for research oriented toward 
technology development.

“To feed applied science by starving basic science is like economising on the 
foundations of a building so that it may be built higher.” [Porter, 1986]

How far will the pendulum of transformation in research funding swing? The rift between ap
plied and basic research is decreasing, but is there still too much emphasis on basic research? At 
state and national levels, some are asking whether we really need and can afford the research univer
sities.

Both research and graduate-level teaching make the same major demand on an individual’s 
time: to be up-to-the-minute in a specialized and rapidly growing field. Whereas textbooks are fine 
for the undergraduate level where well-established ‘facts’ are taught, graduate-level teaching and 
research must be at the cutting edge where new ideas are being proposed, evaluated, and rejected. 
Active researchers are the best guides in this frontier, where the graduate student must learn to 
travel.

Graduate study is an apprenticeship. Like undergraduate education, it includes some texts and 
lectures. Unlike undergraduate education and trade schools, most graduate and professional pro
grams require an individually tailored interplay of supervised yet independent study, a leaming-by- 
doing that develops both specialized knowledge and a combination of competencies and work atti
tudes. Effective graduate-level apprenticeship requires a mentor, research facilities, identification of 
feasible and decisive research topics, and usually research funding. The research component of a 
research university is designed to provide exactly these requirements.

These two aspects of graduate study, apprenticeship and evaluation of new ideas, make graduate 
study less amenable to distance learning and electronic teaching than is undergraduate study. The 
combination of personal attention and electronic technology is, in contrast, at the heart of graduate 
education in a research university.

Resolution: Bridging the Gap

*  *  *
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Big Science versus Little Science
As the geometric growth in number of scientists collides with the linear growth in available sci

ence funding, debate is inevitable about where the scarce resources should go. Much of this debate 
has centered on the issue of big versus little science. More accurately, since there is a continuum 
between the two, the question is: what are the optimum proportions between large and small projects 
within a discipline, in order to maximize the scientific payoff per dollar expended?

Big science can be in the form of a single multi-investigator project or research thrust, or a large 
facility that is used by many researchers for their individual small-science projects. Multibillion 
dollar examples of the former are the Human Genome Project, (cancelled) supercollider, and space 
station, though even within these projects there are many moderate-scale subprojects. Examples of 
large facilities for small-scale projects are telescopes, oceanographic ships, supercomputers, and 
Antarctic research stations.

Proponents of small science point out that most major discoveries have been a product of small 
research groups working with modest funding. Such projects are very cost-effective, because most 
of the money goes to scientists rather than to the equipment and technicians that generally consume 
most big-science dollars. Advocates of large science accept these arguments, but they claim that the 
waves of small science have merely washed around some key problems that were too expensive to 
tackle. Now these problems are the most critical issues remaining to be solved; they can no longer 
be bypassed.

Most scientists do small science. If science were democratic, many of the big science projects 
could not fly. Thus the proponents of the largest projects seek a different constituency; they also 
solicit line-item funding that does not obviously reduce small-science funding. Successful propo
nents of big science tend to be well known senior scientists who already head large groups and who 
are on committees charged with outlining new directions for a field. Younger and less famous sci
entists feel left out.

This week my closest colleague at Columbia University won the largest grant that 
Columbia had ever received. Yet most of my friends there are less successful ‘soft- 
money’ researchers, who doubt that they will be able to write enough successful pro
posals to provide their own salaries next year. Also this week, cosmologists are ecstatic 
over the results of the big-science COBE satellite: the big bang theory has received 
remarkably strong confirmation, through a mapping of the original subtle heteroge
neity of its radiation. Is there a more fundamental scientific question that the origin of 
the universe, the mother of all singularities?

Debate over the Human Genome Project was often personal. James Wyngaarden, 
who was head of the National Institutes for Health when NIH started funding of the 
project, said “Most knowledgeable people and most eminent scientists are solidly be
hind [the projectl. The ones who are critical are journeymen biochemists who may be 
having a hard time competing themselves.” James Watson, Nobel laureate and previ
ous head of the program at NIH, said, “It’s essentially immoral not to get it done as 
fast as possible.” [Angier, 19921

Polarization and alienation are hazards of the battle. The big-science projects generate another 
hazard: grand expectations. Virtually all funded proposals make confident predictions of valuable 
results; optimism and a modest amount of oversell are almost prerequisites for funding. Most of 
these projects will be somewhat fruitful, partly because the investigators are free to react and refocus 
their research to avoid obstacles and exploit discoveries, but most projects will also deliver less than 
the proposals promised. Small-science projects can get away with this because there is safety in



194

numbers: a few projects will be stunningly rewarding, and the combination of these breakthroughs 
and many smaller successes creates rapid small-science progress.

Big science, however, lacks this safety in numbers. If a single big-science project fails, public 
reaction to the ‘wasted taxpayers’ money’ can hurt all scientists’ reputations and funding pros
pects. Such was the initial impact of the Hubble space telescope. Fortunately, NASA corrected its 
deficiencies, and recent Hubble results have been breathtaking.

* * *

Ego and the Scientific Pecking Order
“Go, wondrous creature! mount where Science guides,

Go, measure earth, weigh air, and state the tides;
Instruct the planets in what orbs to run,
Correct old Time, and regulate the Sun.
. . .  Go, teach Eternal Wisdom how to rule —
Then drop into thyself, and be a fool!” [Pope, 1733]

The scientific pecking order is another manifestation of the attitude of “me, in competition with 
them; me, better than them; me, rather than them.” Like chickens, some scientists seem to be ob
sessed with climbing an imagined pecking order. Those ‘below’ such a scientist see a scornful user 
of their efforts; those ‘above’ such a scientist see a productive team player.

Beyond the local interpersonal pecking order is a broader pecking order of professions that is 
remarkably fluid in its ability to place one’s personal field at the apex. One common pecking order 
of scientific superiority is ‘hard’ sciences (i.e., physical sciences) > social sciences. Within the 
physical sciences physics Omathematics (of course depending on whether one is a physicist or 
mathematician), and physics & math > astronomy »  other physical sciences. For example, the 
following provocative ‘joke’ by Rutherford [Blackett, 1962] makes a non-physicist’s blood boil: 
“All science is either physics or stamp collecting.” Academics > applied scientists of industry, be
cause of the hasty generalization that the latter are materialists first and scientists only second. Ap
plied scientists > academics, because of the hasty generalization that the latter are marginally useful 
ivory-tower dabblers. For example, the applied scientist Werner von Braun said [Weber, 1973], 
“Basic research is what I ’m doing when I don’t know what I am doing.”

Theoreticians > experimentalists, because the latter are less intelligent grunt workers. Experi
mentalists > theoreticians, because the latter are out of touch with reality and think that ‘data are 
confirmed by the model.’ Oliver [1991], for example, claims that theories are useless except as an 
“organization of observations” and that “observation is the ultimate truth of science.” Full-time 
researchers (‘full-time scientists’) > college teachers (‘part-time scientists’) > high school teach
ers, though in reality the latter may have the most highly leveraged impact on science and the least 
glory. Professor > assistant professor > lecturer > student, because seniority is more important 
than originality. PhD . researchers > technicians > scientific administrators, because the latter are 
not ‘true scientists’, though they may be just as essential for science.

All of these hierarchies are counterproductive and hypocritical. They are counterproductive be
cause the pecking instinct allows only one at the top of each of the many hierarchies; we all must be 
both pecked and peckers. This defensive ego building is successful in creating a feeling of superi
ority only by careful editing of perceptions to focus downward. It is also counterproductive because 
time and energy are wasted worrying about where one is. The scientific pecking order is hypocriti
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cal because it is an ex post facto justification. Almost no one picks their scientific specialty based on 
the above considerations (a possible exception is the choice between applied and basic research). 
Fortunately, we pick a field instead because it fascinates us most, and we pick a job within that field 
because it somehow suits us most. We might almost say that the scientific field chose us, and we 
obeyed in spite of rational reasons to the contrary.

For the explorers of nature, there are no box seats, no upper-balcony seats. Remember Dede
kind’s postulate: every segment of a numeric series, however small, is itself infinite. Similarly, 
within every scientific field are infinities to be explored.

“And there is no trade or employment but the young man following it may become a 
hero,
And there is no object so soft but it makes a hub for the wheeled universe.” [Whit
man, 18921

How much of our pecking is, like chickens, a reaction to being pecked? How much is ego mas
sage? How much is our need to have a status commensurate with our years of effort? How much is 
the desire to give a rational explanation for an emotionally inspired career choice?

The scientist’s banes are egoism and egotism. The scientific pecking order is one manifestation 
of egoism, the self-centered practice of valuing everything only in proportion to one’s own interest. 
Egotism, pride, and self-conceit are enhanced by a combination of peer recognition, the value placed 
by society on intelligence and technology, and one’s own false sense of the importance of their 
contributions to science.

Egotism is not in proportion to peer recognition. Peer recognition and fame can aggravate ego
tism, but it need not do so. For example, on receiving the 1925 Gold Medal from the Royal Astro
nomical Society of London, Albert Einstein’s response was:

“He who finds a thought that lets us penetrate even a little deeper into the eternal 
mystery of nature has been granted great grace. He who, in addition, experiences the 
recognition, sympathy, and help of the best minds of his time, has been given almost 
more happiness than a man can bear.” [Einstein, 1879-1955]

Too often, “he who finds a thought that lets us penetrate even a little deeper into the eternal 
mystery of nature” thinks that he is hot shit. Perhaps this is the egotistical trap: we fool ourselves 
into thinking that we are wresting the secrets away from Nature or God and therefore we must be 
godlike. Campanella, a 17th century Italian philosopher, described man as:

“a second god, the first God’s own miracle, for man commands the depths, 
mounts to heaven without wings, counts its moving bodies and measures their nature. .
. He knows the nature of the stars. . . and determines their laws, like a god. He has 
given to paper the art of speech, and to brass he has given a tongue to tell tim e.”
[cited by Smith, 1930]

How much of the pride and ego of modern science is a cultural phenomenon? For example, the 
boasting about mental powers and control stems partly from the Renaissance feeling that humans 
are master of the earth. Contrast the ancient Greek perspective that wonder is more appropriate than 
self-conceit, because people can never achieve the ideals revealed by science. Empedocles [5th cen
tury B.C.] said:

“And having seen [only] a small portion of life in their experience, they soar and 
fly off like smoke, swift to their dooms, each one convinced of only that very thing
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which he has chanced to meet, as they are driven in all directions. But each boasts of 
having seen the whole.”

If scientists allow themselves to be seen as Prometheus giving the power of fire to humanity, 
then they may start thinking of themselves as demigods. J. Campbell [1988b] reminds us that 
“M an did not weave the web of life, he is merely a strand in it.” Bronowski [1973] speaks feel
ingly and eloquently of the danger of this scientific egotism:

“[Mathematician! Johnny von Neumann was in love with the aristocracy of intel
lect. And that is a belief which can only destroy the civilisation that we know. If we 
are anything, we must be a democracy of the intellect. We must not perish by the dis
tance between people and government, between people and power, by which Babylon 
and Egypt and Rome failed. And that distance can only be conflated, can only be 
closed, if knowledge sits in the homes and heads of people with no ambition to con
trol others, and not up in the isolated seats of power.”

The luster of an individual’s contributions to science is tarnished by the near certainty that some 
other scientist would have made the same contribution sooner or later. One can help erect the scaf
folding of the scientific cathedral, but the scaffolding later will be tom down and forgotten. One can 
cling to the comfortable fantasy of scientific immortality, but today’s scientific breakthrough will be 
tomorrow’s naivete.

“Voltaire, when complemented by someone on the work he had done for poster
ity, replied, ‘Yes, I have planted four thousand trees'. . . Nearly a score of centuries 
ago, Marcus Aurelius reminded us that, ‘Short-lived are both the praiser and the 
praised, the rememberer and the remembered.'” [Teale, 19591

“I returned, and saw under the sun, that the race is not to the swift, nor the battle 
to the strong, neither yet bread to the wise, nor yet riches to men of understanding, 
nor yet favour to men of skill; but time and chance happeneth to them all.” [Solo
mon, ~1000 B.C., Ecclesiastes 10:111

[Watterson, 1993
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Chapter 10: The Scientist
Let’s conclude by turning our gaze inward. Knowing that science thrives on a diversity of 

styles and techniques, can we nevertheless identify dominant patterns of behavior, ethics, and moti
vations?

“One thing I have learned in a long life: that all our science, measured against re
ality, is primitive and childlike — and yet it is the most precious thing we have.” [Ein
stein, 1879-19551

Isaac Newton [1642-1727], a man known more for his arrogance than for humil
ity, said near the close of his life:

“I do not know what I may appear to the world; but to myself I seem to have 
been only like a boy playing on the sea-shore, and diverting myself in now and then 
finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of 
truth lay all undiscovered before me.”

Scientists’ Characteristics
The traits possessed by successful scientists are seldom examined systematically in college or 

graduate school. They are not the traits that one would choose in an idealized characterization of a 
scientist. Nor are they revealed by courses and tests. Most courses and tests emphasize temporary 
fact accumulation, a worthy but largely unnecessary acquisition in an age of ready access to refer
ence information. Some personal characteristics are so pervasive among scientists that they appear 
to be essential for scientific success. Others are common, advantageous, but not essential.

Essential Characteristics
* persistence: This necessary characteristic encompasses traits such as dogged perseverance, pa
tience, tenacity, thoroughness and singleness of purpose. Perhaps, attainment of a Ph.D. demon
strates persistence more than any other capability. As a musician friend told me, daily practice en
counters peaks of surging progress and bogs of apparent stagnation. Both are transitory stages that 
must be outlasted; persistence is the bridge. For scientific success, persistence must continue be
yond research and through publication.

“Nothing in the world can take the place of persistence. Talent will not; nothing 
is more common than unsuccessful men with talent. Genius will not; unrewarded 
genius is almost a proverb. Education alone will not; the world is full of educated 
derelicts. Persistence and determination alone are omnipotent.” [Hoenig, 1980]

“Let me tell you the secret that has led me to the goal. My only strength resides 
in my tenacity.” [Pasteur, 1822-1895,a]

Persistence is not always a virtue. One needs to recognize when to let go — unlike the weasel, 
reduced to a skull, found with jaws still imbedded in the throat ruff of a living eagle. It is naive op
timism to think that any problem can be solved just by working harder. If a problem is reaching di
minishing returns, it should be abandoned. Perhaps the problem is posed wrongly:
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Matthiessen [19781 says that the Buddha “cried out in pity for a yogin by the 
river who had wasted twenty years of his human existence in learning how to walk on 
water, when the ferryman might have taken him across for a small coin.”

Persistence in a technically difficult experiment is commendable; persistence in investigating a 
discredited hypothesis is not. If advocacy of an opinion has become counterproductive, then adapt. 
Nevertheless, far more scientists have failed because of insufficient persistence than because of ex
cessive persistence.

“. . . let us run with patience the race that is set before us.” [Hebrews 12:11

* curiosity: The desire to know more, an inquisitiveness that is not satisfied with surface explana
tions, is the ratchet of scientific progress.

Jonas Salk [19901 said that he spent his life “reading the scriptures of nature. . . I 
began to tease out the logic of the magic that I was so impressed by.”

The scientist’s curiosity is not passive; it is an active embrace of nature:

“I come down to the water to cool my eyes. But everywhere I look I see fire; that 
which isn’t flint is tinder, and the whole world sparks and flames.” [Dillard, 1974]

* self-motivation: Internal drive to work is a product of job enjoyment. Self-motivation is scarce in 
most types of jobs [Terkel, 1974], frequent in professions, and nearly universal among productive 
scientists. Single-minded drive undoubtedly increases effort, but self-motivation seems to have 
more impact than effort can account for. Self-motivated scientists, who may do only part-time re
search because of teaching or administrative responsibilities, can produce more than full-time scien
tists who have lost their internal drive (e.g., because management does not value their work).

Self-motivation can be overdone: I and many scientists whom I know are stress junkies, who are 
stimulated so much by ‘emergencies’ that they seem to create such situations even when a rapid 
pace is unnecessary. To a stress junkie, efficiency and productivity are additional sources of job 
satisfaction.

Volcanologist Maurice Krafft, who was later killed by Unzen Volcano, said “ I 
would say that if one truly specializes in explosive volcanoes then it’s not worth con
tributing towards retirement, and that if one makes it to retirement it’s a little suspi
cious. It means that he really didn’t do his job conscientiously.” [Williams and 
Montaigne, 2001]

Productivity has become a cliche of the business world, but productivity is not just a national or 
industrial goal. It is a personal skill. Computer expertise and efficient fact finding are tangible 
forms of individual scientific productivity; more essential and less tangible aspects are problem
solving ability, quantitative reasoning, and self-motivation. Quantity of publications is the most 
commonly used measure of productivity [Maddox, 1993]. Its virtues are simplicity and objectivity, 
but scientific impact does not depend on number of publications.

“Every man, every civilization, has gone forward because of its engagement with 
what it has set itself to do. The personal commitment of a man to his skill, the intel
lectual commitment and the emotional commitment working together as one, has 
made the Ascent of Man.” [Bronowski, 1973]
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* focus: Focus is the ability to spot the crux among a morass of detail and then stay concentrated 
on it, without being distracted or sidetracked. Focus assures that the target receives all of the atten
tion needed. Lack of focus is evidenced by tendencies toward incompleteness, inefficiency, over
looked significant details, grasshopper science, and panic reaction to setbacks.

Thanks to physicist Richard Feynman [19851, I now associate focus with choco
late pudding. During a period of his life when he went out to dinner frequently, a 
waiter asked him what he would like for dessert. Suddenly he considered how much 
of his life was wasted in thinking about that trivial question, so he decided that hence
forth the answer would always be chocolate pudding! Focus does not tolerate needless 
distractions.

* balance between skepticism and receptivity: A critical attitude is essential; all data and inter
pretations must be evaluated rather than simply accepted. Yet it is equally essential to achieve a bal
ance between skepticism and receptivity: willingness to propose speculative hypotheses that may be 
proved wrong, tempered by ability to weed out the incorrect hypotheses. One must be receptive to 
novel concepts or results, rather than greeting the new with a ‘fight-or-flight’ reaction of dismissive 
criticism. The critical filter that rejects everything as insufficiently proved robs science both of joy 
and of raw materials for progress.

This balance is manifest also by a blend of optimism and realism. Optimism and enthusiasm for 
new ideas are contagious and powerful, if accompanied not by a casual confidence that effort alone 
will find a solution, but by a problem-solving mentality and preparation for potential obstacles.

Common Characteristics
Many prospective scientists think that love of science and high intelligence are the two primary 

characteristics needed to permit them to be successful scientists. This idealized picture of science 
can lead to disillusionment or worse. Love of science and high intelligence are neither necessary nor 
sufficient, though they are the springboard of most scientific careers.

* fascination with the beauty of nature: We may not use words such as ‘beauty of nature’; 
we may try (at least outwardly) to maintain the myth of objectivity. Yet we revel in the elegance and 
wonder of the natural world, and we choose occupations that further our opportunities for apprecia
tion of it.

“I am among those who think that science has great beauty. . . A scientist in his 
laboratory is not only a technician but also a child placed in front of natural phenom
ena which impresses him like a fairy tale.” [Marie Curie, 19371

Konrad Lorenz [19621 described the prerequisites to success in the field of ani
mal behavior as follows:

“To really understand animals and their behavior you must have an esthetic ap
preciation of an animal’s beauty. This endows you with the patience to look at them 
long enough to see something. Without that joy in just looking, not even a yogi would 
have the patience. But combined with this purely esthetic characteristic, you must have 
an analytical mind.”
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* love of science: Love of science is a greater spur to productivity than any manager can offer. 
Love of science, love of discovery, and enthusiasm for science are contagious; they are nurtured by 
scientific interactions. Most scientists are inclined to be somewhat forgiving of weaknesses in those 
colleagues who passionately love science.

If you were beginning a career again, would you pick the same type of work? The answer to this 
question was ‘yes’ for 86-91% of physical scientists, 82-83% of lawyers and journalists, 41-52% 
of those in skilled trades (printers, autoworkers, and steelworkers), and only 16-21% of those in 
unskilled trades (assembly-line steelworkers and autoworkers) [Blauner, I960]. Jobs with the high
est levels of worker satisfaction are those that are esteemed by society, that allow both personal 
control of decisions and unsupervised work, and that involve teams [Blauner, I960]. Scientific ca
reers provide all of these.

I learned how atypical the scientist’s job satisfaction is when I told my half-brother, who was an 
insurance salesman, that I love my work; he laughed and told me not to bullshit him. Sometimes the 
exhilaration with science is so overpowering that I break out in a silly grin. Then I remember, con
sciously or unconsciously, the scientist’s distrust of sentimentality. I transform the grin into a 
knowing smile and dryly remark, “It’s a dirty job, but somebody has to do it; don’t they?”

* above-average intelligence: This characteristic is almost essential, but a scientist with only aver
age intelligence can succeed by excelling in the other traits of scientists. Genius is not required. 
Among those with an IQ > 120, IQ shows little relation to either scientific innovation or productivity 
[Simonton, 1988]. Genius without the other needed qualities is insufficient for scientific success.

Srinivasa Ramanujan was a mathematics genius in 19th-century India. He was rich 
enough to receive a high school education, a few books, and live as a scholar. Yet for 
most of his life he was completely cut off from virtually all mathematics literature and 
knowledge. He worked on his own, and mathematicians are still deciphering and ap
plying his work [Gleick, 1992d]. How much more could he have accomplished as 
part of the science community? How many geniuses never see a book?

Most of us equate IQ scores with intelligence, but IQ scores predict success in school, not in 
life. Career and family success is forecast more successfully with tests that model constructive 
thinking, problem solving, and persuasion, with and without emotional distractions. In contrast, IQ 
tests evaluate specific types of verbal and mathematical ability. They do not evaluate how well these 
will be applied to the often ambiguous and open-ended problems of real life, where ability to react 
to crises and manage one’s emotions are just as essential as IQ [Goleman, 1992a].

* imagination: Imagination is necessary for insight and even for the everyday problem solving that 
is intrinsic to most science. Almost all scientists are unusually imaginative, but the unimaginative 
can produce valuable science in the form of careful hypothesis testing. Individuals who have imagi
nation but lack a critical attitude can be cranks; they cannot be scientists. When imagination is com
bined with both will and a vision of what is achievable, the result can be formidable: “We choose to 
go to the moon” [J. F. Kennedy, 1960 speech].

* desire to improve: “Boredom could be an important stimulus to evolution among the animals” 
[Calvin, 1986], because it leads to trials of a variety of different behaviors. Like curiosity, dissatis-
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faction with the status quo certainly is a stimulus to scientific progress. This dissatisfaction is mani
fested by boredom, the appeal of the mysterious, and the desire to improve circumstances.

“The most beautiful experience we can have is the mysterious. It is the funda
mental emotion that stands at the cradle of true art and true science.” [Einstein, 1879
19551

The desire to improve encompasses both oneself and one’s environment:

“How thankful I should be to fate, if I could find but one path which, generations 
after me, might be trodden by fellow members of my species.” [Lorenz, 1962]

* aggressiveness: Aggressive scientists tend to be highly successful and productive. Science is an 
obstacle course of puzzles, experimental problems, and bureaucratic hurdles, and success requires 
an aggressive unwillingness to be stopped by such obstacles. I am cautious, however, about interac
tions with aggressive scientists, as most of them seem to have trouble finding a balance between 
ethics and aggressiveness. Ethical barriers are not just problems to be overcome, and other scientists 
are not just tools to be used for furthering one’s progress.

Style determines whether aggressiveness is an asset. For example, we see quite different ag
gressive styles every day on the highway: some drivers fight the traffic, whereas others go with the 
flow much of the time, while anticipating congestion and seizing opportunities.

* self-confidence: Self-confidence fosters a willingness to face challenges and a constructive opti
mism, relatively free of worries about the opinions of others and about whether the problem can be 
solved. Both self-motivation and self-confidence are needed if one is to lead a scientific discipline 
into new productive directions, rather than just following along with the majority. Self-confidence 
inspires acceptance of one’s opinions by others, in spite of scientists’ claims that they are influ
enced only by the evidence, not by the presentation.

* * *

Scientists are subject to many of the same fears as most people. They fear mediocrity, complet
ing a life of science only to conclude that they had little or no significant impact on science. They 
fear humiliation, being proved wrong in print or, worse yet, being shown to have made some mis
take that ‘no real scientist should make.’ They fear that someone else will get the credit for their 
discoveries. They fear that they cannot keep up with the pace of science and are being left behind 
[Sindermann, 1987].

Perhaps instead they should fear that they have lost proportion: that they are sacrificing too 
much of their personal life to science, that they have abandoned some ethical values because those 
values hampered achievement of scientific objectives.

* * *

“What is then the quality which enables some men to achieve great things in sci
entific research? For greatest achievements men must have genius — that elusive qual
ity that so often passes unrecognized, while high ability receives reward and praise.
But for achievement genius is not enough, and, for all but the greatest achievements, 
not necessary. What does appear essential for real achievement in scientific research is 
a combination of qualities, by no means frequent, but commoner than is genius. It
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seems that these qualities are clarity of mind, a combination of imagination and cau
tion, of receptivity and skepticism, of patience and thoroughness and of ability to fi
nalize, of intellectual honesty, of a love of discovery of new knowledge and under
standing, and of singleness of purpose. Of these the most important is the love of 
discovery of new knowledge and understanding. If any young readers, contemplating 
scientific research as a profession, do not feel this love . . . scientific research is not 
for them.” [Freedman, 19501

“What can I wish to the youth of my country who devote themselves to science?
Firstly, gradualness. About this most important condition of fruitful scientific work I 
never can speak without emotion. Gradualness, gradualness and gradualness. Learn 
the ABC of science before you try to ascend to its summit. Never begin the subse
quent without mastering the preceding . . .  Do not become the archivists of facts. Try 
to penetrate the secret of their occurrence, persistently search for the laws which gov
ern them. Secondly, modesty. Never think that you already know all. However highly 
you are appraised, always have the courage to say of yourself -  I am ignorant. Do not 
allow haughtiness to take you in possession. Due to that you will be obstinate where it 
is necessary to agree, you will refuse useful advice and friendly help, you will lose the 
standard of objectiveness. Thirdly, passion. Remember that science demands from a 
man all his life. If you had two lives that would be not enough for you. Be passionate 
in your work and your searchings.” [Pavlov, 19361

* * *

These generalizations concerning characteristics of scientists are subjective, based on my and 
others’ personal observations. In contrast, Rushton [1988] summarizes the results of several objec
tive statistical analyses as follows:

“Scientists differed from nonscientists in showing high general intellectual curi
osity at an early age and in being low in sociability. . . Eminent researchers [werel . . . 
more dominant, self sufficient, and motivated toward intellectual success. . . In sum
mary, the impression that emerges of the successful research scientist is that of a per
son less sociable than average, serious, intelligent, aggressive, dominant, achievement 
oriented, and independent.”

* * *

Cooperation or Competition?
Both cooperation and competition are integral aspects of scientific interaction. Joint projects 

combine diverse, specialized expertise to promote research success. For many scientists, competi
tion provides a motivation to excel. This drive to win is particularly effective for those researchers 
who can pace themselves, putting out a burst of extra effort on those occasions when it can make 
the decisive difference between being a discover and being a confirmer of others’ discoveries.

The choice between scientific cooperation and competition is a daily one, involving conscious or 
unconscious decisions on style of interactions with scientific peers. Most scientists simplify this 
decision-making by adopting a strategy that provides the decision. Perhaps the strategy is to coop
erate with all other scientists; perhaps it is to compete with everyone over everything. More likely, 
the individual always cooperates with a few selected scientists and competes with others. Whatever 
viable strategy is selected, we should recognize its consequences.
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The survival value of successful competition is almost an axiom of evolutionary theory. Why, 
then, has cooperation survived evolutionary pressure, in humans as well as in many other species? 
Kinship theory is the usual explanation. According to kinship theory, a genetically influenced strat
egy such as cooperation is evolutionarily viable if it helps a substantial portion of one’s gene pool 
to survive and reproduce, even if the cooperator dies. A classic example is the sterile worker honey
bee, which commits suicide by stinging. Altruism of parents for offspring is easy to explain, but 
kinship theory also successfully predicts that altruism would be high among all members of an im
mediate family and present throughout an inbred tribe. Sacrifice for an unrelated tribe member may 
improve future treatment of one’s children by tribe members.

Modified kinship theory can account for many manifestations of cooperation and competition 
among scientists. An us/them perspective can be developed among members of a company, univer
sity, or research group. Thus a member of a National Science Foundation proposal-review panel 
must leave the room whenever a proposal from their home institution is under discussion. Here the 
health or reputation of an institution is an analogue for genetic survival. Similarly, a clique of scien
tists with the same opinion on a scientific issue may cooperate to help defeat a competing theory.

For scientists facing the decision of cooperation or competition with a fellow scientist, kinship 
theory is not a particularly useful guide. A more helpful perspective is provided by the concept of 
an evolutionarily stable cooperation/competition strategy. Evolution of a cooperation/competition 
strategy, like other genetic and behavioral evolutions, is successful only if it fulfills three conditions 
[Axelrod and Hamilton, 1981]:
* initial viability. The strategy must be able to begin by gaining an initial foothold against estab
lished strategies.
* robustness. Once established, the strategy must be able to survive repeated encounters with many 
other types of strategy.
* stability. Once established, the strategy must be able to resist encroachment by any new strategy.

Axelrod and Hamilton [1981] evaluated these three criteria for many potential coopera
tive/competitive strategies by means of the simple game of Prisoner’s Dilemma [Rapoport and 
Chammah, 1965]. At each play of the game, two players simultaneously choose whether to cooper
ate or defect. Both players’ payoffs depend on comparison of their responses:

My choice Other’s choice My score Explanation
cooperate defect 0 Sucker’s disadvantage
defect defect 1 No-win mutual defection
cooperate cooperate 3 Reward for mutual cooperation
defect cooperate 5 Competitive advantage

When the game ends after a certain number of plays (e.g., 200), one wants to have a higher 
score than the opponent. But even more crucial if the game is to be an analogue for real-life compe
tition and cooperation, one seeks the highest average score of round-robin games among many in
dividuals with potentially varied strategies.

The optimum strategy in Prisoner’s Dilemma depends on both the score assignments and the 
number of plays against each opponent. The conclusions below hold as long as:
* S < N < R < C ,i.e .,m y  defection pays more than cooperation on any one encounter, and coopera
tion by the opponent pays more to me than his or her defection does;
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* R > (C+S)/2, i.e., cooperation by both pays more than alternating exploitation; and
* I neither gain nor lose from my opponent’s scoring (e.g., if I were to gain even partially from his 
gains, then continuous cooperation would be favored).

If one expects to play only a single round against a specific opponent, then the optimum strat
egy in Prisoner’s Dilemma is to always defect. Similarly, in a population of individuals with no re
peat encounters or within a species incapable of recognizing that an encounter is a repeat encounter, 
constant competition is favored over cooperation. More relevant to interactions among scientists, 
however, is the case of many repeat encounters where one remembers previous encounters with a 
given ‘opponent’. It is this situation that Axelrod and Hamilton [1981] modeled by a computer 
round robin tournament, first among 14 entries and then among 62 entries of algorithm strategies 
submitted by a variety of people of different professions. Subsequent computer studies by various 
investigators simulated the process of biological evolution more closely, incorporating variables 
such as natural selection (higher birth rate among more successful strategies) and mutation.

In nearly all simulations, the winner was one of the simplest of strategies: tit fo r  tat. Tit fo r  tat 
cooperates on the first move, then on all subsequent moves duplicates the opponent’s preceding 
move. Axelrod and Hamilton [1981] call tit fo r  tat “a strategy of cooperation based on reciproc
ity.” When tit fo r  tat encounters a strategy of all defect, it gets burned on its first cooperative move 
but thereafter becomes a strategy of all defect, the only viable response to an all defecter. Tit fo r  tat 
does much better against itself than all defect does against itself, and tit fo r  tat also does much better 
against various other strategies, because mutual cooperation pays off more than mutual defection.

Axelrod and Hamilton [1981] prove that tit fo r  tat meets the success criteria of initial viability, 
robustness, and stability for Prisoner’s Dilemma, and they argue that tit fo r  tat is also a successful 
evolutionary strategy in various species from human to microbe (its reactive element does not re
quire a brain). Some of their examples are highly speculative, while others such as territoriality ring 
true. Individuals in adjacent territories develop stable boundaries (‘cooperation’), but any attempt 
by one individual to encroach is met by aggression by the other. In contrast to this dominantly tit 
for tat behavior with the same individual, one-time encounters with encroaching strangers are con
sistently met by aggression (all defect).

Tit fo r  tat does have two weaknesses. First, a single accidental defection between two tit fo r  tat 
players initiates an endless, destructive sequence of mutual defections. Second, a tit fo r  tat popula
tion can be invaded temporarily by persistent cooperators. An alternative strategy -  win-stay, lose- 
shift -  copes with these situations more successfully [Nowak and Sigmund, 1993], This strategy 
repeats its former move if it was rewarded by a high score (opponent’s cooperation); otherwise, it 
changes its move. The strength of this strategy stems from the fact that cooperation by the opponent 
is more beneficial than their defection. Win-stay, lose-shift quickly corrects mistakes, and it exploits 
chronic cooperators.

It’s incredible that we scientists make decisions -  sometimes difficult, sometimes emotion-laden 
-b ased  on strategies similar to those used by some single-celled organisms. Success of tit fo r  tat 
and win-stay, lose-shift in computer games of Prisoner’s Dilemma does not imply that these strate
gies are appropriate guides for interactions with fellow scientists. Experience shows that the ex
tremes of total cooperation and total competition are also viable for some scientists, although the 
‘hawks’ do take advantage of the ‘doves’. Some doves react to being repeatedly taken advantage of 
by becoming either bitter or hawkish. Tit fo r  tat seems like a more mature reaction to being ex
ploited than does rejection of all cooperation.

Which strategy is best for science? Both cooperation and competition are stimulating to scien
tific productivity, and in different individuals either appears to be able to give job satisfaction by ful
filling personal needs. Communication of scientific ideas is clearly a win-win, or non-zero-sum
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game [Wright, 2000], On the other hand, academic science is being forced into an overly competi
tive mode by the increasing emphasis on publication records for both funding and promotion deci
sions [Maddox, 1993], Personally, I enjoy cooperation more and I unconsciously seem to use tit 
for tat, achieving cooperation most of the time without the sucker’s disadvantage.

“And though I have the gift of prophecy, and understand all mysteries, and all 
knowledge; and though I have all faith, so that I could remove mountains, and have 
not charity, I am nothing.” [1 Corinthians 13]

* * *

Science Ethics
Personal and professional ethics are not distinguishable; all ethics are personal. A scientist must 

make ethical decisions with care, not only because they affect self image but also because, as 
Sindermann [1987] has pointed out, scientific reputations are fragile.

Some rules of scientific ethics are universal, and others are subjective. All require personal 
judgment. Not all of the ethical opinions that follow can claim consensus. Another perspective, and 
one which has been subjected to much wider review, is given in the excellent pamphlet, “On Being 
a Scientist” [Committee on the Conduct of Science, 1989], Scientists are not democratic; most in
sist on deciding personally whether a rule warrants following, rather than accepting the majority 
vote. Imagine yourself, for example, in the following situations; what would your decision be in 
each case?

Research project:

•You have just completed a study on the effect of X on Y. Nineteen of the twenty data points ex
hibit a very close relationship between X and Y, but something seems to be wrong with one data 
point: it is far different from the pattern. Should you omit it from your publication entirely, include 
it and explain that you consider it to be anomalous, or include it just like the other data?
* In your publication you cite relevant studies by others. Should you devote just as much discussion 
to studies that are inconsistent with your conclusions as to studies that are consistent?
* You have reached an insight inspired by reading a preprint, a pre-publication copy of a scientific 
article. Should you immediately publish the idea, giving credit to the preprint?
* For the paper that you are writing, should you include as authors people who have made useful 
suggestions? People who did only 5% of the work? People who did substantial work but disagree 
with your analysis or conclusions?
* Your graduate student has selected, carried out, and written up a project. You provided funding and 
guidance. What should the authorship be?

Research-related issues:
* Is it OK to make a personal copy of software, if you cannot afford to purchase it? Is it OK to buy 
one copy of a program, then install it on all of the computers in your lab?
* You are filling out a travel expense form. It forbids claiming an item (e.g. tips) that you consider 
to be a legitimate expense, or you failed to get a receipt for some item and you are not allowed re
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imbursement without a receipt. Should you increase some other category by an equivalent amount? 
Should you claim full per diem when your actual daily expenses were substantially less?
•You are writing the budget for a proposal. Knowing that the funding agency routinely cuts budg
ets by 10-30%, should you pad the proposal budget by 20%?
* A funding agency has announced that it seeks proposals on some subject. You are doing work on 
a quite similar subject. Should you submit a proposal, recasting your work in terms of the desired 
research? If funded, is it OK to continue in the original research area rather than focusing entirely 
on the area desired by the funding agency?
* In submitting a proposal, you know that including one subproject will substantially increase the 
chances of proposal funding but that the subproject is not really viable. Should you include it any
way? Should you say that you will accomplish more than you realistically expect to achieve?

Applied vs. basic research:
* Is it selfish or even ethical to carry out a government-funded basic research career, if you think 
that your research has absolutely no practical value?
* If your research has potential practical applications that you approve of, should you suggest that 
your employer get a patent or should you start an independent company that gets a patent?
* If your research has potential practical applications that you disapprove of, should you reveal 
them?

Every ethical decision must be weighed personally and subjectively. Before making a final deci
sion on any ethical issue, it is worthwhile to consider the issue from the standpoint of Kohlberg’s 
[1981,1984] criterion for mature moral judgment: does the judgment hold regardless o f which po
sition one occupies in the conflict? It may be worth reviewing your decisions on the ethical ques
tions above, this time pretending that you were a person affected by the decision rather than the one 
making the decision. Kohlberg’s criterion sounds almost like a generalization of “Do unto others 
as you would have them do unto you.” The habit of applying Kohlberg’s criterion is analogous to 
the habit (or skill) of objectively evaluating the effect of data on various hypotheses, without regard 
for which hypothesis one favors [Kuhn et al., 1988],

* * *

Verbal, if not always behavioral, unanimity prevails on three ethical issues: fraud, intellectual 
honesty and theft of ideas.

Fraud and falsification of data are so inimical to scientific method that almost never do scien
tists succumb to their lure of quick rewards. Even a single case of scientific fraud, when publicized, 
does unimaginable damage to the credibility of scientists in general, for the public cannot confirm 
our findings; they must trust them. Fraud also slows the advance of a scientific field, for experi
ments seldom are exactly replicated, and fraud is not suspected until all alternative explanations have 
been eliminated.

“The scientific mind is usually helpless against a trained trickster. Because a man 
has mastered the intricacies of chemistry or physics is no qualification for him to de
duce how the Chinese linking rings, for instance, seem to melt into each other, passing 
metal through solid metal. Only a knowledge of the rings themselves can reveal the 
secret. The scientific mind is trained to search for truth which is hidden in the mys
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teries of nature — not by the ingenuity of another human brain.” [Houdini, 1874
19261

Intellectual honesty must be a goal of every scientist. As we saw in Chapter 6, people tend to 
ignore evidence that diverges from expectations. We must fight this tendency; continued awareness 
and evaluation of possible personal biases is the best weapon. Intellectual honesty requires that we 
remain alert to conflicts of interest, whenever we review proposals and manuscripts, and wherever 
objectivity and personal advancement clash. Intellectual honesty requires that we face weaknesses as 
well as strengths of data, hypotheses, and interpretations, without regard for their origin, invested 
effort, or potential impact on our beliefs.

“Thou shalt not steal,” and the currency of scientists is not money or objects but ideas. Intel
lectual plagiarism, the attempt to take credit for the ideas of others, is clearly unacceptable, but its 
boundaries are indefinite. Most scientists feel that:
* It is not OK to initiate a research project inspired by communications from another scientist in a 
letter, conversation, lab visit, or preprint, unless the other scientist has specifically encouraged you to 
do so. Ask permission, but weigh the other’s response to decide whether they really favor your 
jumping in or they simply feel obliged to say yes.
* It is OK to initiate a research project inspired by another scientist in a scientific talk for which ab
stracts are published. One should refrain from publishing a manuscript on this project, however, 
until the other scientist has published.
* It is not OK to let your research plans be affected in any way by either a proposal or a manuscript 
that you have been sent for review.
* It is OK to jump into a research area as soon as it has been published. The authors have no right 
to keep the field to themselves, and they do have a head start.
* When mentioning a previously published idea in a publication, reference the originator unless the 
idea has become common knowledge.

Intellectual plagiarism is more often suspected than deliberately practiced. Ideas frequently stem 
from interactions with others. In such cases, the combination of two perspectives deserves credit for 
development of the idea, not the person who first verbalizes it. Perhaps the idea is not even verbal
ized during the discussion, yet one of the individuals later ‘realizes’ the idea when solitarily think
ing about the subject. Menard [1986], reviewing the formative days of the geological paradigm of 
plate tectonics, found that simultaneous ‘independent’ discoveries were remarkably common.

* * *

Publication
“To study, to finish, to publish.” [Benjamin Franklin, 1706-17901

Communication of results, particularly via publication, is an essential part of a scientist’s life. I 
could describe the highly ritualized design of most modern publications: introduction, experimental 
techniques, observations, and conclusions. I am more intrigued, however, by the contrast between 
publications, which are dry and rational, and publication experiences, which can be heavily emotion
laden. Let us examine briefly the publication experiences of some of our greatest scientific fore
bears: Euclid, da Vinci, Newton, Darwin, Mendel, and Einstein.
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* * *

Pythagoras founded Greek mathematics and especially geometry in about 550 B.C.. He and his 
Pythagorean school made the geometry one of the greatest accomplishments of Greek science. For 
systematically expounding and expanding Pythagorean geometry, however, we owe thanks to 
Euclid. In Alexandria in about 300 B.C., he wrote Elements of Geometry, and until recent years it 
was the most translated and copied book in history except for the Bible [Bronowski, 1973]. Many 
famous scientists in these two millennia thanked Euclid’s book for showing them the beauty of 
what Pythagoras called the ‘language of nature’.

* * *

Leonardo da Vinci (1452-1519) combined the eye of an artist with the curiosity and analytic 
ability of a scientist. He epitomized the breadth and depth of the Italian Renaissance, by the scope 
of subjects and the novelty of perspectives in his notes. He was self-taught, with no intellectual 
training and therefore minimal limiting dogma [Goldstein, 1988].

Unfortunately, Leonardo made absolutely no contribution to contemporary scientific knowl
edge. He did not interact with scientists and he did not publish anything. His now-famous notes 
were private, written backwards to prevent casual reading by others. If a researcher publishes noth
ing and thereby makes no contribution whatsoever to the field of science, can that person even be 
called a scientist? Such questions are as fruitless as the question of whether a scientist-administrator 
is a scientist. Certainly Leonardo was an inspiring example to later scientists. Certainly Leonardo’s 
lack of scientific communications to his peers was a heartbreaking loss to science.

* * *

The greatest scientific book of all time is Principia Mathematica. completed by Isaac Newton in 
1687. Newton’s paradigm of the physics of motion united terrestrial and planetary motions with 
simple mathematical laws. He elegantly demonstrated the ability of theoretical physics to derive pre
cise predictions of empirically observable phenomena. Yet Newton was so insecure and so incapa
ble of dealing with the criticisms of others that he nearly failed to make his findings public. He 
completed much of the work of Principia many years before publishing it. Only Edwin Hubble’s 
constant encouragement and partial financing eventually compelled Newton to produce Principia.

Twenty years earlier, when Newton began his work on gravitation, he developed the calculus. 
Rather than publish calculus, he kept it secret, using it to make several discoveries but then couching 
the presentation of these discoveries in ordinary mathematics. In about 1676 Gottfried Leibniz de
veloped calculus independently. Newton, convinced that Leibniz had somehow stolen the idea from 
him, started a bitter feud.

Although Newton was undoubtedly one of the most brilliant scientific minds in history, his in
security fostered arrogance and prevented him from distinguishing scientific criticism from per
sonal criticism. He was ridiculed, and he responded by trying to discredit and destroy other scien
tists. Personal weakness damped, at least temporarily, his scientific impact. Fortunately, he did 
publish.

* * *

Alfred Russel Wallace and Charles Darwin independently discovered the theory and mecha
nism of evolution. Both recognized the phenomenon of evolutionary divergence, based on extensive 
observations as a naturalist (particularly in South America). Both spent years seeking a mechanism 
for this divergence, and both credited their discovery of that mechanism to reading Malthus.
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Wallace called the mechanism survival of the fittest and Darwin called it natural selection. But Dar
win’s insight was in 1838 and Wallace’s was in 1858.

Darwin, like Newton, was reluctant to publish but even more reluctant to see someone else get 
the credit for ‘his’ discovery. Fortunately, other scientists arranged for Wallace and Darwin to pre
sent their results in talks at the same meeting. Darwin’s Origin of Species, published in 1859, 
stunned the scientific world with the weight of its diverse data. Its conclusions were so radical that 
overwhelmingly compelling data were essential. Darwin left the task of arguing the case to others.

Wallace is largely forgotten today, but he had experienced far greater disappointment than see
ing Darwin receive much of the credit for the theory of evolution: after spending four years collect
ing animal specimens in the Amazon, he lost everything when the ship home caught fire.

“With what pleasure had I looked upon every rare and curious insect I had added 
to my collection! How many times, when almost overcome by the ague, had I crawled 
into the forest and been rewarded by some unknown and beautiful species! How 
many places, which no European foot but my own had trodden, would have been re
called to my memory by rare birds and insects they had furnished to my collection!

“And now everything was gone, and I had not one specimen to illustrate the un
known lands I had trod or to call back the recollection of the wild scenes I had be
held! But such regrets I knew were vain, and I tried to think as little as possible about 
what might have been and to occupy myself with the state of things which actually 
existed.” [Wallace, 18531.

To Wallace, 1858 brought two joys: he solved a problem that had obsessed him for years, and 
he was personally responsible for the public awareness of the revolutionary concept of evolution. 
The most important thing that he brought back from South America was in his mind, not in flam
mable boxes.

* * *

Gregor Mendel undertook and published one experiment in his life. He used measurements of 
characteristics of sweet peas to lay out the basic pattern of genetic inheritance. The results overthrew 
the conventional theory that offspring inherit traits intermediate between their two parents; they 
demonstrated instead that offspring inherit each trait from only one parent, in predictable integer 
proportions.

“Mendel published his results in 1866 in the Journal of the Brno Natural History Society, and 
achieved instant oblivion. No one cared. No one understood his work” [Bronowski, 1973], He 
picked an obscure journal, he failed to distribute copies of his paper to biologists, he was a monk 
rather than a professional scientist because he had flunked out of the university, and his research 
was before its time. Thirty years passed before biologists were ready to appreciate Mendel’s paper.

* * *

Paradigm change can be explosively rapid on the time scale of evolution of a scientific field, yet 
ploddingly slow on the time scale of an individual scientist. While working full time at the patent 
office in 1905, Albert Einstein published five revolutionary papers: light quantized like particles 
rather than waves, diffusion-based estimates of the size of molecules and of Avogadro’s number, 
Brownian motion (a final confirmation of the existence of atoms), the special theory of relativity, 
and conversion of mass into energy.

He later submitted the diffusion paper to the University of Zurich as a potential doctoral thesis. 
It was rejected as too short; Einstein added one sentence and resubmitted it, and it was accepted. But
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when in 1907 he wanted to leave the patent office and become a university lecturer, he needed to 
have an approved inaugural thesis. He submitted his 1905 paper on special relativity to Bern Uni
versity; the paper was rejected as ‘incomprehensible’ [Hoffmann, 1972].

* * *

In considering the publication examples above, there are lessons that I accept intellectually but 
do not fully practice. I have not always published my research results. Nor have I always sold my 
results successfully. These examples increase my motivation to complete projects by publishing 
effectively. By revealing familiar personality traits, these examples increase my sense of community 
with past and present scientists.

* * *

A Scientist’s Life: Changing Motivations
Career motivations, within science or other professions, are not static. They evolve -  sometimes 

radically. For a significant proportion of scientists, parts of the composite scientific life below may 
be familiar.

She chose science, or was chosen by it, while she was a child. Through childhood and under
graduate years, her fascination with science was a love of learning how the world works. Books, 
including textbooks, were the road. ‘Facts’ were collected uncritically and enthusiastically.

Naturalist Edwin Way Teale was six years old when he first experienced, in a patch 
of forest, the fascination with nature that guided his life. In later years he tried unsuc
cessfully to refind that patch of forest, but the power of the initial experience re
mained with him:

“For me, the Lost Woods became a starting point and a symbol. It was a symbol 
of all the veiled and fascinating secrets of the out-of-doors. It was the starting point of 
my absorption in the world of Nature. The image of that somber woods returned a 
thousand times in memory. It aroused in my mind an interest in the ways and the 
mysteries of the wild world that a lifetime is not too long to satisfy.” [Teale, 19591

In graduate school, her motivations changed:

“Enough of Science and of Art;
Close up those barren leaves;
Come forth, and bring with you a heart 
That watches and receives.”
[Wordsworth, 17981

After two decades of experiencing science through textbooks, she found a compelling alterna
tive to texts: personal scientific discovery. Second-hand knowledge paled by comparison. The in
terpretations of others were subjective and required personal evaluation, mainly on scientific 
grounds. Observation and insight were an intoxicating combination. Competing and being first 
were part of the game.

In her thirties and forties, being first almost became the game. Recognition brought responsi
bilities that were essential to science. Time was short: it was more efficient to advance science 
through administration, management, and the training of students. Students took over the time
consuming data collection, but her scientific planning, data interpretation, hypothesis generation and
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insight continued unabated. Recognition and power brought their own rewards. The opinions of 
others, like dependent variables, could be modified to achieve her objectives.

Love of science seems to be universal among new scientists. Yet it fades in some scientists, par
ticularly those who become managers and administrators. Perhaps individuals move from research 
into administration partly because of waning thrill of scientific research. Perhaps they move first, as 
reluctant draftees who are called on to serve a need, and they find later that love of science is being 
supplanted by fresher job satisfactions such as recognition and power. Failures we all can afford. 
The cost of success, for many, is loss of wonder.

“If I would be a young man again and had to decide how to make my living, I 
would not try to become a scientist or scholar or teacher. I would rather choose to be 
a plumber or a peddler in the hope to find that modest degree of independence still 
available under present circumstance.” [Einstein, 1954]

Few of these motivational changes were based on systematic strategic planning of her career. 
More often she simply reacted to the many victories, frustrations, and emotional fireworks of day- 
to-day life. Yet she perceived the true importance of these when suddenly she faced her own mor
tality.

“Sometimes one finds in fossil stones the imprint of a leaf, long since disinte
grated, whose outlines remind us how detailed, vibrant, and alive are the things of this 
earth that perish.” [Ackerman, 1990]

During the Cuban missile crisis, we faced the world’s mortality. After the crisis, we reassured 
each other, saying “I’m glad that’s over.” We returned to our old lives but found that we had 
somehow changed. Facing mortality changes one ineffably: the critical becomes trivial, and new 
priorities emerge. In the blazing light of awareness of death, the inessential and peripheral are 
burned away. Few things remain: love and living science are two.

Between now and my death is an opportunity. How shall I use it?

After the albatross was killed, and before it was avenged:
“The fair breeze blew, the white foam flew,
The furrow followed free;
We were the first that ever burst 
Into that silent sea.”
[Coleridge, 1798]

* * *

Process and Product
They say that Tantalus was punished by the gods, doomed to see a branch of fruit tree waving 

in the wind just beyond his reach, doomed to see the waters retreat from him each time he dipped 
his palm to drink, and thus consigned to be forever hungry and thirsty. Millennia later, the Buddha 
sat beneath a bo tree, determined to remain there until he gained knowledge. Both were tantalized by 
their objective; only one eventually embraced the path itself, learning the archer’s skill of knowing 
when to pull and when to let go. Today, eager to quench our appetites, we scientists grasp for the 
same fruit of knowledge.
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“I dreamed that I floated at will in the great Ether, and I saw this world floating 
also not far off, but diminished to the size of an apple. Then an angel took it in his 
hand and brought it to me and said, ‘This must thou eat.' And I ate the world.” [Em
erson, 1840]

“Knowledge is our destiny,'’ said Bronowski [1973], and sometimes I am similarly goal- 
oriented in expressing my motivation toward science: I accumulate facts in hopes of finding under
standing; I accumulate understandings in hopes of finding wisdom. Certainly these are aspects of 
my drive for living science, but perhaps the ends are merely a justification for the means. I think that 
Joseph Campbell [1988a] perceived a deeper obsession in his parable of the ‘motivation’ of the 
grass in a lawn:

The grass grows, and yet every week or so a human comes along and ruthlessly 
mows it, annihilating all of the week's progress. Does the grass think, “Oh, for Pete's 
sake, I give up!” Of course not. For the mower, as for the mown, it goes on, toward 
ends unknown.

“It bothers some people that no matter how passionately they may delve, the uni
verse remains inscrutable. ‘For my part,' Robert Louis Stevenson once wrote, ‘I travel 
not to go anywhere, but to go. . . The great affair is to move.' . . .  It began in mys
tery, and it will end in mystery, but what a savage and beautiful country lies in be
tween.” [Ackerman, 1990]

[W atterson, 1993]

Those who are living science love the process of science -  the unique synergy of control and 
freedom, of skepticism and innovation. They love to use all of the scientific methods and try to 
dodge their pitfalls. Only rarely does the lightning flash of insight course through them, more often 
they feel the satisfaction of a successfully diagnostic experiment, and daily they overcome minor 
hurdles.

At times, when I lived in Alaska, the brightness of the night sky kept me awake.
Last night, its darkness did the same. How can the night sky be dark? If the universe is 
infinite, then shouldn't it be uniformly bright, lit by an infinite number of stars in 
every direction? This ‘dark-sky paradox' has puzzled astronomers for more than a 
century, and it has been ‘solved’ more than a dozen times [Gleick, 1992a]. The mod
ern solution begins by reminding us that what we see in the night sky is the photons 
currently reaching our eyes, recording events that happened on different stars light- 
years ago. And how far back in time can we see? No farther than the 12 billion-year- 
ago big-bang origin of the universe. Stars more than 12 billion light-years away are 
invisible to us today, because the light hasn't reached us yet. It goes on, toward ends 
unknown.
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I’m no astronomer, but still I wonder. Didn’t Einstein show that two stars cannot 
move apart faster than the speed of light? How, then, can the unseen stars be so far 
away? Who can relax and sleep, if the universe is breaking its speed limit? Is the uni
verse infinite, and are those unseen stars there in the black portions of sky? Walt 
Whitman [1892], as usual, had the keenest vision: “The bright suns I see and the dark 
suns I cannot see are in their place.”
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scientific value, 146, 148, 151 

algebra, 7
analogy, see: comparison 
anthropology, 98, 126, 136, 137 
applied research, see: science - applied 
astronomy, 1 ,4 ,6 , 10 ,44 ,45 ,68 ,90 ,98-101 , 122, 

151, 157, 188, 194,208,212 
axiom, 4, 13

B

basic research, see: science - basic 
bias, 5, 17 -20 ,25 ,34 ,35 ,50 ,51 ,91 , 114, 116, 118

120, 125-127, 129, 131, 136-143, 148, 164, 165, 
207
removal via randomization, 19,42, 67, 118 

biology, 60,90, 98, 139, 149, 151, 177, 178,209 
brain, 51, 132, 133, 142, 176, 177,204

c
calibration, 18,114

standard, 102, 112, 118, 121 
career, 165, 186, 189, 195, 199,200,206,210,211 
causality, 7, 13,43, 60-64, 68, 89, 90, 94, 118, 129, 

136,146,157 
definitions of, 60-64
determining cause and effect, 42, 60-67,70, 89, 

120

scientific, 62-64 
chance, 16, 1 9 ,2 0 ,2 1 ,2 6 ,3 0 ,3 8 ,4 1 ,4 5 ,4 6 ,5 7 ,7 2 , 

84,97, 100, 101, 108, 114, 136, 140, 147, 159, 
161, 171, 172, 178, 196,206 
also see: accident 

change
artifical variation, 119 
detection of, 13, 15, 37, 65, 69, 139 
scientific, 1, 3, 6 , 8, 9, 11, 161, 163, 164 
also see: experiment -  changes to 

chemistry, 9 ,45 , 151, 166,206

classification, 4 ,4 3 ,4 5 , 55, 84, 99 
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89,90 ,100 , 111, 123 ,124,138,146-149,151
15 3 ,156-160,164,165,188,200



2 3 0

hypothetico-deductive method, 13, 82

I
ideal class, 45 
imagination, see: insight 
independent variable, 46 ,108,139 

definition of, 117 
induction: Chapter 3 

scientific, 42, 86 
industrial research, see: science - applied 
innovation, see: insight 
insight: Chapter 8

characteristics of, 170,173,177 
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reformulation of, 64, 111 
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case studies of, 207-210 
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relationship to science, 8, 9,60 

replicatability, 17, 20,188
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123
replication of experiments, 20, 27 ,101,142,143,

145,206
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research, see: experiment, experimental design, 

experimental technique, science

s
sampling

distribution, see: statistics - normal distribution 
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independent, 36,55 
nonrepresentative, 18,94,96 
random, 19,113,118 
representative, 18 ,19 ,42 ,46 ,156  
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science: Chapter 9
applied, 2 ,6 , 8 ,103 ,150,151,185,189-192,194,

195,206 
arts and, 9,187
basic, 2 ,103 ,185,189-192,194,195,206
big and little, 193,194
comparison of basic and applied, 189-191
experimental, 5 ,8 ,1 0 -1 4 ,6 8 ,9 9 ,1 0 1 ,1 6 2 ,1 9 4
funding, 191-193
history of, 3-12
lay perspective, 183-187
observational, 98-100,194
scope, 14
theoretical, 10,194 

scientific freedom, see: academic freedom 
scientific instruments, see: instruments 
scientific literature, see: literature 
scientific method 

myth of, 12
summary of, 12,13,169 
variety of, 12,14,100,188 

scientific pecking order, 194,195 
scientific progress, 13 ,14 ,74 ,113 ,123 ,136 ,146 , 

150,151,162,164,194,198,201 
scientific research, see: science 
scientist: Chapter 10 

egotism, 195
motivations, 184,210-212 
personal characteristics, 184,197-202 
variety of, 12 

search procedure, 104-109 
social science, 1 5 ,1 9 ,2 0 ,5 4 ,6 0 ,6 2 ,6 9 ,9 6 ,1 1 8 , 

136,141,189,194 
society and science, 189,190 
sociology, 70 ,96 ,136 ,139 ,188  
standard, see: calibration 
statistics: Chapters 2 & 3 

arithmetic mean, 32 
Chauvenet’s criterion, 33, 35,41 
confidence limits, 18,25-27, 33-35 
correlation, see: correlation 
degrees of freedom, 31 
geometric mean, 32 
harmonic mean, 32 
linear regression, 55-60 
mean, 23-27,31, 34, 35 
median, 33-35

nonlinear relationships, 58,60 
nonparametric, 30, 32-37, 59 
normal distribution function, 23, 24 
parametric, 30, 32-37, 50 
pitfalls, 29
probability, see: probability 
propagation of errors, 28,29 
quartile, 34
range of data, 34 ,51 ,60  
rejecting anomalous data, 32, 33, 35 
skewness, 30, 31,41 
standard deviation, 23-27, 34 
standard error, 25-27 
standardize, 31 
variance, 24,26 
weighting, 26, 35,56

%“ test, 30,31 
stereotype, 127 
syllogism, 4 ,5 ,7 2 , 82-85 

categorical, 83,84 
hypothetical, 85,86 
substitution, 84 

symmetry, see: comparison - symmetry 
systematic error, see: bias

T
technology

economic effects of research, 190,191 
effects on science, 101,163,179,186 
predictions, 8
relation to science, 4 ,6 ,1 8 5 ,1 8 6 ,1 9 0  
side effects, 185,186 
transfer, 192 

testing, see: hypothesis -  testing of 
textbook science, 147,161,186,188,192,210 
theoretical science, see: science - theoretical 
theory, 148,160 

definition of, 13 
time series, 52-55,60
troubleshooting, see: experiment -  troubleshooting, 

instrument - troubleshooting

V
values, 184,187,201 

judgment, 146-151,160 
variable

causal, 18 ,46,60-69,117,165 
control of, 8 ,11 ,12 ,6 3 ,6 6 ,8 9 ,9 8 -1 0 0 ,1 0 3 ,1 0 8 , 

112,117-119,138,163 
definition of, 13,15
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dependent, see: dependent variable 
explanation of, 43
independent, see: independent variable 
intervening, 69
isolation of, 20 ,62 ,103 ,112 ,117 ,119 ,143 ,146  
measurement, see: measurement types, data 
quantification, 15
relations among, 13,15, 22 ,43 ,46 , 50,53-60,119 
significant, 27
uncontrolled, 18,105,116-118 
unknown, 7 ,18 , 20, 32, 37,118 

verification, see: confirmation and refutation

w
work

intensity of, 197, 198 
satisfaction, 200


