
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

S y n th e s is o f T im e d C ir c u i ts B a s e d o n D e c o m p o s i t io n
Tomohiro Yoneda, Member, IEEE, and Chris J. Myers, Senior Member, IEEE

Abstract—This paper presents a decomposition-based method
for timed circuit design that is capable of significantly reducing
the cost of synthesis. In particular, this method synthesizes each
output individually. It begins by contracting the timed signal
transition graph (STG) to include only transitions on the output
of interest and its possible trigger signals. Next, the reachable
state space for this contracted STG is analyzed to determine a
minimal number of additional signals, which must be reintroduced
into the STG to obtain complete state coding. The circuit for
this output is then synthesized from this STG. Results show that
the quality of the circuit implementation is nearly as good as
the one found from the full reachable state space, but it can
be applied to find circuits for which full-state-space methods
cannot be successfully applied. The proposed method has been
implemented as a part of our tool Nii-Utah Timed Asynchronous
circuit Synthesis system (n u t a s) , and its first version is available
at http://research.nii.ac.jp/~yoneda.

Index Terms—Abstraction, decomposition, synthesis, timed
circuits, timed signal transition graphs (STGs).

I. I n t r o d u c t i o n

T OGIC SYNTHESIS [l]-[4] from low-level specification
1 J languages is one of the major approaches to the automated

synthesis of asynchronous circuits. This approach can poten
tially synthesize more optimized circuits with higher perfor
mance than other methods such as syntax-directed-translation
methods [5]—[10]. It, however, usually requires enumeration of
the state space of the given specification, and it often suffers
from the state-explosion problem. Thus, large specifications
expressed in hardware-description languages have usually been
synthesized by syntax-directed-translation methods or simi
lar techniques that do not require state-space enumeration,
sometimes with local-optimization techniques, such as in [11],
This paper tackles the challenge of using logic synthesis also
for large specifications derived from hardware-description lan
guages, as it has the potential of providing further global
optimization through timed circuit synthesis [12], In this ap
proach, a specification written in some high-level language is
first translated to a timed signal transition graph (STG), and
then, logic synthesis is applied to this timed STG. This method
uses a compiler that generates timed STGs with the complete-
state-coding (CSC) property. Its preliminary tool is described
in [13], and an improved version is described in [14] and [15].

Manuscript received lanuary 23, 2006; revised luly 6, 2006. The work
of T. Yoneda was supported by ISPS loint Research Projects. The work of
C. I. Myers was supported by NSF lapan Program Award INT-0087281,
SRC Grant 2002-TI-1024, and SRC Grant 2005-TI-1357. This paper was
recommended by Associate Editor S. Nowick.

T. Yoneda is with the National Institute of Informatics, Tokyo 101-8430,
lapan (e-mail: yoneda@nii.ac.jp).

C. I. Myers is with the University of Utah, Salt Lake City, UT 84112 USA
(e-mail: myers@ece.utah.edu).

Digital Object Identifier 10.1109/TCAD.2006.888269

Guaranteeing CSC by such a correct-by-construction method,
which may not give optimal solutions in the number of inserted
state variables, is practical for large STGs, because automatic
CSC solvers sometimes do not handle such large STGs well.
Furthermore, by using a special protocol shown in [15] and
[16], the performance degradation caused by the inserted state
variables can be reduced to an almost negligible amount. A key
issue to the success of our approach is a new logic-synthesis
technique that is efficient enough to handle large STGs. This
paper aims at reducing the average cost for logic synthesis from
timed STGs by decomposing (or projecting) a specification to
many small subspecifications and running the logic-synthesis
procedure for each of them.

The idea for decomposition-based synthesis was first pro
posed by Chu [17], In his work, one primary output is chosen
and the given STG is modified by replacing each transition
for the signal that does not affect the output by a dummy
transition. Then, the modified STG is reduced by eliminating
selected dummy transitions, while preserving the behavior.
A correct circuit can be synthesized from this reduced STG
with usually much smaller cost. He, however, left two open
problems. First, the reduction of STGs, called contraction, was
not formalized. For a simple STG such as a marked graph,
its contraction is straightforward. But, in the general case, the
formalized algorithm was unknown at that time. Second, it was
not straightforward to decide if a signal actually affects the
output signal or not and no algorithm to make this decision
is given in his thesis. As for the first problem, Vogler and
Wollowski recently formalized the contraction algorithm using
a bisimulation relation in [18], and Zheng et al, developed a
timed-contraction algorithm in [19]. On the other hand, Puri
and Gu tried to solve the second problem in [20], Their algo
rithm greedily removes an irrelevant signal (with respect to the
output signal) such that the number of CSC violations (CSCV)
does not increase by hiding that signal. This algorithm is, how
ever, not so helpful for our purpose, because it needs the state
graph of the original STG, which cannot be constructed due to
state explosion for very large STGs. Beister et al. proposed a
similar decomposition-based method for extended-burst-mode
machines [21]. Recently, two separate works, one by Carmona
and Cortadella [22] and the other by Khomenko et al, [23],
have been proposed for synthesizing speed-independent circuits
efficiently based on an idea similar to that in [20], Both works
first find the necessary input signals (called support) for each
output by analyzing the original STG and then synthesize each
subcircuit with each output individually. Unlike the approach
of [20], these works do not use the state graph of the original
STG explicitly. That is, the original STG is analyzed using the
integer-linear-programming (ILP) technique in the former and
the incremental-Boolean-satisfiability (SAT) technique in the

0278-0070/S25.00 © 2007 IF.F.F.

http://research.nii.ac.jp/~yoneda
mailto:yoneda@nii.ac.jp
mailto:myers@ece.utah.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

latter, and hence, their methods are much more efficient than
that of [20],

The main contribution of this paper is to propose a new
algorithm to find a sufficient set of input signals for a given
output for the decomposition-based synthesis approach with
out using the state graph of the original STG. The algorithm
starts with a small set of signals, which are certainly needed
for the output signal, and uses only the state graphs of the
contracted STGs for determining other necessary input signals.
Since the state graphs of the contracted STGs are usually very
small, it does not suffer from the state-explosion problem.
Furthermore, its decision procedure computes candidates of the
necessary signals in many cases more directly than the greedy
algorithm in [20], although some cases need heuristics. Since
our approach analyzes the state graphs of the contracted STGs
explicitly, it is very easy to handle timed STGs and this is the
biggest difference between ours and the above ILP/SAT-based
approaches. This paper describes the theory and the algorithms
extended from [24] for the timed circuit synthesis.

The rest of this paper is organized as follows. Section II
shows several definitions needed for this paper. Section III
describes the overview of the proposed method, and Section IV
mentions how to explore timed state spaces and to check
synthesizability. Section V explains in detail how the input
sets are determined, which is the main issue of this paper.
Section VI discusses some complexity issues. Several experi
mental results are shown in Section VII, and Section VIII gives
our conclusion.

II. S y n t h e s i z a b l e STGs

A timed STG G = (P, T, F, Eft, Lft, fi°, I, In , Out) is a la
beled net, where P is a finite set of places, T is a finite
set of transitions (F n T = 0), F C (P x T) U (T x P) is
the flow relation. Eft : T —> Q+, L f t : T —> Q + U {oo} are
functions for the earliest and latest firing times of transitions
satisfying Eft(t) < Lft(t) for all t € T (Q+ denotes the set of
nonnegative rationals), ji° C P is the initial marking, I : T —>
(In U Out) x {+. —} U {A} is the labeling function, and In
and Out are the input and output signal sets. Let sig(G) denote
I n U Out. A transition t with l(t) € I n x {+ . —} is called an
input transition, t with l(t) £ Out x {+ . — } is called an output
transition, and t with l(t) = A is called a dummy transition.
For w € sig(G), w -transition denotes a transition t with l(t) =
w+ or w —. For any transition t, »t = {p € P \(p , t) € F }
and t» = {p € P \ (t ,p) e F } denote the source places and the
destination places of t. For a place p, »p and p» are defined
similarly. Transitions t and t' such that »t (1 • t ' / 0 are said
to be in conflict. Let co n fl ic t(t) = {t’\ • t (1 • t ' 0} — {£}.
In the rest of this paper, when timed STGs G, G \, etc., are
considered, their corresponding components P, T , etc., P\, T%,
etc., are implicitly considered. Furthermore, a timed STG is
simply called an STG if there is no confusion.

A marking fi of G is any subset of P. A transition t is
enabled in a marking if »t C p. (all its source places have
tokens in p); otherwise, it is disabled. Let enabled(/u) be the
set of transitions enabled in ji. A timed state cr of G is a
pair (ji, clock), where n is a marking and clock is a function

T —> R + (R + denotes the set of nonnegative reals). The initial
timed state a 0 is (p°. clock0), where clock°(t) = 0 for all
t € T . A timed state changes if time passes or if a transition
fires. In timed state a = (p. clock), time r € Q + can pass, if
for all t € enabled(/u), clock(t) + r < Lft(t). In this case,
timed state a' = (j j ! . clock') is obtained from a by passing r,
where

1) jj' = n and
2) for all t € T , docket) = clock(t) + r.

In timed state a = (/u. clock), transition t f £ T can fire, if t j €
enabled(p) and clock(tj) > Eft(t/). In this case, timed state
a' = (//, clock') is obtained from a by firing t / , where

1) n ' = (j j — • t /) U t f and
2) for all t G T

0. if t € enabled^')— enabled(/u — • t f)
clock(t). otherwise.

That is, firing a transition t f consumes no time but updates fi
and clock such that the clocks associated with newly enabled
transitions (i.e., transitions that are enabled in / / , the final
marking obtained when t f fires, but not enabled in n — • t f ,
the intermediate marking during t / fires) are reset to zero, and
clock values of other transitions (i.e., transitions not affected by

I f
t f) are left unchanged. Let a —* a' denote that a' is obtained
from a by first passing some time and, then, firing t f . For a
sequence v = tit% ■ ■ ■ of transitions, a cr' is defined simi
larly (cr is equal to cr' for an empty v). v is called a trace, if
there exists a a' such that <r° -̂ > a ' . Let trace(G) denote the
set of all prefix-closed traces of G. If there exists a trace that
leads to cr', cr' is called reachable. A trace may contain multiple
occurrences of the same transition. In this paper, it is assumed
that those occurrences of the same transition are distinguished
in some appropriate way, such as, by attaching firing counts, but
those are omitted for simplicity in this paper. If every reachable
timed state a = (p. clock) such that there exist t and a' with
cr a' satisfies (ji — »t) (11* = 0, then G is called one-safe.
Intuitively, in a one-safe STG, a token is never produced into
a place that is already marked. Furthermore, G is consistent, if
for every trace v € trace(G) and every w € sig(G) such that
v includes two or more w transitions, the last two of them are
different (i.e., m;+ and w —, or w — and w+).

A reachable timed state is mapped to a signal state, which is
a binary vector representing the values of signals in I n U Out.
Different timed states may be mapped to the same signal state.
It is sometimes convenient to annotate a signal state with the
information whether the outputs are excited to rise or fall. For
this purpose, R or F is used in addition to zero or one in signal
states. R represents that the corresponding output signal has
the binary value of zero, but it is excited to rise. F indicates the
signal has a value of one, but it is excited to fall. When these two
notations with or without R / F should be distinguished, we call
the former decorated signal states and the latter nondecorated
signal states. For example, suppose that two timed states a and

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 3

a' have decorated signal states (1010) and (lO li?).1 They have
the common nondecorated signal state (1010), but the behavior
of the output is different in those timed states. This situation is
called a CSC violation, and these two timed states are a CSC
violation pair. If an STG has a CSC violation pair, we say that
the STG does not have CSC. Otherwise, it has CSC. If an STG
does not have CSC, a circuit cannot be synthesized from the
STG without adding a state variable, reducing concurrence, or
otherwise changing the behavior of the STG in some way.

This detection of CSCV is, however, a little complicated, if G
has dummy transitions. Suppose & is obtained from a by firing
the dummy transition and that an output signal is excited in a'
but not in (j. (j and a' have the same nondecorated signal state,
while they have different decorated signal states. In this case,
however, a and o' cannot be distinguished from the outside
(i.e., a dummy transition is invisible), and so, it should not be
considered that they cause a CSC violation. In order to define
this signal excitation formally, it is useful to define a dummy-
free version of a state graph. A timed state graph of an STG
G is a graph (V, E) with an initial timed state a 0, denoted by
Qg — ((V , E),<j°), such that V is the set of all reachable timed
states of G and E is the timed-state transition relation of G, that
is, {((j, £, a')\3v • cr° A a, o o7}. A dummy-free timed state
graph of Qg is a graph (V7, E') with an initial timed state a 0 ,
denoted by Qq = ((V7, E ') , a 0'), satisfying the following:

1) cf0' = cr°;
2) V ' = a) G E , t / A} U {cf0'};
3) E ' = { (a , t ,a s) \a G V', (a ,u iu 2 • • -u n j cr2) € E * ,n >

0, \/i - Ui = A, (<r2, t, a3) G E , t / A}.
This dummy-free timed state graph is constructed based

on the fact that timed-state transitions by a (possibly empty)
sequence of dummy transitions followed by a nondummy
transition can be replaced by the single nondummy transition.
Fig. 1(a) shows a simple timed STG G (the transition labeled
by t is a dummy transition), and its timed state graph and
dummy-free timed state graph are shown in Fig. 1(b) and (c),
respectively. Note that a + , for example, can fire at any time
between one and two time units after it becomes enabled, and
so, there exists an infinite number of timed states reached from
(Jo by firing a + . These figures show for simplicity only timed
states that have different markings.

Now, the signal excitation can be defined on this Qq =
((V', E ') ,c f0'). An output signal w is excited in a timed state
cf, if 3cf' • (<j, £, cf') G E ' with l(t) = w-\- or l(t) = w —. For ex
ample, x is excited to rise in . This straightforward definition
is, however, not sufficient for the timed case. Consider cf2 of
Fig. 1(b). In this timed state, both x-\- and y+ are enabled but
only x + can fire in this state, because the earliest firing time
of y+ is larger than the latest firing time of x+ . Thus, o\ has
only one successor state reached by firing x-\- in Fig. 1(c). It is,
however, necessary to define that y is also excited in cf\ in order
to synthesize a circuit for the output y correctly, because y is
triggered by a + , not by x+ , as shown in the STG. Therefore,
the signal excitation should be defined based on the enabledness

!Note that in (1010) some input may be excited, but only outputs are
decorated in our definition.

Fig. 1. (a) Simple STG with a dummy transition, (b) Timed state graph,
(c) Dummy-free timed state graph, (d) Dummy-free timed state graph with
decorated signal states.

information instead of the existence of outgoing edges in the
state graph. This is complicated by the fact that neither x+ nor
y+ is yet enabled in o\.

The definition of signal excitation proposed in this paper is
as follows. An output signal w is excited in a timed state cf
of Qq = ((V7, E') , cf0'), if there exists a (possibly empty)
sequence U1U2 • • • u n of dummy transitions such that (cr,
u i u 2 • • • u ni cf2) G E*, cf2 = (/i2, clock2), and t G enabled(/i2)
with l(t) = w+ or l(t) = w —, where Qg = ((V",E),a°). Let
out_excited(a) be a set of output signals that are excited in
cf. Then, it is defined that a timed state cf has R (or F) for
an output w in its decorated signal state, if and only if w G
out_excited(cr) and the binary value of w in a is zero (or one).
For example, the decorated signal state of cf\ in the previous
example is (a, x, y) = (1R R) . Fig. 1(d) shows decorated signal
states on the dummy-free timed state graph. Based on this
definition of decorated signal states, the detection of CSCV can
be done in the same way as STGs without dummy transitions.

The property called output semimodularity is also neces
sary to synthesize a circuit from an STG. For the untimed
case, this property is formally stated as follows. An STG G
is output semimodular, if its dummy-free state graph Qq =
((V7, E'), a 0') satisfies that for any (cr, £, a') G E r with l(t) =
x + or l(t) = x —, if a signal w (/ x) is excited in cf, but not in
a', then signals w and x are both input. This definition again
has a problem in the timed case. Consider the STG shown
in Fig. 2(a), where t \ and t 2 are dummy transitions. It has
the timed state graph and dummy-free timed state graph, as
shown in Fig. 2(b) and (c). According to the excitation defined

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 2. (a) STG with conflicting dummy transitions, (b) Timed state graph, (c) Dummy-free timed state graph.

above, in the dummy-free timed state graph, x is excited in
both ai and <75 as well as y is excited in both o\ and <74 .
Thus, this STG satisfies the above property. Hence, if only the
untimed behavior of this STG is considered, a circuit such that
a + triggers both x-\- and y+ is synthesized from it. However,
it is impossible to find any delay assignment to this circuit,
under which the circuit satisfies the timed behavior of the STG,
because when x + fires later than y+, x + should fire at a total
of 40 time units later than the firing of a + ; otherwise, it should
fire only 20 time units later than the firing of a+ . Hence, this
timed STG should not be considered to be synthesizable. In
this paper, we use the following simplified definition of output
semimodularity for timed STGs. A timed STG G is output
semimodular, if for any conflicting transitions that are enabled
in the same timed state of Qg , every (possibly empty) path of
dummy transitions starting from each of them on the STG ends
with an input transition. For the STG shown in Fig. 2(a), t \ and
£2 that are in conflict with each other are enabled in o\, and
the path of dummy transitions from t \ on the STG, which is t \
itself, ends with an output transition x+. Thus, this STG is not
output semimodular in our definition. Although this definition
is sometimes unnecessarily too strong (e.g., the case that both
x + and y+ have [0,0] delays in the above STG.), it is, in our
experience, not a practical problem.

Although one-safeness of STGs is not required for synthesis,
our timed state-space enumeration algorithm supports only one-
safe STGs. Furthermore, consistency significantly simplifies
the analysis and synthesis algorithms. Thus, we say that an
STG G is synthesizable, if G is one-safe, consistent, output
semimodular, and has CSC.

There is another property needed especially for timed circuit
synthesis. The timed circuit synthesis method assumes that a
synthesized logic function for an output is implemented with
a delay within the firing-time bounds (i.e., [Eft(t), Lft(t)]) of

the corresponding output transitions in the given timed STG.
This assumption, however, may not work, if the output tran
sitions related to the same output signal have different firing
time bounds, or even a dummy transition that precedes those
output transitions has a nonzero delay. In order to simplify the
problem, this paper considers a class of timed STGs satisfying
the following timed implementability. A timed STG G is timed
implementable, if for every output signal x of G, every x
transition has the same firing-time bounds, and in any path of
dummy transitions on G that ends with an output transition,
all dummy transitions have [0,0] bounds. If a timed STG does
not satisfy the timed implementability due to dummy transitions
with nonzero bounds in the paths to output transitions and the
dummy transitions satisfy the conditions for exact contraction
mentioned in the next section, then it can be converted to a
new timed STG with timed implementability without changing
the semantics by collapsing those nonzero time bounds to the
time bounds of the output transitions. Note that the requirement
that the output transitions related to the same output signal
have identical time bounds is mainly for simplification of the
presentation, and it can be relaxed, for example, such that the
rising transitions and the falling transitions related to the same
output signal can have different time bounds.

III. D e c o m p o s it i o n -B a s e d -S y n t h e s is O v e r v ie w

The top level algorithm for the proposed decomposition-
based synthesis is shown in Fig. 3. For a given synthesizable
and timed-implementable STG G, our algorithm tries to com
pute an abstraction G abs for each output signal x of G, such
that a correct circuit for x can be synthesized from it. Then, a
timed circuit synthesis algorithm is applied to G abs-

The algorithm for obtaining such an abstraction is shown in
Fig. 4. It first constructs the initial input set V for x by taking x

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 5

decomposition_based_synthesis(G?) {
forall x G Out {

Gabs = obtain_abs(G, x);
Cx = timed-logic _synthesis(Gfa&s);

Fig. 3. Top-level algorithm for synthesis.

if (every transition is already flagged) abort;
flag some transitions to disallow contraction;

if (res == “consistency or O.S.M violation”) abort;
C S C V = obtain_CSC_violation_trace_set(Ga6s, ssg);

Fig. 4. Algorithm to obtain an abstraction.

and its possible trigger signals. A signal w is a possible trigger
signal for an output x, if one of its corresponding transitions
can reach on G some x transitions either directly or through
only dummy transitions (i.e., without passing any other signal
transitions). Let trigger(x) denote the set of all possible trigger
signals for x.

The algorithm next contracts dummy transitions in G ' , if
possible, where Gf is an STG obtained from G by replacing
transitions related to signals in sig(G) — V by dummy transi
tions. This contraction of transitions produces a reduced STG
that behaves similarly to the original STG with respect to the
remaining signals. More formally, there exists a simulation
from G' to the contracted STG. It is proved in Theorem 3 of
the Appendix that such a reduced STG is correct2 with respect
to the original STG G, if the reduced STG has CSC and the
input signal set contains trigger(x).

There are several definitions of correctness in the context of
the decomposition-based synthesis. In [17], it is defined as the
property that the parallel composition of the contracted STGs
for all outputs has a state graph that is isomorphic to that of
the original STG. The correctness defined in [18] is similar
to the conformance used in [25]. Although this correctness
is less strict than Chu’s, only deterministic (i.e., dummy-free)
STGs are considered in their definition. Our correctness is
similar to the latter in the case that the given STG is untimed

2More precisely, it is “cover-correct” in our terminology. See the Appendix.

Fig. 5. Exact contraction.

and deterministic. Ours is, however, different from these two,
because the parallel composition is not used for the correctness
definition, and STGs with dummy transitions can be naturally
handled by defining correctness based on sets of signal states
that are obtained from dummy-free timed state graphs.

Such correct contraction of timed STGs can be done in a
way similar to that is shown in [19]. Our method, however,
applies the contraction to only a dummy transition t with a
net structure as shown in Fig. 5(a), where arcs from •t and t
(shown by dashed arrows) are not allowed and, similarly, arcs
to £• and t • • (also shown by dashed arrows) are not allowed
either. Then, contracting t results in the sub-STG shown in
Fig. 5(b). The untimed behavior of transitions except for t
is the same in both STGs, and the time spent in t is just
transferred to those in t • •. Thus, these two timed STGs have
exactly the same dummy-free timed state graph. We prefer this
exact contraction, because it synthesizes more optimal circuits
than the general contraction that preserves the correctness in
a more conservative fashion. Note that if some of the dashed
arcs in Fig. 5(a) exist, the behavior of the STG cannot be
preserved in general by any modification of time bounds. For
example, if transitions in t • • have two or more source places,
adding a and b to their time bounds, as shown in Fig. 5(b),
does not capture the correct timed behavior in the case that
the firing of t is early and its firing time does not determine
those of t • •. From the equivalence of dummy-free timed state
graphs, it is straightforward that our exact contraction preserves
consistency. On the other hand, contracting transitions violates
output semimodularity with respect to an output transition x,
if some nonoutput transition y that conflicts with some other
transition, say z, has a path of transitions ending with x,
and every transition (including y) in the path from y to x is
contracted, because x conflicts with z in the resultant STG.
This is, however, impossible in our case, because transitions
related to the possible trigger signals, which are the nondummy
transitions nearest to t in the path, are considered to be input
signals as mentioned above, and so, they are never contracted.
Thus, output semimodularity is also preserved. Further details
about the contraction algorithm are omitted in this paper. Note
that even our exact contraction (and any contraction algorithm
of timed STGs) cannot preserve one-safeness. Also, note that
the exact contraction may result in STGs that still contain
dummy transitions.

The reduced STG G abs obtained by contraction is then
checked if it is synthesizable or not. This process needs to
enumerate its timed state space and construct the decorated
signal state graph ssg that corresponds to its dummy-free timed

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

state graph. If G abs is synthesizable, the algorithm returns it.
If it has a one-safeness violation, some transitions that may
cause the one-safeness violation are flagged to show that they
should not be contracted. Selecting those transitions depends
on the contraction algorithm, but for the exact contraction, the
following idea usually works. Suppose that a safety violation
is detected when a transition u fires. If the original STG is
one-safe, then this one-safe violation must be caused by con
tracting some transition t of the original STG, satisfying t £ u »
•. Thus, those transitions in u • • can be selected. In the case
that every transition is already flagged, the original STG is not
one-safe. Thus, the algorithm aborts. Otherwise, the contraction
process is restarted. Please note that the above selected t may
cause a one-safeness violation. Then, the transitions in t • •
are selected by the above process. If the original STG is one-
safe, this process certainly terminates. If consistency or output
semimodularity is violated (indicatedby “consistency orO.S.M
violation”), it is also violated in the original STG, because our
contraction is exact. Thus, the algorithm aborts.

The remaining case is that G abs does not simply have CSC.
This happens when the input-signal set does not contain some
relevant signals. In this case, some set of traces of G abs that
cause CSCV is extracted3 from ssg. The algorithm then ana
lyzes each g € CSCV and tries to find candidate inputs to be
added in order to resolve the CSC violation. It fails to find the
candidate inputs (indicated by “not found”) when the original
STG does not have CSC. In this case, the algorithm aborts.
Otherwise, the set candidate contains a set of requirements such
that each requirement, which is a set of signals, is satisfied if at
least one of the signals in the requirement is added to V. In
order to resolve the CSC violation, every requirement must be
satisfied. Those requirements are added in the constraint matrix
to set up a covering problem. This process is repeated for every
CSC violation trace in CSCV. Finally, the covering problem is
solved for those requirements, and the optimal set of signals is
added to V . This V is used to compute a new G abs. and the
algorithm repeats the above process.

The formal discussion about the correctness of this method
is shown in the Appendix. The Appendix first defines the
correctness of an STG with respect to another STG, and then
proves that the G abs. which is finally obtained in the above
process when it has CSC, is correct with respect to the original
STG G. As mentioned in the Appendix, an STG defines a set
of covers and a cover defines a circuit. Thus, an STG defines a
set of circuits. Let Cq be this set defined by an STG G. Then,
the correctness of G\ with respect to G implies C q -i Q Cg -
Hence, from the above fact that G abs is correct with respect to
the original STG G, G cabs Q C a is derived, which implies the
correctness of our method.

IV. C h ecking Sy n th esiza b ility

The reduced STG G abs is checked if it is synthesizable or
not in eheek^synthesizable, as shown in Fig. 4. This is done
by exploring the timed state space of G abs and obtaining its

3In our current implementation, one shortest trace is selected for each CSC
violation pair because using all CSC violation traces is very expensive.

corresponding decorated signal state graph. Since the timed
state space of a timed STG is potentially infinite, equivalence
classes of timed states are actually explored. Let J be a set of
inequalities of the form t — u < c, where t and u are variables
to represent the next firing times of transitions t and u, and c is
a constant. For a given marking fi, if I over the variables related
to the transitions enabled in fi is considered, then I determines
the bounds of the firing-time separation of those transitions.
Thus, represents an equivalence class of timed states,
which is called a timed state class. Let ag = (pq.Iq) be the
initial timed state class, and for a timed state class a, fira b le (a)
denotes the set o f firable transitions, i.e., the set o f transitions
that can fire earlier than any other transition in a. It is known
that the timed state class space is finite [26], [27], and so, its
space enumeration is done by firing every firable transition from
cco until no new timed state classes are reached. The inclusion
of timed state classes is considered in this process. A timed state
class (/i, I) includes another timed state class (/ / , I ') , if n = / /
and the solution set of I includes that of I'. If a timed class
a that is newly generated is included by some timed class a'
that is generated previously, the traversal from a is stopped. On
the other hand, if a includes a', then a' is removed, the arcs
from the predecessors of a' to a ' are reconnected to a, and the
traversal from a is continued.

When enumerating the equivalence classes, one-safeness can
be easily checked. Once the graph of these equivalence classes
is constructed, its dummy-free version is obtained by the way
explained in Fig. 1. This modified graph is then projected to
a decorated signal state graph by considering only decorated
signal states. It is straightforward to check the consistency,
output semimodularity, and CSC on this decorated signal state
graph.

The above timed state class enumeration can be improved
using the ideas of the partial order reduction and POSET
method, which are similar to that proposed in [28] and [29].
Since the firing order of dummy transitions does not affect the
dummy-free timed state class graph if they are concurrent with
any other transitions, the state-space explored can be reduced
by only considering a single interleaving of firing those dummy
transitions. This is effective especially in our case, because the
exact timed contraction can contract only a restricted class of
dummy transitions, and many dummy transitions sometimes
remain in G abs- In other words, the penalty of the synthesis
cost due to using the exact contraction can be decreased by
these techniques. As mentioned later, some large circuits in our
examples could be synthesized only by using these techniques.

V. Analyzing CSC V iola tio n Traces

If G abs does not have CSC, a set of CSC violation traces
is constructed by obtain_CSC_violationJraee_set from the
decorated signal state graph. Each of such CSC violation traces
is analyzed by analyze^CSCV Jrace, which is the core part of
this paper.

The algorithm analyze^CSCVJrace first generates a con
crete trace of the original STG G which corresponds to the
given CSC violation trace of G abs- This is done by a technique
similar to the one developed for partial order reduction, which

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 7

analyze_CSCV_trace(g, G, V) {

if (can = = false) return “not found”;

Fig. 6. Algorithm for analyzing CSC violation trace.

we call guided simulation. Then, it finds a set of requirements
for an appropriate input set by analyzing the concrete CSC
violation trace. The overall procedure is shown in Fig. 6.

This section first discusses the algorithm to analyze the
concrete CSC violation traces, because guided simulation is
strongly related to this algorithm. Guided simulation is then
discussed. In the following, an interface signal means the
signals used in G abs, i*e., the signals in V, and a noninterface
signal means the remaining signals of G , i.e., the signals in D =
sig(G) — V. The corresponding transitions are called similarly.

Please note that the proposed algorithm currently has the
following restrictions on the class of timed STGs to be handled.
Any loop in the given timed STG must contain at least one
transition with nonzero delay (i.e., its earliest firing time is
greater than zero). This restriction is necessary to guarantee
the termination of the second phase of guided simulation
(see Section V-C). In the untimed case, this termination is not
guaranteed if a loop formed only by noninterface or dummy
transitions exists [24]. In the timed case, however, even if such
a loop exists, time certainly passes in the loop from the above
restriction, and eventually, other transitions are fired. Thus,
guided simulation can terminate. For every two reachable timed
state classes of the STG, either one is reachable from the other.
This restriction is necessary, because every CSC violation pair
is found along a single path from the initial timed-state class
in our algorithm. This limitation should be eliminated in the
future. However, our method can be successfully applied to the
standard benchmark suites shown in Table II. Furthermore, this
method is intended to handle the timed STGs generated by a
compiler to translate high-level specification languages to STGs
in a high-level synthesis flow. Those generated STGs usually
satisfy the above condition. Hence, we do not consider this as a
severe limitation.

A. Regular Concrete Traces

Each CSC violation trace g of G abs> constructed by
obtain_CSC_violation_trace_set, is assumed to be of the
form g = (g0, <7i, #2), $o ^ $i, s i ^ s2, an<̂ 52 ^ 53 , where
so is the initial signal state of G abs, 5i and 52 are the
first two signal states that correspond to the CSC violation
pair, and g2 contains exactly one (interface) transition.4 For
this g, the corresponding concrete trace / is constructed by
guided simulation shown later, where / = (/ o , / i , / 2) such
that for 0 < i < 2, projecting out noninterface and dummy
transitions from f i is equal to gi. It is assumed that / is

4Choosing those go, g±, and #2 such that only the first two CSC violation
signal states in the reduced STG are captured may cause poor results in the
subsequent analysis. Some improvement may be possible in this choice, but
currently, we have not tried this.

Fig. 7. Labeling of a concrete trace.

separated into f i when interface transitions fire, i.e., each f i
ends with an interface transition. Let a \ , ce2, and as denote
the timed state classes of G obtained by fo, f \ , and / 2,
respectively (see Fig. 7). Since some noninterface or dummy
transitions fire concurrently with the interface transitions,
there exist many such concrete traces that correspond to g.
Thus, we first define an equivalence class of traces based on
the causality relation.

For two interface transitions a and b in / , if a fires before
b without any interface transitions between them, it is denoted
by (a, b) E R {. For any two transitions t \ and t 2 in / , if t 2
fires by consuming the token produced by the firing of t \ , it
is denoted by (t i , t 2) E i?2 . In the untimed case, the actual
causality relation for / is defined by the transitive closure of the
union of R { and R ^, i.e., (t i , t 2) E (R{ U R^)*- In the timed
case, however, it is further needed to consider timed causality,
which is defined in [30]. For any two transitions t and u with
(t, u) E (i?2)*, let path f (t , u) denote a set of paths from t to u
defined by the relation > where each path is represented by a
set of transitions. That is,

path y(£, u)

0, if t = u
|{w } U q\(t', u) E Q £ P 3 th j (t , t ') | , otherwise.

For example, if / is a concrete trace obtained from the STG
shown in Fig. 9(a), then path^(c+ , x —) is {{a+ , x+ , a —, x —},
{a+ , 6—, a —, x —}}. Furthermore, let

max_eftf (£, u) = m ax > E f t : (r)
qEpathf (t,u)

m a x jf tf (£, u) = m ax Lft(r) .
gepath/ (t,u) \ ^ q J

Finally, for any two transitions t \ and t 2 in / , if there exists a
transition ts in / such that (t3 , t i) E (i?2)*, (£3 ,^2) £ (^ 2)*>
and m ax_lft/(t3 , t \) < m ax_eft/(t3 , t 2), then it is denoted by
(£1^ 2) £ Rs- Intuitively, (^1 ,^2) £ Rs implies that t \ and t 2

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

has a common ancestor £ 3 , and the maximal time separation
between £3 and t i is smaller than the minimal time separation
between ts and £2. Thus, £2 cannot fire before t \ under the
timing constraints associated with the causality relation R%.
This timed causality relation can be computed using a time-
separation algorithm such as shown in [12].

Using the above relations, we say that t \ is an ancestor of
£2 in / , denoted by \t\ £2], if £1 and £2 are related by the
transitive closure of the union of R { , R ^ , and R ^. This ancestor
relation represents an actual causality relation with respect to
the specific abstracted trace g. In the rest of this paper, we use
the following terminology.

• £1 causes £2, if [£1 ^ / £2] holds.
• £1 and £2 are ordered, if either [£1 £2] or [£2 £1]

holds.
• £1 and £2 are concurrent, if they are not ordered.
This actual causality relation defines equivalent classes of

traces of G. For a trace / , let | | / | |g denote a set of traces of
G (including /) such that for any f G ||/||g» (R{ U R { U
R f')* = (R { u i ?2 U R f3)* holds.

For a given abstracted trace g, our algorithm constructs one
particular concrete trace / satisfying a property which we call
regularity and analyzes it to handle all traces in || f\\ g - A trace /
is regular, if for every interface transition £ in / , all noninterface
or dummy transitions that are concurrent with £ fire before
£ in / . This regularity is necessary for the following reason.
As shown later, for a transition £, which is an ancestor of an
interface transition x in / , it is necessary to find a noninterface
signal w such that every w transition in / is ordered with £. If
every w transition appears in / , it is easy to check the above
property, i.e., this can actually be done by constructing a data
structure similar to an occurrence net [31]. Otherwise, however,
it is not clear when the generation of / should be terminated to
check the above property with respect to every w transition, if /
is nonregular, because a concurrent w transition may fire a long
time later. On the other hand, if / is regular, every transition
concurrent with x is fired before x. Hence, if a regular trace / is
generated up to x, it can be decided whether every w transition
is ordered with £ or not, because a w transition that does not
appear in / , if it exists, is caused by x, and so, it is caused by £
from [t ^ f x \ .

B. Determining the Input Set

The idea to resolve the CSC violation between ol\ and a 2
is to add to the input set a noninterface signal w such that /1
contains odd number of w transitions. If a w transition fires
in /1 in odd times, then the signal takes different values in ol\
and 0L2, and so, the CSC violation is resolved by adding w to
the input set. However, such w may not work for other traces
in | | / | |g, unless the causality relation guarantees that it fires
certainly odd times in traces in ||/ | |g - Thus, we need to define
the following notions.

For a (sub)trace h, let final (h) denote the last transition
in h, and before(h) the transition fired just before the first
transition of h in a currently designated trace. When h starts
from the initial timed state class, before(h) is the virtual tran-

Fig. 8. Nested subtrace pair.

sition v that is assumed to cause the first transition of every
trace. For a trace / , (Zi, Z2) is a nested subtrace pair of / , if
before(Zi), b e fo re ^) , finaI(Z2), and final(Zi) are distinct, and
they are caused in this order, i.e., [before(Zi) b e fo re^)],
[befo re^) f in a l^)] , [fin a l^) final(Zi)] (see Fig. 8).
For a signal w and a nested subtrace pair (Zi, Z2) of f , w is
semiessential with respect to (Zi, 12) in / , if

• none of before(Zi), b e fo re ^) , final(Z2), and final(Zi) is a
^-transition and

• every w transition in / is ordered with before (Zi),
before(Z2), final(Z2), and final(Zi).

Similarly, w is essential with respect to (Zi, Z2) in / , if w is
semiessential with respect to (Zi, Z2) in / , and h contains an
odd number of w transitions while neither Z12 nor Z21 contains
any w transition, where Z12 and Z21 are the subtraces of before
I2 and after l2, as shown in Fig. 8. As mentioned previously, it is
easy to check whether w is (semi)essential or not, if / is regular
and contains interface transitions at the end of Zi or later.

For f G ||/||g» a nested subtrace pair (Z^Z^) of / ' that
corresponds to (Zi, Z2) in / is the nested subtrace pair defined
by using before(Zi), b e fo re ^) , final(Z2), and final(Zi). For a
sub trace Z, let TS(Z) denote a set of timed state classes in
which the transitions in Z fire (see Fig. 8). SS(Z) denotes the
corresponding signal-state set. The following lemma holds.

Lemma 1: Let (Zi, Z2) be a nested subtrace pair of / and w
be essential with respect to (Zi, Z2). For any / ' e UWg and the
nested subtrace pair , V2) of f that corresponds to (Zi, Z2), the
signal states in SS(Z'12) are distinguished from those in S S ^ ^)
by the signal w.

Proof: The proof is straightforward from the definition of
the essentialness. ■

Consider the concrete trace shown in Fig. 7. Since ol\ and
0L2 cause a CSC violation, there exist at least two interface
transitions in / 1 . Note that if there are no interface transitions
between ol\ and 012, 012 cannot cause CSCV in the dummy-free
version of the timed state class graph. Thus, the first interface

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 9

Fig. 9. (a) Simple STG. (b) Its CSC violation trace.

transition in / i , say y, exists in the middle of / i . Divide f \ into
f ih and / i t with y, i.e., / i = (f lh , f u) and f lh ends with y.
Fig. 7 shows the relation among / 0 • • • /2 as well as f ih and f i t .
Let h = < /i, / 2) and l2 = f u - Then, l12 = f ih and l21 = f 2
hold. From the definitions of /o , f ih , f i , and f^, they end with
interface transitions. Thus, each of them is different, and they
are caused in this order. Hence, = ((/ i , /b)? f i t) is a
nested subtrace pair of / . The following theorem holds.

Theorem 1: The CSC violation with respect to f E | | / | |g
with / = (/ o , / i , / 2) is resolved by adding a noninterface
signal w to the input set, if w is essential with respect to
(W 2) = « / i , / 2) , / i t) i n / .

Proof: For any / ' 6 WfWo and the nested subtrace pair
(I1J 2) of f that corresponds to (h j h) , the CSC violation is
caused between the timed state classes in TS(/'12) and those
in TS(1'21). Those signal states are distinguished by w from
Lemma 1. ■

For example, consider an STG shown in Fig. 9(a). The output
x has the possible trigger signal a, and so, the initial V is {a, x}.
Then, the reduced STG with interface signals a and x has one
CSC violation trace, and its corresponding concrete trace / is
shown in Fig. 9(b). This trace is regular, because a noninterface
transition b— is concurrent with an interface transition x+ , and
b— fires before x-\- in this trace. | | / | |g contains another trace
/ ' obtained by swapping b - and x + in / . (< /i, f 2), f u) is
a nested sub trace pair of / , and the noninterface signal c is
essential with respect to it. The noninterface signal b is not
semiessential, because it is not ordered with final(Zi) = x+.
T S (/i2) = { a ^ a ' i } and TS(/2i) = { a ^ a ^ } cause the CSC
violation, and it is resolved by adding the essential signal c to
V. Actually, for this new V = {a, c, x}, the reduced STG has
CSC, and a circuit for x can be synthesized from it.

If there is no essential signal with respect to ((/ i , /b), / i t)
in / , the CSC violation cannot be resolved by adding a single
noninterface signal. However, CSCV can be resolved by adding

Fig. 10. Nested subtrace pair reduced from the original nested subtrace pair.

two or more noninterface signals to the input set. There are two
cases depending on the existence of semiessential noninterface
signals.

If there exist in f ih or / 2, noninterface signals that are
semiessential with respect to ((/ i , f 2), f i t) , the problem can
be reduced to several subproblems that can be solved by the
above approach. Suppose that such a semiessential noninterface
signal w changes, as shown in Fig. 10. Then, by adding w to the
input set, the timed state classes that cause CSCV (i.e., those
in T S (f ih) and T S (/2)) are divided into two groups: one is
J S (h i) and JSf^h^) and the other is TS(/i2) and JS (h s) . The
first group can be handled by considering a nested subtrace pair
((/b / 2)? (^2 , / i t , hs)). Even if there exists no essential non
interface signal for (</i, f 2), f u) , this (< /i, / 2), (^2 , / i t , h 3))
may have it, because (h2, f u , hs) is longer than f u - Similarly,
the second group can be handled by a nested subtrace pair
((^ 2? / i t , ^ 3), f i t) , and it may have an essential noninterface
signal, because (/i2?/it?^3) is shorter than (/ i , / 2). We say
that ((f i , f 2) , (h2, f i t , h s)) or ((fe2, f i t , h3), f l t) is reduced
from ((/ 1 , / 2) , f i t) with respect to a semiessential signal w. As
aforementioned, it is important that a reduced nested subtrace
pair may have an essential noninterface signal, even if the
original nested subtrace pair does not. If every reduced nested
subtrace pair has an essential noninterface signal, adding those
essential signals as well as w to the input set resolves the
CSC violation in ||/ | |g - If there exists no essential noninter
face signal for some reduced nested subtrace pair (Zi, Z2), the
above process can be applied to it as long as semiessential
noninterface signals exist for (Zi, Z2), which may solve the CSC
violation using more noninterface signals.

Second, if there exists in f ih or / 2 no noninterface signal that
is semiessential with respect to ((/ 1 , f 2), f i t) , a more compli
cated process is necessary to resolve the CSC violation in 11 / 11 q .
Suppose that the nested subtrace pair that is considered here is
(Zi, Z2). Our algorithm finds for a noninterface transition t fired
in / , which is concurrent with at least one transition among
before(Zi), b e fo re ^), fi na I (Z2), and final(Zi). Let u denote
such a transition among them, with which t is concurrent.
Our algorithm then generates two traces f and / " from / by

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Inputs : a, b
Output : c, xl, x2

Fig. 11. STG that has no essential signals.

interleaving t and u. It means that f and f " are obtained from
/ by adding the ancestor relation such that t causes u in / ' , and
u causes t in / " . More precisely, suppose that t and u fire in
this order in / . The new trace / ' is obtained simply by adding
[t u] to the ancestor relation of / . Similarly, f " is obtained
by adding [u t] to the ancestor relation of / , but in order
to make the firing order of / " consistent with this modified
ancestor relation, it is necessary to move t next to u, because
from [u t], t cannot exist before u in / " . In addition, the
noninterface transitions v that are caused by t and fired before
u should also be moved with t, because from [u ^f>> t\ and
[t ^ f f f v], v cannot exist before u in / " either. The idea is
that our algorithm tries to predict from those interleavings the
situation where the noninterface signal w that is related to t is
added to the input set and every transition is ordered with the
other interface transitions, before actually regenerating the state
space of the reduced STG for the modified input set.

For example, consider the STG shown in Fig. 11 and its
output c. The possible trigger signals for c are a and b. For V =
{a, b, c}, G abs has a CSC violation trace g = c+ a-\- b-\- b— c—
with go = a + , g\ = b+ b— and g2 = c—. Guided simula
tion generates fo = c+ x l + x2+ a + , f i = b-\- x l — b—, and
f 2 = c—, as shown in Fig. 12(a). Our algorithm first looks
for a semiessential noninterface signal for ((f i , f 2), f i t) , but
both noninterface transitions x l + and x 2+ are concurrent with
before((/ i , f 2)) = a+. Thus, this STG has no semiessential
signals. Here, choose x l and before((/ i , f 2)) = a + , and gen
erate f and f " by interleaving them. It is not easy to illustrate
these traces in a figure like Fig. 12, because it does not show
the ancestor relation precisely, but assume that in Fig. 12, # lo
calises a+ in f while a+ causes x l + in / " . Note that in / " ,
x l + and x 2+ (which is caused by x l + and fired before a+)
are moved next to a + . In / ' , x l is now essential with respect to
((/i? /2)? f i t) , because every x l transition is ordered with a+ ,

(a) (b)

Fig. 12. (a) Original traces, (b) Newly generated traces.

&+, b—, c—, and only one x l — exists in f i t . Thus, this CSC
violation can be resolved in | | / | |g by adding x l in the input
set. In / " , x l is semiessential, but not essential, because x l
fires in f ^ ,. This corresponds to the first case above, and can be
handled by considering one reduced nested subtrace pair (Zi, Z2)
as shown in Fig. 12(b), because only a i and a 2 cause the CSC
violation after adding x l . Then, our algorithm looks for another
noninterface transition that is essential with respect to (Zi, l2) in
/ " , which is x2 in this case. In other words, x2 can resolve the
CSC violation between T S (/i2) = {<^i} and TS(/2i) = {<̂ 2}-
Therefore, the CSC violation with respect to f " can be resolved
in || / " || g by adding both x l and x 2.

In general, the above process should be repeated to generate
new traces by interleaving some concurrent transitions. Further
more, there are usually many choices for noninterface signals.
Thus, generating as many such combinations as possible is
desirable. The whole process for both cases is described by
the pseudocode shown in Fig. 13. This procedure constructs a
Boolean expression E over a set of noninterface signals such
that for each feasible assignment of E , the CSC violation is
resolved in | | / | |g by adding the noninterface signals that have
one in the assignment. Then, it is converted to a conjunctive
normal form (CNF). Thus, one noninterface signal in each
clause of the CNF should be added to resolve the CSC violation.
Hence, this CNF represents a set of requirements, and solving
the covering problem that all these requirements are satisfied
obtains the optimal set of signals to be added, which is done in
obtain_abs as mentioned previously.

The following theorem holds.
Theorem 2: The algorithm shown in Fig. 13 returns “false,”

only when the given STG have no CSC.
Proof: The algorithm returns “false,” either when a pair

(£, u) does not exist, or when some call of find_essential in the
last “forall” loop returns “false.” The latter case happens again
when either of the above two cases happens in the recurred
find_essential. Since the recursion eventually terminates, the
former case should happen in some recursion. When the former
case happens, there exists no noninterface transition that is

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 11

'(t,u) t î n / ^con ̂ with

Fig. 13. Algorithm for determining the input set.

concurrent with some of before(Zi), before(Z2), final(Z2), and
final (Zi). It implies that every noninterface signal except for the
signals related to before(Zi), b e fo re ^) , final(Z2), and final(Zi)
is semiessential. Since no essential signal exists and no reduced
nested sub trace pair works, such that every noninterface signal
included in (/ 1 , f 2) must appear in f i t even times. Hence, the
CSC violation in T S (/i/l) and T S (/2) cannot be resolved, even
if every noninterface signal is used. This implies that the given
STG has no CSC. ■

C. Guided Simulation

For a given abstracted trace g, guided simulation obtains a
regular trace f o f G such that a trace obtained by projecting
out the noninterface and dummy transitions from / is equal
to g. The algorithm is shown in Fig. 14. It consists of two
phases. Phase 1 generates a concrete trace h that satisfies
the projection condition but not the regularity. Actually, for
each interface transition t appearing in g, the noninterface and
dummy transitions that cause t (by R 2 and r [) are certainly
contained before t in h, but those that are concurrent with t
may either appear after t or not appear in h. In phase 2, the
concurrent noninterface or dummy transitions are added to h or
moved in order to satisfy regularity.

' else ̂ r̂ {ch00se^e(fira bl e (^ n

Fig. 14. Algorithm for guided simulation (1).

In guided_sim_phasel, if g is nonempty, it picks the first
transition of g, denoted by gi, and computes its necessary
set, i.e., the set of transitions that should be fired to fire gi,
using necessary. In necessary, if t is not enabled, one of
its empty source places is traversed upward along the non
interface or dummy transitions (.NonlF_Dum denotes the set
of all noninterface and dummy transitions) recursively. If t
is enabled and firable, it is returned. If t is enabled, but not
firable, some firable transition must precede gi, and so, one
of the firable noninterface or dummy transitions chosen by
choose_one is returned. In the net shown in Fig. 15, where
ti • • • £5 are noninterface transitions, and g\ and g2 are interface
transitions, the necessary set of g\ is {t\}. guided_sim_phasel

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

[1,5]

Fig. 15. Examples for guided simulation.

then computes a dependent set of each necessary transition. The
dependent set of a transition £ is a set of transitions whose
firings may be necessary before £ in order to avoid missing
the possible concrete traces. For example, consider generating
a concrete trace of the net shown in Fig. 15 for an abstracted
trace gig2- As shown above, the necessary set of g\ is {£1}.
If £1 is fired from the current marking, g\ becomes enabled, but
g 2 can never be fired. In this case, firing £ 3 , £ 2 , ^ 4 , and t \ in
this order leads to the correct concrete trace. It is, however, not
easy to find such a correct firing sequence directly. Instead, our
algorithm guarantees to generate the correct concrete trace by a
backtracking mechanism that fires a sufficient set of transitions
in each step. Such a sufficient set of transitions is the dependent
set. It is formally stated that a dependent set of transition H s a
set E of transitions, satisfying £ E E, and for each x E E , the
necessary transitions of c o n f lict(x) D N o n l F _ D u m are also
in E. The dependent set can be defined as a closure, and so, the
while loop in Fig. 14 computes it. In our example, the depen
dent set of t \ is { t i , t s } . Hence, even if guided_sim_phasel
fires t i first, it eventually can fire £3 and, then, £2 after
several backtrackings. After firing £2, it is straightforward to
fire £4 and £1, because they are the necessary transitions for
gi. When gi becomes enabled, its necessary set is {g{\ and its
dependent set is {gi, t^}. The correct transition to be fired here
is £6 and is again guaranteed to be found by the backtracking
mechanism. The fired transitions are appended to the trace h,
and it is returned when g becomes empty. Then, the trace h is
passed to guided_sim_phase2 in order to generate a regular
trace based on h. Note that it is possible that the algorithm
happens to choose a correct transition in the dependent set
in the first trial. In this case, backtrackings are not necessary,
because the expected trace is obtained. In other words, every
transition in the dependent set is not necessarily tried. This is
why guided_sim_phasel terminates when a result that is not
“backtrack” is obtained in its second “forall” loop.

In guided_sim_phase2, each transition determined by
find_firing_trans is fired until h, which is also updated

guided_sim_phase2(/i, G , V, a) {
f = n u l l ;
fired = n u l l;
while(true) {

(£, h) =find_firing_trans(a, h);
f = append(/, £);
a = fire(a, £);
if (h is empty) break;

} '
return / ;

}

find_firing_trans(a, h) {
while(true) {

(£, h ') = (head(/i), tail(h));
if (£ is interface)

return find_concur_trans(a, £, h , h ');
else

if (£ 0 f ir e d) return (t ,h ') ;
else {

fired = fired — {£};
h = h! ;

}
}

}

find_concur_trans(a, £, h, h') {
find x E firable(a) D N onlF-D um

s.t. conflict(x) fl (prefix(/i — f ir e d , x) = 0:
if (such x exists) {

fired = fired U { x } ;
return (x , h);

}
else return (t , h f);

}

Fig. 16. Algorithm for guided simulation (2).

by find_firing_trans, becomes empty as shown in Fig. 16.
In find_firing_trans, if the first transition £ of h is an interface
transition, it implies that £ is enabled in the current marking
because all its necessary transitions are supposed to be fired.
In order to satisfy regularity, however, firable noninterface or
dummy transitions that are concurrent with £ should be fired
before £, if they exist. This should be done carefully, if such
a noninterface or dummy transition x is in conflict with some
other transition. In such a case, an appropriate transition should
be chosen such that it is consistent with the rest of h (up to
the point where x fires). Let prefix(/i, x) denote a prefix of h
before the occurrence of x. It is equal to h, if x is not included
in h. Then, if c o n f lict (x) D prefi x(/i, x) / 0, it implies that
some other transition conflicting with x fires before x in h,
and so, x should not be fired in the current timed state class.
Thus, it is necessary to find a noninterface or dummy firable
transition x such that c o n f lict (x) D prefi x (/i,x) = 0. If such
an x is found, it is returned with the nonupdated h keeping
the interface transition in its head. In this case, x is added to a
global variable fired to avoid firing it again when it is in the top
of h. Considering the set fired, the above condition should be
rewritten to c o n f lict (x) D prefix(/i — fired, x). If such x does
not exist, either there are no firable noninterface or dummy tran
sitions, or every such transition conflicts with some interface
transition in h. In either case, no firable noninterface or dummy

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 13

transitions are concurrent with t. Hence, t and h' = tail(/i)
are returned.5

If t is noninterface or dummy, regularity just requires that t
should be fired. But, it may be already fired as mentioned above
to generate regular traces when it is concurrent with some
interface transition. Thus, if t G fired, it is just removed from
fired, and the next transition of h is processed. Otherwise, t and
h' = tail(/i) are returned.

In the previous example, for an abstracted trace gig2

ts t 2 £4 t i 6̂ £5 9i £7 £9 92

is obtained by guided_sim_phasel. This does not satisfy reg
ularity, because £7 and tg fire after g\. When h = g\ £7 tg g2
is first given to find_firing_trans, (£7, h) is returned with
fire = {£7 }. After firing £7 , both ts and tg become firable. ts
is not chosen, because c o n f l ic t (t s) = {tg} and prefix(/i, £g) =
{tg}. After firing tg, however, ts is chosen and fired, be
cause it is concurrent with g\, and so, it must be fired be
fore gi to obtain a regular trace. Note that ts is not fired
in guided_sim_phasel, because it is not necessary to fire
g2 (Remember that guided_sim_phasel fires only transi
tions that are necessary to obtain the expected trace, and
guided_sim_phase2 adds some other transitions to the trace
to obtain a regular trace). Finally, g\ and g2 are fired, and the
following regular trace is obtained:

ts t 2 £4 1\ te £5 £7 tg ts gi g2.

Note that this second phase is deterministic (backtracking
is not necessary), because every causal transition needed for
interface transitions in g is found in the phase 1. An alternative
of guided simulation with only one phase is possible, but from
our experience, it causes more backtracking than the two-phase
guided simulation shown above.

VI. D i s c u s s io n

While it is expected that the average case complexity
of the proposed method is much smaller than that of the
nondecomposition-based logic-synthesis methods, our method
does not improve the worst case complexity. This is obvious if
one considers a timed STG, in which every input and output
signal in the STG is necessary for a subcircuit of each output
signal in the STG. Our method finally obtains the whole set
of signals as the input set and explores the full state space to
synthesize each subcircuit. Thus, in this case, the synthesis cost
is even larger than the nondecomposition-based method due to
the overhead to compute the input sets. For more practical cases
where the above situation does not occur, it is also necessary to
discuss the complexity of the techniques used in our method.
First of all, the number of CSC violation traces is exponential
in the size of the reduced STG. This number can be kept below
some (given) upper bound at the sacrifice of the optimality of
the synthesized circuits. For each CSC violation trace, the worst

5If transitions conflicting with interface transitions form loops, then there can
exist many nonequivalent concrete traces that correspond to g. In our current
implementation, one shortest regular concrete trace is selected.

TABLE I
Comparison Between SI-Circuit-Synthesis Tools

Circuits
Synthesis time (sec.) Literal Counts

Prop. moebius csatf Prop. moebius csat
PpWkCsc(3,9)
PpWkCsc(3,12)
TangramCsc(3,2)
TangramCsc(4,3)
ArtCsc(10,9)

0.2
0.3
0.4

12.7
298.6

2.0
13.0
3.0

39.0
6240.0

0.1
0.3
0.2
1.3

7545.6

156
210
106
248

1423

130
173
103
247

2128

156
210
100
244

1283
f : SAT instance generation times are not included.

case complexity for finding a regular trace is exponential in the
size of the STG, because phase 1 of the guided simulation may
have to generate every firing sequence associated with each
conflicting transition using the backtracking mechanism. The
number of these sequences is exponential in the size of the STG
in worst cases. This high worst case complexity is, however, not
a big problem, because STGs do not usually contain so many
conflicting transitions. To obtain the timed causality relation,
max_eftf (t , u) and m ax_lft/(t, u) need to be computed for
each pair (£, u) of transitions and a regular concrete trace, each
of which can be done with cost linear in the size of / . Thus,
the whole computation needs the complexity 0 (| / | 3). Note that
I/I is linear in the size of the STG, because a regular concrete
trace does not contain any repeated behavior. Finally, the worst
case cost to find the candidates of input signals for each / is
exponential in | / | , because the number of interleavings created
by concurrent transitions is in general exponential in | / | . Note
that this cost can also be controlled by limiting the recursion
depth of find_essential at the sacrifice of the optimality.

VII. E x p e r im e n t a l R e s u l t s

The proposed method has been naively implemented using
the C language.6 This section evaluates the potential perfor
mance of the proposed method and the area overhead of the
synthesized circuits. The experiments here have been done on a
2.8-GHz Pentium-4 workstation with 4 GB of memory.

For speed-independent circuit synthesis, tools moebius [22]
and csat [23] use a similar decomposition-based synthesis.
Our tool has an optional mode to handle untimed STGs and
synthesize speed-independent circuits by just using untimed
state-space exploration and untimed trace analysis. Using this
untimed mode of our tool, this section first compares the
performance of speed-independent circuit synthesis between
our method and the above tools. Since moebius is not currently
available to the public due to a licensing problem, we used their
benchmark suites and compared our results with the experimen
tal results from their latest paper [32]. Their experiments were
done on a 2.53-GHz Pentium 4 with 512-MB memory. As for
csat, Khomenko sent us the experimental version of their tool.
Since it works on a Windows machine, our experiments use a
3.06-GHz Pentium 4 with 1-GB memory. The results in Table I
show this comparison. It seems that the literal counts shown in
[32] were obtained from logic equations optimized in some way

6The interleaving generation part in find_essential is not fully implemented
currently. It means that some noninterface signal that can actually resolve the
CSC violation may not be found by our current implementation. This may lead
to larger input sets, and so, a larger number of literals may be needed in the
synthesized circuits.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

TABLE II
Experimental Results (1)

Circuit Literal counts
atacs Proposed

alloc-outbound 16 16
atod 9 9
chu150 11 11
chul72 6 6
converta 12 12
dff 8 8
master-read 26 26
mp-forward-pkt 16 16
nak-pa 20 20
nowick 18 18
pe-rcv-ifc 50 51
pe-send-ifc 60 61
ram-read-sbuf 20 20
rev-setup 8 8
sbuf-ram-write 19 19
sbuf-read-ctl 13 13
sbuf-send-pkt2 19 19
sendr-done 5 5
trimos-send 21 21
vbelOb 21 21
vbe4a 6 6
vbe6a 17 17
vmebus-arb 9 9
wrdata 11 11
wrdatab 29 26
rappid 152 152

(e.g., gate sharing). Thus, their values are sometimes smaller. It
should also be noted that csat currently builds all the speed-
independent solutions with minimal supports and that there can
be combinatorially many of them.

For the timed circuit synthesis, in order to evaluate the area
overhead of the proposed method, small timed specifications,
which are obtained from the standard benchmarks by adding the
fixed lower bound and upper bounds to each transition ([3], [5]
for output transitions, [8], [10] for input transitions), are synthe
sized by the proposed method and a timed circuit synthesis tool
atacs [33], and the literal counts of the synthesized circuits are
compared. Table II, except for the last line, shows these results.
These results show that the quality at least with respect to the
area size is not badly affected, even though our method uses
restricted information for synthesizing subcircuits, and so may
choose nonoptimal input sets. Since these example are small,
the CPU times for both methods are almost the same.

The last example shown in Table II is the control circuit for
RAPPID. This example is larger, and so, atacs cannot com
plete the synthesis on the flat specification without hierarchical
decomposition. The literal count shown for atacs in the table
is obtained using hierarchical decomposition. The proposed
method synthesizes it within 15 s.

Table III shows the results for much larger examples, which
are taken from [15]. They are specifications for HR filters,
FIR filters, and the first phase of the discrete-cosine-transform
(DCT) circuit obtained from SpecC/Balsa high-level specifica
tions (slightly modified versions are used for this paper due to
some improvement of our Balsa compiler). Those with “_b”
are allowed to use more operational units. Thus, they have
more concurrence than those with “_a.” In order to evaluate the
performance of the timed circuit synthesis, this table also shows
the performance of synthesis of the untimed version (speed

TABLE III
Comparison Between Untimed and Timed-Circuit Synthesis

Circuits Synthesis time (sec.) Literal counts
Untimed Timed Untimed Timed

IIR_a 13.9 18.1 449 391
IIR_b 19.2 65.0 567 462
FIR_a 215.5 268.0 1155 923
FIR_b 285.7 952.7 1604 1116
DCT_a 2952.0 3700.3 2207 1870
DCT_b 2752.2 3345.9 2496 1902

independent) of the above specifications. Note that partial order
reduction and POSET techniques are used for these examples,
because otherwise, timed circuit synthesis does not terminate
due to many dummy transitions left by the exact timed net
contraction (the untimed circuit synthesis has not improved
much by these techniques). Although the timed circuit synthesis
takes a longer time especially for the specifications with more
concurrence, much more compact circuits (compared with the
untimed versions) are successfully synthesized (by using the
above techniques) without significant performance penalty.

The untimed version of IIR_a is synthesized by atacs in
about 200 s, but it runs out of memory for the other specifica
tions. Since there is no hierarchy information for those designs,
the hierarchal synthesis of atacs does not work. The only circuit
synthesized by atacs from the untimed version of IIR_a has the
same literal count 449 as the one synthesized by our method.

Finally, in order to discuss the limits of the proposed method,
this section considers one more example. This is a circuit
also for the first phase of DCT, but four ALUs, four multipli
ers, and two two-port memories are used to obtain maximal
performance utilizing the maximal concurrence of the DCT
algorithm. This circuit is taken from our ongoing project,
which aims at the precise comparison between synchronous and
asynchronous practical implementations of the same algorithm
on the same platform (e.g., a field programmable gate array).
Since its timed STG is much more concurrent than those of
previous examples, its synthesis cost is very high. Actually,
our method could not synthesize subcircuits for several outputs
from the original STG due to memory overflow. Thus, in order
to reduce the concurrence of those output signals, two auxiliary
signals are inserted to the original STG by hand. It makes it
possible to synthesize all subcircuits successfully. The total
time for synthesis was 36 206 s. This paper has suggested that
one of the limits in our method is decided by the concurrence.
To make it clearer, a simple scalable STG shown in Fig. 17 is
considered. Table IV shows the CPU times and the amount of
memory needed for the synthesis. Our method cannot handle
the STG with n = 20 due to memory overflow. This is because
our method uses an explicit timed-state representation. This
problem may be avoided to some degree by using a symbolic
timed-state representation like the one proposed in [34], but it
is not clear how difficult it is to implement the CSC-violation-
trace analysis on it.

VIII. C o n c l u s io n

This paper presents a decomposition-based method for effi
cient synthesis of large timed circuits. The idea proposed for

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 15

Fig. 17. Simple scalable STG.

TABLE IV
Synthesis Times and Amount of Memory Needed fo r Various n

speed-independent circuits [24] has been extended for timed
circuit synthesis. Since the state spaces of the original timed
STGs are not needed to be explored, the proposed method
allows for the synthesis of large timed circuits that could
not be synthesized using conventional flat synthesis methods.
Although this method does have some area overhead for small
circuits, the experimental results show that the overhead ap
pears to be very small.

Our future work includes an extension of the proposed
method such that it can handle specifications without CSC.
Since the cost for solving CSC is usually very high, it would
be nice if a CSC-solving algorithm could be applied to reduced
STGs. A state variable insertion is one of the major approaches
to automatic CSC solving. It is, however, allowed only before
the output-signal transitions on an STG, because the interface
behavior should not be changed. This restriction makes the
state variable insertion in the reduced STG difficult, because
almost all transitions in the reduced STG are for input signals
in our definition. Actually, some input signals in the reduced
STG are output signals in the original STG. Therefore, our
algorithm first needs to be extended to handle reduced STGs
containing multiple output signals. Then, finding appropriate
output signals before which state variables for solving CSC are
inserted can be done based on the idea similar to the CSC-
violation analysis proposed in this paper. It is very interesting
to see how this decomposition-based CSC-solving approach

improves the performance compared to the traditional full-
state-based CSC solvers.

A p p e n d ix
D e c o m p o s it io n T h e o r y

In this appendix, it is assumed that the given STG G is
synthesizable and timed implementable.

For x G Out, ES(x- \-) denotes a set of nondecorated signal
states mapped from reachable timed states of a dummy-free
timed state graph Qq , where their decorated signal states have
R for x, and QS(x-\~) denotes a set of similar nondecorated
signal states except that their decorated signal states have one
for x. E S (x -) and Q S (x -) are defined similarly. The other
nondecorated signal states are unreachable, and this set is
denoted by UR. From the definition of CSC, if and only if an
STG has CSC, its E S (x +) , Q S (x+) , E S (x -) , and Q S { x ~)
are disjoint for each x G Out.

A circuit is defined by a set of logic functions (i.e., the
technology mapping is beyond the scope of this paper), and
a logic function is specified by a cover, which is a set of
nondecorated signal states where the logic function takes the
value of one. In this paper, the implementation technologies
considered are atomic gates and generalized-C (gC) elements.
In the atomic-gate implementation, an STG G defines for each
x G O ut a cover, denoted by C (x), satisfying

C (x) — U R = E S (x +) U Q S (x+) .

In the gC implementation, G defines two covers C{x+) and
C (x -) satisfying

E S (x +) C C{x+) - U R C E S { x +) U Q S (x +)

E S (x -) c C (x -) - U R c E S { x -) U Q S (x -) .

An STG G i is cover-correct with respect to G, if for each
output signal of G\, the covers C \(x) or C\(x-\~), C i (x -)
for G\ satisfy the above conditions of the covers for G. For
example, in the case of the atomic-gate implementation, C\ (x)
satisfying C \(x) — U R \ = E S \ (x +) U Q S i(x +) must satisfy
C i (a) - U R = E S (x +) U Q S (x+) .

In order that a correct delay can be assigned to the synthe
sized circuit, another property is needed for the correctness
of G\. An STG G\ is delay-correct with respect to G, if G\
is timed implementable, and for every output signal x of G\,
every x transition of G\ has the same firing-time bounds (i.e.,
[Eft(t), Lft(t)]) as x transitions in G.

If G i is both cover-correct and delay-correct with respect
to G, G\ is correct with respect to G. Intuitively, a circuit
synthesized from G\ behaves as expected in G in a sense
that the logic function takes the value one in the states where
G expects the output to be excited or stable high, as long
as the circuit is in the context that G considers. Note that
from the timed implementability of G, the delay-correctness
of G i is easily achieved by disallowing the contraction for the
transitions in trigger(x) U {x} for x G O u ti. Thus, the rest of
this appendix focuses on the cover-correctness.

16 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

For STGs Gi and G 2 with Outi = Out2 and Ini = I112, a
simulation from Gi to G 2 is a relation S between timed states
ofQ$[= ((V{■, and Qq2 = {(Vi,E'2),o%), satisfying

D K > 4) e S;
2) for any . a 2) e S , out_excited(ffi) out_excited

(a2) holds;
3) for any (tri, <r2) € S and any (a i, t i , u'i) € E[, there ex

ists some <2 and a 2 such that (̂<2) = l{h) , (cr2 !t 2 !cr,2) €
E 2, and (<Tj_, cr2) G S hold.

Let Gi G2 denote that Gi and G2 have the same input-
and output-signal sets and that there exists a simulation from
Gi to G2 -

Lemma 2: For STGs Gi and G2, if Gi G2 and G2 has
CSC, then for x € Outi, the following hold:

E S i(x~(~) ^ E S 2 , D*52(x~l~) — D*5i(x-|-) U R \

Q S i(x +) C Q S 2(z +) , Q S 2(z +) - Q S i(a;+) C UR.

E S i (x -) C E S 2 (x —), E S 2 (x —) — E S i (x -) C UR%

Q S t (x -) C Q 5 2(x -) , Q 5 2(a :-) - Q S i(a ;-) C U R t

U R t D U R 2.

Proof: For si e E S \ (x +) , let a 1 denote a timed state
of Q$x from which si is mapped, and suppose that <ti is
reached from cr® by a sequence t>i of transitions on Qq .
From Gi G 2 , a timed state, denoted by (T2 , is reachable
on Qq by a sequence t>2 of transitions such that l{v{) =
l{V2), where l { t i t 2 • • •) = • • • (note that A is deleted
in this sequence). Thus, is also mapped to si. Since
out_excited(ui) = out_excited(<T2) and si € E S i (x +) hold,
si € E S 2 (x +) also holds. Hence, E S \{ x +) C USl2(a;+)
holds. The other three cases can be proved similarly. Next,
suppose that 82 € E S 2(3;+) — E S \ (x +) holds. Since the value
for x is zero in 8 2 , 82 is included in either Q S \ (x —) or
U R i. If 82 € Q S i (x -) holds, then 82 € Q S 2 (x —') holds from
Q S i (x -) C Q S 2 (x —). This, however, violates that G 2 has
CSC from 82 € E S 2 (x+). Hence, 82 must be in U R \. The
remaining three cases can be proved similarly. Finally, since
additional reachable signal states in G2 are in U R \, U R \ 2
U R 2 holds. ■

The key of this proof is that the corresponding timed states in
Qq and Qq have the same set of excited signals. For untimed
methods, the trace-equivalence relation is used to guarantee this
(e.g., in [22]). For timed methods, however, such a relation
on traces are not helpful, because excited transitions does not
necessarily fire as shown in Fig. 1, i.e., the traces defined by
transition firings do not give sufficient excitation information.
Hence, the simulation relation defined above is necessary.

For a nondecorated signal state s and a set D of signals, the
D-closure of s, denoted by Cd ($), is a set of all nondecorated
signal states, including s, such that their binary vectors are the
same if the signals in D are projected out. The core of a D-
closure is the common binary vector obtained by projecting
out the signals in D. For example, for s = (abed) = (1101)
and D = { a , h } , CD (s) = {0001,0101,1001,1101} and its
core is (ed) = (01). The mappings from D-closure Cd (s)
to its core s' and its inverse are defined by ^ o]d {Cd {s))

and projr,1(s/). Note that both are the one-to-one map
pings. The D-closure and these mappings are extended
to sets as follows: CD (S) = L U s c d (s)* proj^C ^S1)) =
{projr,(Cr>(s))|s e S} , and proj^S") = U ^eS/ proj^V)-

For an STG G and x E Out, a set D of signals is an irrelevant
input set for x, if:

1) D C I n LJ O ut — {x };
2) C d (E S (x +)) — U R = ES(x+)',
3) C d { E S { x —)) — U R = E S (x -) .

From this definition, the following lemma holds.
Lemma 3: For x € O ut and any irrelevant input set D for x,

the following hold:

Cd (Q S (x+)) - U R = Q S (x +)

Cd (Q S (x -)) - U R = Q S { x ~) .

Proof: Suppose C d (Q S (x +)) — U R ^ Q S (x +) . From
Q S (x +) C Cd (Q S (x +)) , this means that for some s €
Cd (Q S (x +)) - UR, s £ Q S (x +) holds. From x ^ D, such
that s must be in E S (x -) . Since s € Cd (Q S (x +)) holds,
there exists 82 € Q S {x+) such that s € £ 0 (52)- From s €
C d (s) , C d (s) and C d { » 2) have a common element, which im
plies C d(s) = Cd{s2) and, so, 82 € Cd(s). From s £ E S (x -)
and C d (E S (x —)) — U R = E S (x -) , 82 € E S (x -) is de
rived, which however, contradicts that G has CSC, and so,
E S (x -) and Q S (x +) are disjoint. The remaining case can be
proved similarly. ■

For an STG G, x € O ut and a set D of signals with x ^ D,
let G d .x denote an STG obtained from G by making transitions
related to signals in D dummy, which has the input-signal set
sig(G) — D — {x} and the output-signal set {x}. Let E S i ,
Q S \ , and so on be for G d .x-

Lemma 4: For x € O ut and any irrelevant input set D for x,
the following hold:

proĵ ,1 (E S i (x +)) = C d (E S (x +))

proĵ ,1 (E S i (x —)) = C d (E S (x —))

proj^1 (Q S \(x +)) = C D (Q S (x +))

proj^1 (Q S 1 (x -)) = C d (Q S (x -))

p r o j^ iU R t) C UR.

Proof: Since G d .x has the same flow relation as G except
that some transitions are dummy in G d .x> there exists a one-
to-one mapping between timed states of Q q and Q q d r . In the
dummy-free timed state graph Q q , however, some timed
states that are in Q q are deleted from the construction of the
dummy-free timed state graphs, as shown in Fig. 18. Note that
Q q and Q q d r also have a one-to-one mapping if G have no
dummy transitions, and Fig. 18 shows this case.

The proof of this lemma first shows E S i(x +) C
projI)(C_D(DSl(a;+))). Suppose that si € E S i (x +) , and let
cr 1 be the timed state in Q q that is mapped to si. This <ti
exists also in Q q from the above relation between Q q and
Q q , and let s be its signal state. Then, si = proj^C ^s))
holds. Furthermore, s € E S (x +) holds from the following

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 17

Fig. 18. Relation between and Qq •

reason. From the signal excitation of Qq , must be
excited to rise in some timed state reached only by transitions
related to the signals in D , such as cr2 shown in Fig. 18. Let s2
be its signal state. Then, s2 G E S (x +) and s G C d (s2) — U R
hold. Since D is an irrelevant input set, C d {E S {x+)) —
U R = ES(x-\~) holds, and so, s G ES(x-\~) holds. Hence,
s i G projd (C d(E S{x+))) is derived.

Next, E S X (xH-) ^ pxo^jj(C]j (^ES(xH-))) is proved by show
ing that for s G ES{x-\~), s 1 = projd (Cd(s)) satisfies s\ G
E S i(x +) . Let a be the timed state in Qq that is mapped to s.
This a may or may not exist in Qq . In the former case, it has
the signal state s 1 = projd (Cd(s)) in Qq , and x is excited
to rise in a. Hence, s 1 G E S i (# +) is derived. In the latter
case, from the construction of dummy-free state graphs, there
exists a timed state a 1 included in both Qq and Qqd , from
which a is reached only by transitions related to the signals
in D (see Fig. 18). From this relation between a and a\, g\
has the signal state s' Cd(s) — U R and s 1 = projd (Cd(s))
in Qqd . Since D is an irrelevant input set, C d {E S {x+)) —
U R = ES(x-\-) holds, and so, s' G ES(x-\-) holds. Thus, x is
excited to rise in a' in Q q, and therefore, s 1 G E S i (x +) is
derived.

Hence, E S i(x +) = projd (Cd (E S (x +))) is shown. Apply
ing proj^1 derives the first property. The proofs for the other
three properties are similar.

Furthermore, from the above discussion, if a mapped to s is
reached in Q q, then some a' mapped to s 1 = projd (Cd(s))
is also reached in Qgd x - Thus, if s i G U R \ holds, then
every s G proj^)1(s i) is also in UR. Hence, the final property
holds. ■

Lemma 5: For x G O ut and a set D of signals with D C
I n U Out — {x}, if Gd,x has CSC, and D H trigger(x) = 0
holds, then D is an irrelevant input set.

Proof: Suppose that D is not an irrelevant input set.
Then, there exist signal states s G E S (x +) and s' G Cd (s) —
U R such that s' £ E S { x Jr), or there exist signal states s G
E S (x —) an d s; G C d (s) — U R such that s' ^ E S (x —). In this
proof, the former case is considered, but the latter case can be
proved similarly. There exist timed states a and a' in Qq whose
signal states are s and s', respectively. From the construction
of the dummy-free timed state graphs, there exist timed state

a 1 and in Qq whose signal states are s 1 and s[, satisfy
ing s i = projd (Cd (s)) and s\ = projD(CD (s/)) (see Fig. 18).
Note that s i = s[holds from projd (Cd(s)) = projd {Cd{s')).
These o\ and a[cannot be the same for the following reason, a
and <ti can be the same, only when one of them is reached from
the other on Qq only by transitions related to the signals in
D. In this case, however, from s G ES(x-\-) and s' ^ ES(x-\~),
either x + is disabled without firing x+ , which violates the
output semimodularity of G, or x-\- is enabled without firing
any transition in trigger(x) from D n trigger(x) = 0, which
is impossible. Thus, and a[must be different. Since x is
excited to rise in cr, so is it in a 1 of Qq . On the other hand,
although x is not excited in a ' , x may be considered to be
excited to rise in o'x of Qq from the excitation definition,
if x + is enabled in some timed state of Qgd .x (such as a 2 in
Fig. 18) that is reached from a' by only dummy transitions.
But, this cannot happen because x + is disabled in a' and
D n trigger(x) = 0 holds. Therefore, x is not excited in cr[of
Qq either. This contradicts that Gd,x has CSC, because x is
excited in o ' , not excited in a[, and si = holds. Hence, D
should be an irrelevant input set. ■

Lemma 6: For x G O ut and any irrelevant input set D for x,
suppose that G' satisfies Gd,x ^ G'. If G' has CSC, then G' is
cover-correct with respect to G.

Proof: This proof focuses on the gC implementation, and
furthermore, only the cover for x + is considered, because the
proofs for the other cases can be done similarly. Let E S \ , Q S \,
and U R i be for G d ,x , and E S 2, Q S 2, and U R 2 be for G '.

Let C2(x+) denote the cover for G' and x-\~. From the
definition of covers

E S 2{x+) C C2(x+) - U R 2 C E S 2{x+) U Q S 2(x+) (1)

holds. This proof shows that C2 (x+) is also a cover of G. Since
C2 (x+) should be considered in the signal state space of G, this
is shown by

£ S (a ;+) C proj^,1 (C2(x+)) - U R C E S (x+) U Q S(x+).
(2)

To show the aforementioned equation, this proof first shows

E S ! (x +) C C2(x+) - URx C E S ^ x ^ r) U Q 5i(a ;+) (3)

and then (2) is shown.
The above (1) is rewritten by removing U R \ as follows:

E S 2{x+) - U R 1 C C2(x +) - U R 2 - U R X

C E S 2{x+) U Q S 2{x+) - U R 1 . (4)

From U R \ ^ U R 2 as shown in Lemma 2

C 2 (x +) - U R 2 - U R , = C 2 (x +) - U R 1

18 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

holds. Furthermore, E S 2(x +) — URi'is rewritten to E S i (&+)
as follows using Lemma 2:

E S 2(x +) - UR,i

= E S i{ x +) U (E S 2(x +) - £ S i (z +)) - U R i

= E S i (x +) - U R i

= E S i (x +) .

Similarly, Q S 2(x+) — U R \ = Q S i (x +) holds. Hence, (4) is
rewritten to (3).

Next, applying proĵ ,1 to (3) derives

projp1 (E S 1(x+)) C projp1 (C2(x+) - U R f

C projp1 (E S ! (x +) U Q S i(a ;+)) .

From Lemma 4, this is rewritten as

CD (E S (x +)) C proj^,1 (C2(x+) - U R - f

C C d (E S (x +)) U C d (Q S (x +))

and by removing U R

CD (E S (x +)) - U R C proj^1 (C2(x+) - U R - f - U R

C (CD (E S (x +)) - U R) U (CD (Q S (x +)) - U R))

is obtained. Since D is an irrelevant input set, Cd (E S (x +)) —
U R = E S (x +) holds, and from Lemma 3, Cd (Q S (x +)) —
U R = Q S (x +) holds. Thus

E S (x +) C proj^1 (C2(x+) - U R i) - U R

C E S (x +) U Q S (x +) (5)

holds. The above proj]f (C2(x+) - U R f - U R can be rewrit
ten as follows from projp1([/JR i) C U R by Lemma 4:

pwfIf { C 2{ x +) - U R f - U R

= projp1 (C2(x+)) - p ro iU U R t) - U R

= proTDl (C2(x +)) - U R . (6)

Hence, from (5) and (6), (2) is obtained. ■
For an STG G, x e Out, and V C sig(G) such that x € V,

let abs(G, V, x) be any STG such that Gd.x ^ abs(G, V, x)
with D = sig(G) — V. The main theorem is as follows.

Theorem 3: If abs(G, V, x) has CSC for V with trigger(a;) C
V, then abs(G, V, x) is cover-correct with respect to G.

Proof: From trigger(a;) C V , D = sig(G) — V satisfies
D D trigger(a;) = 0. abs(G ,V ,x) has CSC. Thus, from
Lemma 5, D is an irrelevant input set for x. From the above
definition, Gd.x abs(G, V, x) holds, and abs(G ,V ,x) has
CSC. Hence, from Lemma 6, abs(G, V, x) is cover-correct with
respect to G. ■

A c k n o w l e d g m e n t

The authors would like to thank W. Vogler and M. Schaefer
for their helpful comments. Furthermore, they would like to

thank J. Carmona and J. Cortadella for giving them the bench
mark suites and the copy of their latest paper and V. Khomenko
and A . Yakovlev for making their experimental software
available.

References

[1] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Trans. Inf. Syst.,
vol. E80-D, no. 3, pp. 315-325, Mar. 1997.

[2] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng, “Covering conditions and
algorithms for the synthesis of speed-independent circuits,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst, vol. 13, no. 3, pp. 205-219,
Mar. 1998.

[3] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and
L. Plana, “Minimalist: An environment for the synthesis, verification
and testability of burst-mode asynchronous machines,” Columbia Univ.,
New York, Tech. Rep. TR CUCS-020-99, Jul. 1999.

[4] C. J. Myers, Asynchronous Circuit Design. Hoboken, NJ: Wiley,
2001.

[5] S. M. Burns and A. J. Martin, “Syntax-directed translation of concurrent
programs into self-timed circuits,” in Advanced Research in VLSI, J. Allen
and F. Leighton, Eds. Cambridge, MA: MIT Press, 1988, pp. 35-50.

[6] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
VLSI-programming language Tangram and its translation into handshake
circuits,” in Proc. EDAC, 1991, pp. 384-389.

[7] E. Kim, J.-G. Lee, and D.-I. Lee, “Automatic process-oriented control
circuit generation for asynchronous high-level synthesis,” in Proc. Int.
Symp. Adv. Res. Asynchronous Circuits and Syst., Apr. 2000, pp. 104—113.

[8] J. Kessels and A. Peeters, “The Tangram framework: Asynchronous cir
cuits for low power,” in Proc. Asia and South Pacific Des. Autom. Conf.,
Feb. 2001, pp. 255-260.

[9] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware synthe
sis language,” Comput. J., vol. 45, no. 1, pp. 12-18, 2002.

[10] A. Bystrov and A. Yakovlev, “Asynchronous circuit synthesis by direct
mapping: Interfacing to environment,” in Proc. Int. Symp. Adv. Res. Asyn
chronous Circuits Syst., Apr. 2002, pp. 127-136.

[11] T. Chelcea and S. M. Nowick, “Resynthesis and peephole transforma
tions for the optimization of large-scale asynchronous systems,” in Proc.
ACM/IEEE Des. Autom. Conf, Jun. 2002, pp. 405-410.

[12] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir
cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 1, no. 2,
pp. 106-119, Jun. 1993.

[13] T. Yoneda and C. J. Myers, “Synthesizing timed circuits from high level
specification languages,” Nat. Inst. Informatics, Tokyo, Japan, Nil Tech.
Rep., NII-2003-003E, 2003.

[14] A. Matsumoto, “High level synthesis of asynchronous circuits (in
Japanese),” M.S. thesis, Tokyo Inst. Technol., Tokyo, Japan, 2004.

[15] T. Yoneda, A. Matsumoto, M. Kato, and C. J. Myers, “High level synthesis
of timed asynchronous circuits,” in Proc. Int. Symp. Adv. Res. Asynchro
nous Circuits Syst, 2005, pp. 178-189.

[16] N. Sretasereekul, H. Saito, M. Imai, E. Kim, M. Ozcan, K. Thongnoo,
H. Nakamura, and T. Nanya, “A zero-time-overhead asynchronous four-
phase controller,” in Proc. IEEE Int. Symp. Circuits Syst., 2003, vol. 5,
pp. 205-208.

[17] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, MIT Lab. Comput. Sci., Cambridge,
MA, Jun. 1987.

[18] W. Vogler and R. Wollowski, “Decomposition in asynchronous circuit
design,” in Concurrency and Hardware Design, vol. 2549, J. Cortadella,
A. Yakovlev, and G. R ozenberg , Eds. New York: Springer-Verlag, 2002,
pp. 152-190.

[19] H. Zheng, E. Mercer, and C. J. Myers, “Modular verification of timed
circuits using automatic abstraction,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst, vol. 22, no. 9, pp. 1138-1153, Sep. 2003.

[20] R. Puri and J. Gu, “A modular partitioning approach for asynchronous
circuit synthesis,” in Proc. ACM/IEEE Des. Autom. Conf, Jun. 1994,
pp. 63-69.

[21] J. Beister, G. Eckstein, and R. Wollowski, “From STG to extended-burst
mode machines,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits
Syst, Apr. 1999, pp. 145-158.

[22] J. Carmona and J. Cortadella, “IL P models for the synthesis of asynchro
nous control circuits,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided De s.,
2003, pp. 818-825.

YONEDA AND MYERS: SYNTHESIS OF TIMED CIRCUITS BASED ON DECOMPOSITION 19

1231 V. Khomenko, M. Koutny, and A. Yakovlev, "Logic synthesis for asyn
chronous circuits based on petri net unfoldings and incremental SAT," in
Proc. ACS I), 2004, pp. 16-25.

|24| T. Yoneda, H. Onda, and C. J. Myers, "Synthesis of speed independent
circuits based on decomposition," in Proc. Int. Symp. Adv. Res. Asynchro
nous Circuits Syst., Apr. 2004, pp. 135-145.

1251 D. I.. Dill, Trace Theory fo r Automatic Hierarchical Verification o f Speed-
Independent Circuits. Cambridge, MA: MIT Press, 1988.

1261 R. Rerthomieu and M. Diaz, "Modeling and verification of time dependent
systems using time Petri nets," IEEE Trans. Softw. Eng., vol. 17, no. 3,
pp. 259-273, Mar. 1991.

1271 T. Yoneda and H. Schlingloff, “Efficient verification of parallel real
time systems," Form. Method Syst. Des., vol. 11, no. 2, pp. 187-215,
Aug. 1997.

|28| T. Yoneda, B. G. Mercer, and C. I. Myers, "Modular synthesis of timed
circuits using partial order reduction," in Proc. 10th Workshop Synthesis
Syst. Integr. Mixed Techno!., 2001, pp. 127-134.

1291 E. G. Mercer, C. I. Myers, and T. Yoneda, "Improved POSBT timing
analysis in timed Petri nets," in Proc. 10th Workshop Synthesis Syst.
Integr. Mixed Techno!., 2001, pp. 151-158.

|30| S. T. lung and C. I. Myers, "Direct synthesis of timed circuits from free-
choice STGs," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 21, no. 3, pp. 275-290, Mar. 2002.

1311 K. McMillan, "Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits," in Proc. Int. Workshop Comput.
Aided Verification, G. V. Rochman and D. K. Probst, lids. New York:
Springer-Verlag, 1992, vol. 663, pp. 164-177.

|32| I. Carmona, I. Colom, I. Cortadella, and !!. Garcia-Valles, "Synthesis
of asynchronous controllers using integer linear programming," IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 9,
pp. 1637-1651, Sep. 2006.

1331 C. I. Myers, "Computer-aided synthesis and verification of gate-level
timed circuits," Ph.D. dissertation, Dept. Elect. ling., Stanford Univ.,
Stanford, CA, Oct. 1995.

134| S. A. Seshia and R. E. Rryant, "Unbounded, fully symbolic model
checking of timed automata using boolean methods," in Proc. Int. Conf.
Comput.-Aided Verification, 2003, vol. LNCS 2725, pp. 154-166.

Tomohiro Yoneda (M'85) received the R.E., M.E.,
and Dr.Eng. degrees in computer science from the
Tokyo Institute of Technology, Tokyo, lapan, in
1980, 1982, and 1985, respectively.

In 1985, he joined the staff of Tokyo Insti
tute of Technology. From 1990 to 1991, he was a
Visiting Researcher at Carnegie Mellon University,
Pittsburgh, PA. In 2002, he joined with the National
Institute of Informatics, Tokyo, w'here he is currently
a Professor. His research activities currently focus
on formal verification of hardware and synthesis of

asynchronous circuits.
Dr. Yoneda is a member of the Institute of Electronics, Information,

and Communication Engineers of Japan, and Information Processing Society
of Japan.

Chris J. Myers (S,91-M’96-SM,04) received the
R.S. degree in electrical engineering and Chinese
history from the California Institute of Technology,
Pasadena, in 1991, and the M.S.E.E. and Ph.D.
degrees from Stanford University, Stanford, CA, in
1993 and 1995, respectively.

He is currently a Professor in the Department of
Electrical and Computer Engineering, University of
Utah, Salt Lake City. He is the author of over 60
technical papers and the textbook entitled Asynchro
nous Circuit Design. He is also a coinventor on four

patents. His research interests include algorithms for the analysis of real-time
concurrent systems, analog error control decoders, formal verification, asyn
chronous circuit design, and the modeling and analysis of genetic regulatory
circuits.

Dr. Myers received an NSi! Fellowship in 1991, an NSi! CAREER aw>ard in
1996, and best paper aw'ards at Async 1999 and Async2007.

