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Abstract—This paper presents a decomposition-based method 
for timed circuit design that is capable of significantly reducing 
the cost of synthesis. In particular, this method synthesizes each 
output individually. It begins by contracting the timed signal 
transition graph (STG) to include only transitions on the output 
of interest and its possible trigger signals. Next, the reachable 
state space for this contracted STG is analyzed to determine a 
minimal number of additional signals, which must be reintroduced 
into the STG to obtain complete state coding. The circuit for 
this output is then synthesized from this STG. Results show that 
the quality of the circuit implementation is nearly as good as 
the one found from the full reachable state space, but it can 
be applied to find circuits for which full-state-space methods 
cannot be successfully applied. The proposed method has been 
implemented as a part of our tool Nii-Utah Timed Asynchronous 
circuit Synthesis system (n u t  a s ) ,  and its first version is available 
at http://research.nii.ac.jp/~yoneda.

Index Terms—Abstraction, decomposition, synthesis, timed 
circuits, timed signal transition graphs (STGs).

I. I n t r o d u c t i o n

T  OGIC SYNTHESIS [l]-[4] from low-level specification 
1 J  languages is one of the major approaches to the automated 

synthesis of asynchronous circuits. This approach can poten
tially synthesize more optimized circuits with higher perfor
mance than other methods such as syntax-directed-translation 
methods [5]—[10]. It, however, usually requires enumeration of 
the state space of the given specification, and it often suffers 
from the state-explosion problem. Thus, large specifications 
expressed in hardware-description languages have usually been 
synthesized by syntax-directed-translation methods or simi
lar techniques that do not require state-space enumeration, 
sometimes with local-optimization techniques, such as in [11], 
This paper tackles the challenge of using logic synthesis also 
for large specifications derived from hardware-description lan
guages, as it has the potential of providing further global 
optimization through timed circuit synthesis [12], In this ap
proach, a specification written in some high-level language is 
first translated to a timed signal transition graph (STG), and 
then, logic synthesis is applied to this timed STG. This method 
uses a compiler that generates timed STGs with the complete- 
state-coding (CSC) property. Its preliminary tool is described 
in [13], and an improved version is described in [14] and [15].
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Guaranteeing CSC by such a correct-by-construction method, 
which may not give optimal solutions in the number of inserted 
state variables, is practical for large STGs, because automatic 
CSC solvers sometimes do not handle such large STGs well. 
Furthermore, by using a special protocol shown in [15] and
[16], the performance degradation caused by the inserted state 
variables can be reduced to an almost negligible amount. A key 
issue to the success of our approach is a new logic-synthesis 
technique that is efficient enough to handle large STGs. This 
paper aims at reducing the average cost for logic synthesis from 
timed STGs by decomposing (or projecting) a specification to 
many small subspecifications and running the logic-synthesis 
procedure for each of them.

The idea for decomposition-based synthesis was first pro
posed by Chu [17], In his work, one primary output is chosen 
and the given STG is modified by replacing each transition 
for the signal that does not affect the output by a dummy 
transition. Then, the modified STG is reduced by eliminating 
selected dummy transitions, while preserving the behavior. 
A correct circuit can be synthesized from this reduced STG 
with usually much smaller cost. He, however, left two open 
problems. First, the reduction of STGs, called contraction, was 
not formalized. For a simple STG such as a marked graph, 
its contraction is straightforward. But, in the general case, the 
formalized algorithm was unknown at that time. Second, it was 
not straightforward to decide if a signal actually affects the 
output signal or not and no algorithm to make this decision 
is given in his thesis. As for the first problem, Vogler and 
Wollowski recently formalized the contraction algorithm using 
a bisimulation relation in [18], and Zheng et al, developed a 
timed-contraction algorithm in [19]. On the other hand, Puri 
and Gu tried to solve the second problem in [20], Their algo
rithm greedily removes an irrelevant signal (with respect to the 
output signal) such that the number of CSC violations (CSCV) 
does not increase by hiding that signal. This algorithm is, how
ever, not so helpful for our purpose, because it needs the state 
graph of the original STG, which cannot be constructed due to 
state explosion for very large STGs. Beister et al. proposed a 
similar decomposition-based method for extended-burst-mode 
machines [21]. Recently, two separate works, one by Carmona 
and Cortadella [22] and the other by Khomenko et al, [23], 
have been proposed for synthesizing speed-independent circuits 
efficiently based on an idea similar to that in [20], Both works 
first find the necessary input signals (called support) for each 
output by analyzing the original STG and then synthesize each 
subcircuit with each output individually. Unlike the approach 
of [20], these works do not use the state graph of the original 
STG explicitly. That is, the original STG is analyzed using the 
integer-linear-programming (ILP) technique in the former and 
the incremental-Boolean-satisfiability (SAT) technique in the
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latter, and hence, their methods are much more efficient than 
that of [20],

The main contribution of this paper is to propose a new 
algorithm to find a sufficient set of input signals for a given 
output for the decomposition-based synthesis approach with
out using the state graph of the original STG. The algorithm 
starts with a small set of signals, which are certainly needed 
for the output signal, and uses only the state graphs of the 
contracted STGs for determining other necessary input signals. 
Since the state graphs of the contracted STGs are usually very 
small, it does not suffer from the state-explosion problem. 
Furthermore, its decision procedure computes candidates of the 
necessary signals in many cases more directly than the greedy 
algorithm in [20], although some cases need heuristics. Since 
our approach analyzes the state graphs of the contracted STGs 
explicitly, it is very easy to handle timed STGs and this is the 
biggest difference between ours and the above ILP/SAT-based 
approaches. This paper describes the theory and the algorithms 
extended from [24] for the timed circuit synthesis.

The rest of this paper is organized as follows. Section II 
shows several definitions needed for this paper. Section III 
describes the overview of the proposed method, and Section IV 
mentions how to explore timed state spaces and to check 
synthesizability. Section V explains in detail how the input 
sets are determined, which is the main issue of this paper. 
Section VI discusses some complexity issues. Several experi
mental results are shown in Section VII, and Section VIII gives 
our conclusion.

II. S y n t h e s i z a b l e  STGs

A timed STG G  =  (P, T, F, Eft, Lft, fi°, I, In ,  Out) is a la
beled net, where P  is a finite set of places, T  is a finite 
set of transitions ( F n T  =  0), F  C (P  x T) U (T  x P)  is 
the flow relation. Eft : T  —> Q+, L f t : T  —> Q + U {oo} are 
functions for the earliest and latest firing times of transitions 
satisfying Eft(t) < Lft(t) for all t € T  (Q+ denotes the set of 
nonnegative rationals), ji° C P  is the initial marking, I : T  —> 
( In  U Out) x {+. —} U {A} is the labeling function, and In  
and Out are the input and output signal sets. Let sig(G) denote 
I n  U Out. A transition t  with l(t) € I n  x {+ . —} is called an 
input transition, t with l(t) £ Out x {+ . — } is called an output 
transition, and t  with l(t) =  A is called a dummy transition. 
For w € sig(G), w -transition  denotes a transition t  with l(t)  =  
w+  or w —. For any transition t, »t =  {p € P \(p , t )  € F }  
and t» =  {p € P \ ( t ,p ) e F }  denote the source places and the 
destination places of t. For a place p, »p and p» are defined 
similarly. Transitions t  and t' such that »t (1 • t '  /  0 are said 
to be in conflict. Let co n fl ic t( t)  =  {t’\ •  t  (1 • t '  0} — {£}. 
In the rest of this paper, when timed STGs G, G \,  etc., are 
considered, their corresponding components P, T ,  etc., P\, T%, 
etc., are implicitly considered. Furthermore, a timed STG is 
simply called an STG if there is no confusion.

A marking fi of G  is any subset of P. A transition t  is 
enabled in a marking if »t C p. (all its source places have 
tokens in p); otherwise, it is disabled. Let enabled(/u) be the 
set of transitions enabled in ji. A  timed state cr of G  is a 
pair (ji, clock), where n  is a marking and clock is a function

T  —> R + (R + denotes the set of nonnegative reals). The initial 
timed state a 0 is (p°. clock0), where clock°(t) = 0  for all 
t  € T . A  timed state changes if time passes or if a transition 
fires. In timed state a  =  (p. clock), time r € Q + can pass, if 
for all t  €  enabled(/u), clock(t) +  r < Lft(t). In this case, 
timed state a' =  ( j j !  . clock') is obtained from a  by passing r, 
where

1) jj' =  n  and
2) for all t  € T ,  docket) =  clock(t) +  r.

In timed state a  =  (/u. clock), transition t f  £ T  can fire, if t j  € 
enabled(p) and clock(tj) >  Eft(t/). In this case, timed state 
a' =  (//, clock') is obtained from a  by firing t / ,  where

1 ) n '  =  (j j  — • t / )  U t f  and
2) for all t  G T

0. if t € enabled^')— enabled(/u — • t f )
clock(t). otherwise.

That is, firing a transition t f  consumes no time but updates fi 
and clock such that the clocks associated with newly enabled 
transitions (i.e., transitions that are enabled in / / ,  the final 
marking obtained when t f  fires, but not enabled in n — • t f , 
the intermediate marking during t /  fires) are reset to zero, and 
clock values of other transitions (i.e., transitions not affected by

I f
t f )  are left unchanged. Let a  —* a' denote that a' is obtained 
from a  by first passing some time and, then, firing t f .  For a 
sequence v =  tit% ■ ■ ■ of transitions, a  cr' is defined simi
larly (cr is equal to cr' for an empty v). v is called a trace, if 
there exists a a' such that <r° -̂ > a ' . Let trace(G) denote the 
set of all prefix-closed traces of G. If there exists a trace that 
leads to cr', cr' is called reachable. A  trace may contain multiple 
occurrences of the same transition. In this paper, it is assumed 
that those occurrences of the same transition are distinguished 
in some appropriate way, such as, by attaching firing counts, but 
those are omitted for simplicity in this paper. If every reachable 
timed state a  =  (p. clock) such that there exist t  and a' with 
cr a'  satisfies (ji — »t) (11* =  0, then G  is called one-safe. 
Intuitively, in a one-safe STG, a token is never produced into 
a place that is already marked. Furthermore, G  is consistent, if 
for every trace v € trace(G) and every w €  sig(G) such that 
v includes two or more w transitions, the last two of them are 
different (i.e., m;+ and w —, or w — and w+).

A  reachable timed state is mapped to a signal state, which is 
a binary vector representing the values of signals in I n  U Out. 
Different timed states may be mapped to the same signal state. 
It is sometimes convenient to annotate a signal state with the 
information whether the outputs are excited to rise or fall. For 
this purpose, R  or F  is used in addition to zero or one in signal 
states. R  represents that the corresponding output signal has 
the binary value of zero, but it is excited to rise. F  indicates the 
signal has a value of one, but it is excited to fall. When these two 
notations with or without R / F  should be distinguished, we call 
the former decorated signal states and the latter nondecorated 
signal states. For example, suppose that two timed states a  and
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a' have decorated signal states (1010) and (lO li? ).1 They have 
the common nondecorated signal state (1010), but the behavior 
of the output is different in those timed states. This situation is 
called a CSC violation, and these two timed states are a CSC 
violation pair. If an STG has a CSC violation pair, we say that 
the STG does not have CSC. Otherwise, it has CSC. If an STG 
does not have CSC, a circuit cannot be synthesized from the 
STG without adding a state variable, reducing concurrence, or 
otherwise changing the behavior of the STG in some way.

This detection of CSCV is, however, a little complicated, if G 
has dummy transitions. Suppose &  is obtained from a  by firing 
the dummy transition and that an output signal is excited in a' 
but not in (j. (j and a' have the same nondecorated signal state, 
while they have different decorated signal states. In this case, 
however, a  and o' cannot be distinguished from the outside 
(i.e., a dummy transition is invisible), and so, it should not be 
considered that they cause a CSC violation. In order to define 
this signal excitation formally, it is useful to define a dummy- 
free version of a state graph. A timed state graph of an STG 
G  is a graph (V, E ) with an initial timed state a 0, denoted by 
Qg — ((V , E),<j°), such that V  is the set of all reachable timed 
states of G  and E  is the timed-state transition relation of G, that 
is, {((j, £, a')\3v  • cr° A  a, o  o7}. A dummy-free timed state 
graph of Qg is a graph (V7, E')  with an initial timed state a 0 , 
denoted by Qq =  ((V7, E ' ) , a 0'), satisfying the following:

1) cf0' =  cr°;
2) V '  =  a) G E , t  /  A} U {cf0'};
3) E '  =  { (a , t ,a s ) \a  G V', ( a ,u iu 2 • • -u n j cr2) € E * ,n  > 

0, \/i - Ui = A, (<r2, t, a3) G E , t  /  A}.
This dummy-free timed state graph is constructed based 

on the fact that timed-state transitions by a (possibly empty) 
sequence of dummy transitions followed by a nondummy 
transition can be replaced by the single nondummy transition. 
Fig. 1(a) shows a simple timed STG G  (the transition labeled 
by t  is a dummy transition), and its timed state graph and 
dummy-free timed state graph are shown in Fig. 1(b) and (c), 
respectively. Note that a + , for example, can fire at any time 
between one and two time units after it becomes enabled, and 
so, there exists an infinite number of timed states reached from 
(Jo by firing a + . These figures show for simplicity only timed 
states that have different markings.

Now, the signal excitation can be defined on this Qq = 
((V', E ') ,c f0'). An output signal w  is excited in a timed state 
cf, if 3cf' • (<j, £, cf') G E '  with l(t) = w-\- or l(t) = w —. For ex
ample, x  is excited to rise in . This straightforward definition 
is, however, not sufficient for the timed case. Consider cf2 of 
Fig. 1(b). In this timed state, both x-\- and y+  are enabled but 
only x +  can fire in this state, because the earliest firing time 
of y+  is larger than the latest firing time of x+ .  Thus, o\  has 
only one successor state reached by firing x-\- in Fig. 1(c). It is, 
however, necessary to define that y  is also excited in cf\ in order 
to synthesize a circuit for the output y  correctly, because y  is 
triggered by a + , not by x+ ,  as shown in the STG. Therefore, 
the signal excitation should be defined based on the enabledness

!Note that in (1010) some input may be excited, but only outputs are 
decorated in our definition.

Fig. 1. (a) Simple STG with a dummy transition, (b) Timed state graph, 
(c) Dummy-free timed state graph, (d) Dummy-free timed state graph with 
decorated signal states.

information instead of the existence of outgoing edges in the 
state graph. This is complicated by the fact that neither x+  nor 
y+  is yet enabled in o\.

The definition of signal excitation proposed in this paper is 
as follows. An output signal w  is excited in a timed state cf 
of Qq =  ((V7, E') , cf0'), if there exists a (possibly empty) 
sequence U1U2 • • • u n of dummy transitions such that (cr, 
u i u 2 • • • u ni cf2) G E*, cf2 =  (/i2, clock2), and t  G enabled(/i2) 
with l(t) = w+ or l(t) =  w —, where Qg =  ((V",E),a°). Let 
out_excited(a) be a set of output signals that are excited in 
cf. Then, it is defined that a timed state cf has R  (or F)  for 
an output w  in its decorated signal state, if and only if w  G 
out_excited(cr) and the binary value of w  in a  is zero (or one). 
For example, the decorated signal state of cf\ in the previous 
example is (a, x, y) = (1R R ) .  Fig. 1(d) shows decorated signal 
states on the dummy-free timed state graph. Based on this 
definition of decorated signal states, the detection of CSCV can 
be done in the same way as STGs without dummy transitions.

The property called output semimodularity is also neces
sary to synthesize a circuit from an STG. For the untimed 
case, this property is formally stated as follows. An STG G 
is output semimodular, if its dummy-free state graph Qq =  
((V7, E'), a 0') satisfies that for any (cr, £, a') G E r with l(t) =  
x +  or l(t) = x —, if a signal w  ( /  x)  is excited in cf, but not in 
a', then signals w  and x  are both input. This definition again 
has a problem in the timed case. Consider the STG shown 
in Fig. 2(a), where t \  and t 2 are dummy transitions. It has 
the timed state graph and dummy-free timed state graph, as 
shown in Fig. 2(b) and (c). According to the excitation defined
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Fig. 2. (a) STG with conflicting dummy transitions, (b) Timed state graph, (c) Dummy-free timed state graph.

above, in the dummy-free timed state graph, x  is excited in 
both ai  and <75 as well as y  is excited in both o\  and <74 . 
Thus, this STG satisfies the above property. Hence, if only the 
untimed behavior of this STG is considered, a circuit such that 
a +  triggers both x-\- and y+  is synthesized from it. However, 
it is impossible to find any delay assignment to this circuit, 
under which the circuit satisfies the timed behavior of the STG, 
because when x +  fires later than y+, x +  should fire at a total 
of 40 time units later than the firing of a + ; otherwise, it should 
fire only 20 time units later than the firing of a+ . Hence, this 
timed STG should not be considered to be synthesizable. In 
this paper, we use the following simplified definition of output 
semimodularity for timed STGs. A timed STG G is output 
semimodular, if for any conflicting transitions that are enabled 
in the same timed state of Qg , every (possibly empty) path of 
dummy transitions starting from each of them on the STG ends 
with an input transition. For the STG shown in Fig. 2(a), t \  and 
£2 that are in conflict with each other are enabled in o\,  and 
the path of dummy transitions from t \  on the STG, which is t \  
itself, ends with an output transition x+.  Thus, this STG is not 
output semimodular in our definition. Although this definition 
is sometimes unnecessarily too strong (e.g., the case that both 
x +  and y+  have [0,0] delays in the above STG.), it is, in our 
experience, not a practical problem.

Although one-safeness of STGs is not required for synthesis, 
our timed state-space enumeration algorithm supports only one- 
safe STGs. Furthermore, consistency significantly simplifies 
the analysis and synthesis algorithms. Thus, we say that an 
STG G  is synthesizable, if G  is one-safe, consistent, output 
semimodular, and has CSC.

There is another property needed especially for timed circuit 
synthesis. The timed circuit synthesis method assumes that a 
synthesized logic function for an output is implemented with 
a delay within the firing-time bounds (i.e., [Eft(t), Lft(t)]) of

the corresponding output transitions in the given timed STG. 
This assumption, however, may not work, if the output tran
sitions related to the same output signal have different firing
time bounds, or even a dummy transition that precedes those 
output transitions has a nonzero delay. In order to simplify the 
problem, this paper considers a class of timed STGs satisfying 
the following timed implementability. A timed STG G  is timed 
implementable, if for every output signal x  of G, every x  
transition has the same firing-time bounds, and in any path of 
dummy transitions on G that ends with an output transition, 
all dummy transitions have [0,0] bounds. If a timed STG does 
not satisfy the timed implementability due to dummy transitions 
with nonzero bounds in the paths to output transitions and the 
dummy transitions satisfy the conditions for exact contraction 
mentioned in the next section, then it can be converted to a 
new timed STG with timed implementability without changing 
the semantics by collapsing those nonzero time bounds to the 
time bounds of the output transitions. Note that the requirement 
that the output transitions related to the same output signal 
have identical time bounds is mainly for simplification of the 
presentation, and it can be relaxed, for example, such that the 
rising transitions and the falling transitions related to the same 
output signal can have different time bounds.

III. D e c o m p o s it i o n -B a s e d -S y n t h e s is  O v e r v ie w

The top level algorithm for the proposed decomposition- 
based synthesis is shown in Fig. 3. For a given synthesizable 
and timed-implementable STG G, our algorithm tries to com
pute an abstraction G abs for each output signal x  of G, such 
that a correct circuit for x  can be synthesized from it. Then, a 
timed circuit synthesis algorithm is applied to G abs-

The algorithm for obtaining such an abstraction is shown in 
Fig. 4. It first constructs the initial input set V  for x  by taking x
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decomposition_based_synthesis(G?) {
forall x  G Out {

Gabs = obtain_abs(G, x);
Cx = timed-logic _synthesis(Gfa&s);

Fig. 3. Top-level algorithm for synthesis.

if (every transition is already flagged) abort; 
flag some transitions to disallow contraction;

if ( res == “consistency or O.S.M violation”) abort;
C S C V  = obtain_CSC_violation_trace_set(Ga6s, ssg );

Fig. 4. Algorithm to obtain an abstraction.

and its possible trigger signals. A signal w  is a possible trigger 
signal for an output x, if one of its corresponding transitions 
can reach on G  some x  transitions either directly or through 
only dummy transitions (i.e., without passing any other signal 
transitions). Let trigger(x) denote the set of all possible trigger 
signals for x.

The algorithm next contracts dummy transitions in G ' , if 
possible, where Gf is an STG obtained from G  by replacing 
transitions related to signals in sig(G) — V  by dummy transi
tions. This contraction of transitions produces a reduced STG 
that behaves similarly to the original STG with respect to the 
remaining signals. More formally, there exists a simulation 
from G' to the contracted STG. It is proved in Theorem 3 of 
the Appendix that such a reduced STG is correct2 with respect 
to the original STG G, if the reduced STG has CSC and the 
input signal set contains trigger(x).

There are several definitions of correctness in the context of 
the decomposition-based synthesis. In [17], it is defined as the 
property that the parallel composition of the contracted STGs 
for all outputs has a state graph that is isomorphic to that of 
the original STG. The correctness defined in [18] is similar 
to the conformance used in [25]. Although this correctness 
is less strict than Chu’s, only deterministic (i.e., dummy-free) 
STGs are considered in their definition. Our correctness is 
similar to the latter in the case that the given STG is untimed

2More precisely, it is “cover-correct” in our terminology. See the Appendix.

Fig. 5. Exact contraction.

and deterministic. Ours is, however, different from these two, 
because the parallel composition is not used for the correctness 
definition, and STGs with dummy transitions can be naturally 
handled by defining correctness based on sets of signal states 
that are obtained from dummy-free timed state graphs.

Such correct contraction of timed STGs can be done in a 
way similar to that is shown in [19]. Our method, however, 
applies the contraction to only a dummy transition t with a 
net structure as shown in Fig. 5(a), where arcs from •t  and t 
(shown by dashed arrows) are not allowed and, similarly, arcs 
to £• and t • •  (also shown by dashed arrows) are not allowed 
either. Then, contracting t results in the sub-STG shown in 
Fig. 5(b). The untimed behavior of transitions except for t 
is the same in both STGs, and the time spent in t is just 
transferred to those in t • •. Thus, these two timed STGs have 
exactly the same dummy-free timed state graph. We prefer this 
exact contraction, because it synthesizes more optimal circuits 
than the general contraction that preserves the correctness in 
a more conservative fashion. Note that if some of the dashed 
arcs in Fig. 5(a) exist, the behavior of the STG cannot be 
preserved in general by any modification of time bounds. For 
example, if transitions in t • • have two or more source places, 
adding a and b to their time bounds, as shown in Fig. 5(b), 
does not capture the correct timed behavior in the case that 
the firing of t is early and its firing time does not determine 
those of t •  •. From the equivalence of dummy-free timed state 
graphs, it is straightforward that our exact contraction preserves 
consistency. On the other hand, contracting transitions violates 
output semimodularity with respect to an output transition x, 
if some nonoutput transition y  that conflicts with some other 
transition, say z, has a path of transitions ending with x, 
and every transition (including y) in the path from y  to x  is 
contracted, because x  conflicts with z in the resultant STG. 
This is, however, impossible in our case, because transitions 
related to the possible trigger signals, which are the nondummy 
transitions nearest to t in the path, are considered to be input 
signals as mentioned above, and so, they are never contracted. 
Thus, output semimodularity is also preserved. Further details 
about the contraction algorithm are omitted in this paper. Note 
that even our exact contraction (and any contraction algorithm 
of timed STGs) cannot preserve one-safeness. Also, note that 
the exact contraction may result in STGs that still contain 
dummy transitions.

The reduced STG G abs obtained by contraction is then 
checked if it is synthesizable or not. This process needs to 
enumerate its timed state space and construct the decorated 
signal state graph ssg  that corresponds to its dummy-free timed
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state graph. If G abs is synthesizable, the algorithm returns it. 
If it has a one-safeness violation, some transitions that may 
cause the one-safeness violation are flagged to show that they 
should not be contracted. Selecting those transitions depends 
on the contraction algorithm, but for the exact contraction, the 
following idea usually works. Suppose that a safety violation 
is detected when a transition u  fires. If the original STG is 
one-safe, then this one-safe violation must be caused by con
tracting some transition t  of the original STG, satisfying t  £ u »  
•. Thus, those transitions in u  •  •  can be selected. In the case 
that every transition is already flagged, the original STG is not 
one-safe. Thus, the algorithm aborts. Otherwise, the contraction 
process is restarted. Please note that the above selected t  may 
cause a one-safeness violation. Then, the transitions in t  •  •  
are selected by the above process. If the original STG is one- 
safe, this process certainly terminates. If consistency or output 
semimodularity is violated (indicatedby “consistency orO.S.M  
violation”), it is also violated in the original STG, because our 
contraction is exact. Thus, the algorithm aborts.

The remaining case is that G abs does not simply have CSC. 
This happens when the input-signal set does not contain some 
relevant signals. In this case, some set of traces of G abs that 
cause CSCV is extracted3 from ssg. The algorithm then ana
lyzes each g € CSCV and tries to find candidate inputs to be 
added in order to resolve the CSC violation. It fails to find the 
candidate inputs (indicated by “not found”) when the original 
STG does not have CSC. In this case, the algorithm aborts. 
Otherwise, the set candidate contains a set of requirements such 
that each requirement, which is a set of signals, is satisfied if at 
least one of the signals in the requirement is added to V.  In 
order to resolve the CSC violation, every requirement must be 
satisfied. Those requirements are added in the constraint matrix 
to set up a covering problem. This process is repeated for every 
CSC violation trace in CSCV. Finally, the covering problem is 
solved for those requirements, and the optimal set of signals is 
added to V .  This V  is used to compute a new G abs. and the 
algorithm repeats the above process.

The formal discussion about the correctness of this method 
is shown in the Appendix. The Appendix first defines the 
correctness of an STG with respect to another STG, and then 
proves that the G abs. which is finally obtained in the above 
process when it has CSC, is correct with respect to the original 
STG G. As mentioned in the Appendix, an STG defines a set 
of covers and a cover defines a circuit. Thus, an STG defines a 
set of circuits. Let Cq be this set defined by an STG G. Then, 
the correctness of G\  with respect to G implies C q -i Q Cg - 
Hence, from the above fact that G abs is correct with respect to 
the original STG G, G cabs Q C a  is derived, which implies the 
correctness of our method.

IV. C h ecking  Sy n th esiza b ility

The reduced STG G abs is checked if it is synthesizable or 
not in eheek^synthesizable, as shown in Fig. 4. This is done 
by exploring the timed state space of G abs and obtaining its

3In our current implementation, one shortest trace is selected for each CSC 
violation pair because using all CSC violation traces is very expensive.

corresponding decorated signal state graph. Since the timed 
state space of a timed STG is potentially infinite, equivalence 
classes of timed states are actually explored. Let J  be a set of 
inequalities of the form t  — u < c, where t  and u  are variables 
to represent the next firing times of transitions t  and u, and c is 
a constant. For a given marking fi, if I  over the variables related 
to the transitions enabled in fi is considered, then I  determines 
the bounds of the firing-time separation of those transitions. 
Thus, represents an equivalence class of timed states,
which is called a timed state class. Let ag =  (pq.Iq)  be the 
initial timed state class, and for a timed state class a, fira b le (a ) 
denotes the set o f firable transitions, i.e., the set o f transitions 
that can fire earlier than any other transition in a. It is known 
that the timed state class space is finite [26], [27], and so, its 
space enumeration is done by firing every firable transition from 
cco until no new timed state classes are reached. The inclusion 
of timed state classes is considered in this process. A timed state 
class (/i, I )  includes another timed state class ( / / ,  I ') ,  if n  =  / /  
and the solution set of I  includes that of I'.  If a timed class 
a  that is newly generated is included by some timed class a'  
that is generated previously, the traversal from a  is stopped. On 
the other hand, if a  includes a', then a' is removed, the arcs 
from the predecessors of a' to a ' are reconnected to a, and the 
traversal from a  is continued.

When enumerating the equivalence classes, one-safeness can 
be easily checked. Once the graph of these equivalence classes 
is constructed, its dummy-free version is obtained by the way 
explained in Fig. 1. This modified graph is then projected to 
a decorated signal state graph by considering only decorated 
signal states. It is straightforward to check the consistency, 
output semimodularity, and CSC on this decorated signal state 
graph.

The above timed state class enumeration can be improved 
using the ideas of the partial order reduction and POSET 
method, which are similar to that proposed in [28] and [29]. 
Since the firing order of dummy transitions does not affect the 
dummy-free timed state class graph if they are concurrent with 
any other transitions, the state-space explored can be reduced 
by only considering a single interleaving of firing those dummy 
transitions. This is effective especially in our case, because the 
exact timed contraction can contract only a restricted class of 
dummy transitions, and many dummy transitions sometimes 
remain in G abs- In other words, the penalty of the synthesis 
cost due to using the exact contraction can be decreased by 
these techniques. As mentioned later, some large circuits in our 
examples could be synthesized only by using these techniques.

V. Analyzing  CSC V iola tio n  Traces

If G abs does not have CSC, a set of CSC violation traces 
is constructed by obtain_CSC_violationJraee_set from the 
decorated signal state graph. Each of such CSC violation traces 
is analyzed by analyze^CSCV Jrace, which is the core part of 
this paper.

The algorithm analyze^CSCVJrace first generates a con
crete trace of the original STG G which corresponds to the 
given CSC violation trace of G abs- This is done by a technique 
similar to the one developed for partial order reduction, which
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analyze_CSCV_trace(g, G, V) {

if ( can = = false)  return “not found”;

Fig. 6. Algorithm for analyzing CSC violation trace.

we call guided simulation. Then, it finds a set of requirements 
for an appropriate input set by analyzing the concrete CSC 
violation trace. The overall procedure is shown in Fig. 6.

This section first discusses the algorithm to analyze the 
concrete CSC violation traces, because guided simulation is 
strongly related to this algorithm. Guided simulation is then 
discussed. In the following, an interface signal means the 
signals used in G abs, i*e., the signals in V,  and a noninterface 
signal means the remaining signals of G , i.e., the signals in D  = 
sig(G) — V.  The corresponding transitions are called similarly.

Please note that the proposed algorithm currently has the 
following restrictions on the class of timed STGs to be handled. 
Any loop in the given timed STG must contain at least one 
transition with nonzero delay (i.e., its earliest firing time is 
greater than zero). This restriction is necessary to guarantee 
the termination of the second phase of guided simulation 
(see Section V-C). In the untimed case, this termination is not 
guaranteed if a loop formed only by noninterface or dummy 
transitions exists [24]. In the timed case, however, even if such 
a loop exists, time certainly passes in the loop from the above 
restriction, and eventually, other transitions are fired. Thus, 
guided simulation can terminate. For every two reachable timed 
state classes of the STG, either one is reachable from the other. 
This restriction is necessary, because every CSC violation pair 
is found along a single path from the initial timed-state class 
in our algorithm. This limitation should be eliminated in the 
future. However, our method can be successfully applied to the 
standard benchmark suites shown in Table II. Furthermore, this 
method is intended to handle the timed STGs generated by a 
compiler to translate high-level specification languages to STGs 
in a high-level synthesis flow. Those generated STGs usually 
satisfy the above condition. Hence, we do not consider this as a 
severe limitation.

A. Regular Concrete Traces

Each CSC violation trace g of G abs> constructed by 
obtain_CSC_violation_trace_set, is assumed to be of the
form g =  (g0, <7i, #2), $o ^  $i, s i ^  s2, an<̂  52 ^  53 , where 
so is the initial signal state of G abs, 5i and 52 are the 
first two signal states that correspond to the CSC violation 
pair, and g2 contains exactly one (interface) transition.4 For 
this g, the corresponding concrete trace /  is constructed by 
guided simulation shown later, where / =  ( / o , / i , / 2) such 
that for 0 <  i < 2, projecting out noninterface and dummy 
transitions from f i  is equal to gi. It is assumed that /  is

4Choosing those go, g±, and #2 such that only the first two CSC violation 
signal states in the reduced STG are captured may cause poor results in the 
subsequent analysis. Some improvement may be possible in this choice, but 
currently, we have not tried this.

Fig. 7. Labeling of a concrete trace.

separated into f i  when interface transitions fire, i.e., each f i  
ends with an interface transition. Let a \ ,  ce2, and as  denote 
the timed state classes of G obtained by fo, f \ ,  and / 2, 
respectively (see Fig. 7). Since some noninterface or dummy 
transitions fire concurrently with the interface transitions, 
there exist many such concrete traces that correspond to g. 
Thus, we first define an equivalence class of traces based on 
the causality relation.

For two interface transitions a and b in / ,  if a fires before 
b without any interface transitions between them, it is denoted 
by (a, b) E R {.  For any two transitions t \  and t 2 in / ,  if t 2 
fires by consuming the token produced by the firing of t \ ,  it 
is denoted by ( t i , t 2) E i?2 . In the untimed case, the actual 
causality relation for /  is defined by the transitive closure of the 
union of R {  and R ^,  i.e., ( t i , t 2) E (R{  U R^)*- In the timed 
case, however, it is further needed to consider timed causality, 
which is defined in [30]. For any two transitions t  and u  with 
(t, u) E (i?2 )*, let path f ( t ,  u) denote a set of paths from t  to u  
defined by the relation > where each path is represented by a 
set of transitions. That is,

path y(£, u)

0, if t = u
|{w } U q\(t', u) E Q £ P 3 th j ( t , t ') |  , otherwise.

For example, if /  is a concrete trace obtained from the STG 
shown in Fig. 9(a), then path^(c+ , x —) is {{a+ , x+ ,  a —, x —}, 
{a+ , 6—, a —, x —}}. Furthermore, let

max_eftf (£, u) = m ax > E f t : ( r )
qEpathf (t,u)

m a x jf tf  (£, u) =  m ax Lft(r) .
gepath/ (t,u) \ ^ q J

Finally, for any two transitions t \  and t 2 in / ,  if there exists a 
transition ts  in /  such that (t3 , t i )  E (i?2)*, (£3 ,^2) £ ( ^ 2)*> 
and m ax_lft/(t3 , t \ )  < m ax_eft/(t3 , t 2), then it is denoted by 
(£1^ 2) £ Rs-  Intuitively, (^1 ,^2) £ Rs  implies that t \  and t 2
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has a common ancestor £ 3 ,  and the maximal time separation 
between £3  and t i  is smaller than the minimal time separation 
between ts and £2. Thus, £2 cannot fire before t \  under the 
timing constraints associated with the causality relation R%. 
This timed causality relation can be computed using a time- 
separation algorithm such as shown in [12].

Using the above relations, we say that t \  is an ancestor of 
£2 in / ,  denoted by \t\ £2], if £1 and £2 are related by the 
transitive closure of the union of R { , R ^ ,  and R ^.  This ancestor 
relation represents an actual causality relation with respect to 
the specific abstracted trace g. In the rest of this paper, we use 
the following terminology.

• £1 causes £2, if [£1 ^ /  £2] holds.
• £1 and £2 are ordered, if either [£1 £2] or [£2 £1] 

holds.
• £1 and £2 are concurrent, if they are not ordered.
This actual causality relation defines equivalent classes of 

traces of G. For a trace / ,  let | | / | |g  denote a set of traces of 
G  (including / )  such that for any f  G ||/||g»  (R{  U R {  U 
R f')*  = (R {  u  i ?2 U R f3 )* holds.

For a given abstracted trace g, our algorithm constructs one 
particular concrete trace /  satisfying a property which we call 
regularity and analyzes it to handle all traces in || f\\ g - A trace /  
is regular, if for every interface transition £ in / ,  all noninterface 
or dummy transitions that are concurrent with £ fire before 
£ in / .  This regularity is necessary for the following reason. 
As shown later, for a transition £, which is an ancestor of an 
interface transition x  in / ,  it is necessary to find a noninterface 
signal w  such that every w  transition in /  is ordered with £. If 
every w  transition appears in / ,  it is easy to check the above 
property, i.e., this can actually be done by constructing a data 
structure similar to an occurrence net [31]. Otherwise, however, 
it is not clear when the generation of /  should be terminated to 
check the above property with respect to every w  transition, if /  
is nonregular, because a concurrent w  transition may fire a long 
time later. On the other hand, if /  is regular, every transition 
concurrent with x  is fired before x. Hence, if a regular trace /  is 
generated up to x, it can be decided whether every w  transition 
is ordered with £ or not, because a w  transition that does not 
appear in / ,  if it exists, is caused by x, and so, it is caused by £ 
from [t ^  f  x \ .

B. Determining the Input Set

The idea to resolve the CSC violation between ol\ and a 2 
is to add to the input set a noninterface signal w  such that /1  
contains odd number of w  transitions. If a w  transition fires 
in /1  in odd times, then the signal takes different values in ol\ 
and 0L2, and so, the CSC violation is resolved by adding w  to 
the input set. However, such w  may not work for other traces 
in | | / | |g,  unless the causality relation guarantees that it fires 
certainly odd times in traces in ||/ | |g -  Thus, we need to define 
the following notions.

For a (sub)trace h, let final (h) denote the last transition 
in h, and before(h) the transition fired just before the first 
transition of h in a currently designated trace. When h starts 
from the initial timed state class, before(h) is the virtual tran-

Fig. 8. Nested subtrace pair.

sition v that is assumed to cause the first transition of every 
trace. For a trace / ,  (Zi, Z2) is a nested subtrace pair  of / ,  if 
before(Zi), b e fo re ^ ) , finaI(Z2), and final(Zi) are distinct, and 
they are caused in this order, i.e., [before(Zi) b e fo re^)], 
[befo re^) f in a l^ )] , [fin a l^ ) final(Zi)] (see Fig. 8). 
For a signal w  and a nested subtrace pair (Zi, Z2) of f ,  w  is 
semiessential with respect to (Zi, 12) in / ,  if

• none of before(Zi), b e fo re ^ ) , final(Z2), and final(Zi) is a 
^-transition and

• every w  transition in /  is ordered with before (Zi), 
before(Z2), final(Z2), and final(Zi).

Similarly, w  is essential with respect to (Zi, Z2) in / ,  if w  is 
semiessential with respect to (Zi, Z2) in / ,  and h  contains an 
odd number of w  transitions while neither Z12 nor Z21 contains 
any w  transition, where Z12 and Z21 are the subtraces of before 
I2 and after l2, as shown in Fig. 8. As mentioned previously, it is 
easy to check whether w  is (semi)essential or not, if /  is regular 
and contains interface transitions at the end of Zi or later.

For f  G ||/||g»  a nested subtrace pair (Z^Z^) of / '  that 
corresponds to (Zi, Z2) in /  is the nested subtrace pair defined 
by using before(Zi), b e fo re ^ ) , final(Z2), and final(Zi). For a 
sub trace Z, let TS(Z) denote a set of timed state classes in 
which the transitions in Z fire (see Fig. 8). SS(Z) denotes the 
corresponding signal-state set. The following lemma holds.

Lemma 1: Let (Zi, Z2) be a nested subtrace pair of /  and w  
be essential with respect to (Zi, Z2). For any / '  e  UWg and the 
nested subtrace pair , V2) of f  that corresponds to (Zi, Z2), the 
signal states in SS(Z'12) are distinguished from those in S S ^ ^ )  
by the signal w.

Proof: The proof is straightforward from the definition of 
the essentialness. ■

Consider the concrete trace shown in Fig. 7. Since ol\ and 
0L2 cause a CSC violation, there exist at least two interface 
transitions in / 1 . Note that if there are no interface transitions 
between ol\ and 012, 012 cannot cause CSCV in the dummy-free 
version of the timed state class graph. Thus, the first interface
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Fig. 9. (a) Simple STG. (b) Its CSC violation trace.

transition in / i ,  say y, exists in the middle of / i .  Divide f \  into 
f ih  and / i t with y, i.e., / i  =  ( f lh , f u ) and f lh ends with y. 
Fig. 7 shows the relation among / 0 • • • /2  as well as f ih  and f i t . 
Let h  =  < /i, / 2) and l2 = f u -  Then, l12 = f ih  and l21 =  f 2 
hold. From the definitions of /o , f ih ,  f i ,  and f^,  they end with 
interface transitions. Thus, each of them is different, and they 
are caused in this order. Hence, =  ( ( / i ,  /b)? f i t )  is a
nested subtrace pair of / .  The following theorem holds.

Theorem 1: The CSC violation with respect to f  E | | / | |g  
with /  =  ( / o , / i , / 2) is resolved by adding a noninterface 
signal w  to the input set, if w  is essential with respect to 
(W 2 )  =  « / i , / 2 ) , / i t ) i n / .

Proof: For any / '  6 WfWo and the nested subtrace pair 
(I1J 2) of f  that corresponds to ( h j h ) ,  the CSC violation is 
caused between the timed state classes in TS(/'12) and those 
in TS(1'21). Those signal states are distinguished by w  from 
Lemma 1. ■

For example, consider an STG shown in Fig. 9(a). The output 
x  has the possible trigger signal a, and so, the initial V  is {a, x}.  
Then, the reduced STG with interface signals a and x  has one 
CSC violation trace, and its corresponding concrete trace /  is 
shown in Fig. 9(b). This trace is regular, because a noninterface 
transition b— is concurrent with an interface transition x+ ,  and 
b— fires before x-\- in this trace. | | / | |g  contains another trace 
/ '  obtained by swapping b -  and x +  in / .  (< /i, f 2), f u )  is 
a nested sub trace pair of / ,  and the noninterface signal c is 
essential with respect to it. The noninterface signal b is not 
semiessential, because it is not ordered with final(Zi) =  x+.  
T S (/i2) =  { a ^ a ' i }  and TS(/2i)  =  { a ^ a ^ }  cause the CSC 
violation, and it is resolved by adding the essential signal c to 
V.  Actually, for this new V  =  {a, c, x},  the reduced STG has 
CSC, and a circuit for x  can be synthesized from it.

If there is no essential signal with respect to ( ( / i ,  /b ), / i t )  
in / ,  the CSC violation cannot be resolved by adding a single 
noninterface signal. However, CSCV can be resolved by adding

Fig. 10. Nested subtrace pair reduced from the original nested subtrace pair.

two or more noninterface signals to the input set. There are two 
cases depending on the existence of semiessential noninterface 
signals.

If there exist in f ih  or / 2, noninterface signals that are 
semiessential with respect to ( ( / i ,  f 2), f i t ) ,  the problem can 
be reduced to several subproblems that can be solved by the 
above approach. Suppose that such a semiessential noninterface 
signal w  changes, as shown in Fig. 10. Then, by adding w  to the 
input set, the timed state classes that cause CSCV (i.e., those 
in T S ( f ih )  and T S ( /2)) are divided into two groups: one is 
J S ( h i )  and JSf^h^) and the other is TS(/i2) and JS (h s) .  The 
first group can be handled by considering a nested subtrace pair 
( ( /b  / 2)? (^2 , / i t ,  hs)). Even if there exists no essential non
interface signal for (</i, f 2), f u ) ,  this (< /i, / 2), (^2 , / i t ,  h 3)) 
may have it, because (h2, f u ,  hs) is longer than f u -  Similarly, 
the second group can be handled by a nested subtrace pair 
((^ 2? / i t ,  ^ 3), f i t ) ,  and it may have an essential noninterface 
signal, because (/i2?/it?^3) is shorter than ( / i , / 2). We say 
that ( ( f i , f 2) , ( h2, f i t , h s ) )  or ((fe2, f i t ,  h3), f l t ) is reduced 
from ( ( / 1 , / 2) , f i t )  with respect to a semiessential signal w. As 
aforementioned, it is important that a reduced nested subtrace 
pair may have an essential noninterface signal, even if the 
original nested subtrace pair does not. If every reduced nested 
subtrace pair has an essential noninterface signal, adding those 
essential signals as well as w  to the input set resolves the 
CSC violation in ||/ | |g -  If there exists no essential noninter
face signal for some reduced nested subtrace pair (Zi, Z2), the 
above process can be applied to it as long as semiessential 
noninterface signals exist for (Zi, Z2), which may solve the CSC 
violation using more noninterface signals.

Second, if there exists in f ih  or / 2 no noninterface signal that 
is semiessential with respect to ( ( / 1 , f 2), f i t ) ,  a more compli
cated process is necessary to resolve the CSC violation in 11 / 11 q . 
Suppose that the nested subtrace pair that is considered here is 
(Zi, Z2). Our algorithm finds for a noninterface transition t  fired 
in / ,  which is concurrent with at least one transition among 
before(Zi), b e fo re ^ ), fi na I (Z2), and final(Zi). Let u  denote 
such a transition among them, with which t  is concurrent. 
Our algorithm then generates two traces f  and / "  from /  by
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Inputs : a, b 
Output : c, xl, x2

Fig. 11. STG that has no essential signals.

interleaving t  and u. It means that f  and f "  are obtained from 
/  by adding the ancestor relation such that t causes u  in / ' ,  and 
u  causes t in / " .  More precisely, suppose that t and u  fire in 
this order in / .  The new trace / '  is obtained simply by adding 
[t u] to the ancestor relation of / .  Similarly, f "  is obtained 
by adding [u t] to the ancestor relation of / ,  but in order 
to make the firing order of / "  consistent with this modified 
ancestor relation, it is necessary to move t next to u, because 
from [u t], t cannot exist before u  in / " .  In addition, the 
noninterface transitions v that are caused by t and fired before 
u  should also be moved with t, because from [u ^f>> t\ and 
[t ^ f f f  v], v cannot exist before u  in / "  either. The idea is 
that our algorithm tries to predict from those interleavings the 
situation where the noninterface signal w  that is related to t  is 
added to the input set and every transition is ordered with the 
other interface transitions, before actually regenerating the state 
space of the reduced STG for the modified input set.

For example, consider the STG shown in Fig. 11 and its 
output c. The possible trigger signals for c are a and b. For V  = 
{a, b, c}, G abs has a CSC violation trace g =  c+  a-\- b-\- b— c— 
with go =  a + , g\ =  b+ b— and g2 =  c—. Guided simula
tion generates fo  =  c+  x l +  x2+  a + , f i  =  b-\- x l — b—, and 
f 2 = c—, as shown in Fig. 12(a). Our algorithm first looks 
for a semiessential noninterface signal for ( ( f i ,  f 2), f i t ) ,  but 
both noninterface transitions x l +  and x 2+  are concurrent with 
before(( / i ,  f 2)) = a+. Thus, this STG has no semiessential 
signals. Here, choose x l  and before((/ i ,  f 2)) =  a + , and gen
erate f  and f "  by interleaving them. It is not easy to illustrate 
these traces in a figure like Fig. 12, because it does not show 
the ancestor relation precisely, but assume that in Fig. 12, # lo 
calises a+  in f  while a+  causes x l +  in / " .  Note that in / " ,  
x l +  and x 2+  (which is caused by x l +  and fired before a+ ) 
are moved next to a + . In / ' ,  x l  is now essential with respect to 
((/i?  /2)? f i t ) ,  because every x l  transition is ordered with a+ ,

(a) (b)

Fig. 12. (a) Original traces, (b) Newly generated traces.

&+, b—, c—, and only one x l — exists in f i t . Thus, this CSC 
violation can be resolved in | | / | |g  by adding x l  in the input 
set. In / " ,  x l  is semiessential, but not essential, because x l  
fires in f ^ ,. This corresponds to the first case above, and can be 
handled by considering one reduced nested subtrace pair (Zi, Z2) 
as shown in Fig. 12(b), because only a i  and a 2 cause the CSC 
violation after adding x l .  Then, our algorithm looks for another 
noninterface transition that is essential with respect to (Zi, l2) in 
/ " ,  which is x2 in this case. In other words, x2  can resolve the 
CSC violation between T S (/i2) =  {<^i} and TS(/2i) =  {<̂ 2}- 
Therefore, the CSC violation with respect to f "  can be resolved 
in || / "  || g  by adding both x l  and x 2.

In general, the above process should be repeated to generate 
new traces by interleaving some concurrent transitions. Further
more, there are usually many choices for noninterface signals. 
Thus, generating as many such combinations as possible is 
desirable. The whole process for both cases is described by 
the pseudocode shown in Fig. 13. This procedure constructs a 
Boolean expression E  over a set of noninterface signals such 
that for each feasible assignment of E , the CSC violation is 
resolved in | | / | |g  by adding the noninterface signals that have 
one in the assignment. Then, it is converted to a conjunctive 
normal form (CNF). Thus, one noninterface signal in each 
clause of the CNF should be added to resolve the CSC violation. 
Hence, this CNF represents a set of requirements, and solving 
the covering problem that all these requirements are satisfied 
obtains the optimal set of signals to be added, which is done in 
obtain_abs as mentioned previously.

The following theorem holds.
Theorem 2: The algorithm shown in Fig. 13 returns “false,” 

only when the given STG have no CSC.
Proof: The algorithm returns “false,” either when a pair 

(£, u) does not exist, or when some call of find_essential in the 
last “forall” loop returns “false.” The latter case happens again 
when either of the above two cases happens in the recurred 
find_essential. Since the recursion eventually terminates, the 
former case should happen in some recursion. When the former 
case happens, there exists no noninterface transition that is
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'(t,u) t î n / ^con  ̂ with

Fig. 13. Algorithm for determining the input set.

concurrent with some of before(Zi), before(Z2), final(Z2), and 
final (Zi). It implies that every noninterface signal except for the 
signals related to before(Zi), b e fo re ^ ) , final(Z2), and final(Zi) 
is semiessential. Since no essential signal exists and no reduced 
nested sub trace pair works, such that every noninterface signal 
included in ( / 1 , f 2) must appear in f i t even times. Hence, the 
CSC violation in T S (/i/l ) and T S ( /2) cannot be resolved, even 
if every noninterface signal is used. This implies that the given 
STG has no CSC. ■

C. Guided Simulation

For a given abstracted trace g, guided simulation obtains a 
regular trace f  o f  G such that a trace obtained by projecting 
out the noninterface and dummy transitions from /  is equal 
to g. The algorithm is shown in Fig. 14. It consists of two 
phases. Phase 1 generates a concrete trace h that satisfies 
the projection condition but not the regularity. Actually, for 
each interface transition t  appearing in g, the noninterface and 
dummy transitions that cause t  (by R 2 and r [ )  are certainly 
contained before t  in h, but those that are concurrent with t 
may either appear after t  or not appear in h. In phase 2, the 
concurrent noninterface or dummy transitions are added to h or 
moved in order to satisfy regularity.

' else ̂ r̂  {ch00se^e(fira  bl e (^  n

Fig. 14. Algorithm for guided simulation (1).

In guided_sim_phasel, if g is nonempty, it picks the first 
transition of g, denoted by gi, and computes its necessary 
set, i.e., the set of transitions that should be fired to fire gi, 
using necessary. In necessary, if t is not enabled, one of 
its empty source places is traversed upward along the non
interface or dummy transitions (.NonlF_Dum denotes the set 
of all noninterface and dummy transitions) recursively. If t 
is enabled and firable, it is returned. If t is enabled, but not 
firable, some firable transition must precede gi, and so, one 
of the firable noninterface or dummy transitions chosen by 
choose_one is returned. In the net shown in Fig. 15, where 
ti  • • • £5 are noninterface transitions, and g\ and g2 are interface 
transitions, the necessary set of g\ is {t\}. guided_sim_phasel
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[1,5]

Fig. 15. Examples for guided simulation.

then computes a dependent set of each necessary transition. The 
dependent set of a transition £ is a set of transitions whose 
firings may be necessary before £ in order to avoid missing 
the possible concrete traces. For example, consider generating 
a concrete trace of the net shown in Fig. 15 for an abstracted 
trace gig2- As shown above, the necessary set of g\ is {£1}. 
If £1 is fired from the current marking, g\ becomes enabled, but 
g 2 can never be fired. In this case, firing £ 3 ,  £ 2 ,  ^ 4 ,  and t \  in 
this order leads to the correct concrete trace. It is, however, not 
easy to find such a correct firing sequence directly. Instead, our 
algorithm guarantees to generate the correct concrete trace by a 
backtracking mechanism that fires a sufficient set of transitions 
in each step. Such a sufficient set of transitions is the dependent 
set. It is formally stated that a dependent set of transition H s a 
set E  of transitions, satisfying £ E E,  and for each x  E E ,  the 
necessary transitions of c o n f  lict(x)  D N o n l F _ D u m  are also 
in E.  The dependent set can be defined as a closure, and so, the 
while loop in Fig. 14 computes it. In our example, the depen
dent set of t \  is { t i , t s } .  Hence, even if guided_sim_phasel 
fires t i  first, it eventually can fire £3  and, then, £2 after 
several backtrackings. After firing £2, it is straightforward to 
fire £4 and £1, because they are the necessary transitions for 
gi. When gi becomes enabled, its necessary set is {g{\  and its 
dependent set is {gi, t^}. The correct transition to be fired here 
is £6 and is again guaranteed to be found by the backtracking 
mechanism. The fired transitions are appended to the trace h, 
and it is returned when g becomes empty. Then, the trace h is 
passed to guided_sim_phase2 in order to generate a regular 
trace based on h. Note that it is possible that the algorithm 
happens to choose a correct transition in the dependent set 
in the first trial. In this case, backtrackings are not necessary, 
because the expected trace is obtained. In other words, every 
transition in the dependent set is not necessarily tried. This is 
why guided_sim_phasel terminates when a result that is not 
“backtrack” is obtained in its second “forall” loop.

In guided_sim_phase2, each transition determined by 
find_firing_trans is fired until h, which is also updated

guided_sim_phase2(/i, G , V, a)  {
f  =  n u l l ; 
fired  =  n u l l; 
while(true) {

(£, h) =find_firing_trans(a, h); 
f  =  append(/, £); 
a  = fire(a, £); 
if (h  is empty) break;

} ' 
return / ;

}

find_firing_trans(a, h) {
while(true) {

(£, h ')  =  (head(/i), tail(h)); 
if (£ is interface)

return find_concur_trans(a, £, h , h '); 
else

if (£ 0 f ir e d ) return ( t ,h ') ;  
else { 

fired  =  fired  — {£}; 
h  =  h! ;

}
}

}

find_concur_trans(a, £, h, h') {
find x  E firable(a) D N onlF-D um

s.t. conflict(x) fl (prefix(/i — f ir e d , x )  =  0: 
if (such x  exists) { 

fired  =  fired  U { x } ;  
return (x , h);

}
else return ( t , h f);

}

Fig. 16. Algorithm for guided simulation (2).

by find_firing_trans, becomes empty as shown in Fig. 16. 
In find_firing_trans, if the first transition £ of h is an interface 
transition, it implies that £ is enabled in the current marking 
because all its necessary transitions are supposed to be fired. 
In order to satisfy regularity, however, firable noninterface or 
dummy transitions that are concurrent with £ should be fired 
before £, if they exist. This should be done carefully, if such 
a noninterface or dummy transition x  is in conflict with some 
other transition. In such a case, an appropriate transition should 
be chosen such that it is consistent with the rest of h (up to 
the point where x  fires). Let prefix(/i, x)  denote a prefix of h 
before the occurrence of x. It is equal to h, if x  is not included 
in h. Then, if c o n f  lict (x) D prefi x(/i, x)  /  0, it implies that 
some other transition conflicting with x  fires before x  in h, 
and so, x  should not be fired in the current timed state class. 
Thus, it is necessary to find a noninterface or dummy firable 
transition x  such that c o n f  lict (x) D prefi x (/i,x ) =  0. If such 
an x  is found, it is returned with the nonupdated h keeping 
the interface transition in its head. In this case, x  is added to a 
global variable fired to avoid firing it again when it is in the top 
of h. Considering the set fired, the above condition should be 
rewritten to c o n f  lict (x) D prefix(/i — fired, x).  If such x  does 
not exist, either there are no firable noninterface or dummy tran
sitions, or every such transition conflicts with some interface 
transition in h. In either case, no firable noninterface or dummy
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transitions are concurrent with t. Hence, t and h' =  tail(/i) 
are returned.5

If t is noninterface or dummy, regularity just requires that t 
should be fired. But, it may be already fired as mentioned above 
to generate regular traces when it is concurrent with some 
interface transition. Thus, if t G fired, it is just removed from 
fired, and the next transition of h is processed. Otherwise, t and 
h' =  tail(/i) are returned.

In the previous example, for an abstracted trace gig2

ts t 2 £4 t i  6̂ £5 9i £7 £9 92

is obtained by guided_sim_phasel. This does not satisfy reg
ularity, because £7 and tg fire after g\.  When h =  g\ £7 tg g2 
is first given to find_firing_trans, (£7, h) is returned with 
fire =  {£7 }. After firing £7 , both ts and tg become firable. ts 
is not chosen, because c o n f l ic t ( t s ) =  {tg} and prefix(/i, £g) =  
{tg}. After firing tg, however, ts is chosen and fired, be
cause it is concurrent with g\, and so, it must be fired be
fore gi to obtain a regular trace. Note that ts is not fired 
in guided_sim_phasel, because it is not necessary to fire 
g2 (Remember that guided_sim_phasel fires only transi
tions that are necessary to obtain the expected trace, and 
guided_sim_phase2 adds some other transitions to the trace 
to obtain a regular trace). Finally, g\ and g2 are fired, and the 
following regular trace is obtained:

ts t 2 £4 1\ te £5 £7 tg ts gi g2.

Note that this second phase is deterministic (backtracking 
is not necessary), because every causal transition needed for 
interface transitions in g is found in the phase 1. An alternative 
of guided simulation with only one phase is possible, but from 
our experience, it causes more backtracking than the two-phase 
guided simulation shown above.

VI. D i s c u s s io n

While it is expected that the average case complexity 
of the proposed method is much smaller than that of the 
nondecomposition-based logic-synthesis methods, our method 
does not improve the worst case complexity. This is obvious if 
one considers a timed STG, in which every input and output 
signal in the STG is necessary for a subcircuit of each output 
signal in the STG. Our method finally obtains the whole set 
of signals as the input set and explores the full state space to 
synthesize each subcircuit. Thus, in this case, the synthesis cost 
is even larger than the nondecomposition-based method due to 
the overhead to compute the input sets. For more practical cases 
where the above situation does not occur, it is also necessary to 
discuss the complexity of the techniques used in our method. 
First of all, the number of CSC violation traces is exponential 
in the size of the reduced STG. This number can be kept below 
some (given) upper bound at the sacrifice of the optimality of 
the synthesized circuits. For each CSC violation trace, the worst

5If transitions conflicting with interface transitions form loops, then there can
exist many nonequivalent concrete traces that correspond to g. In our current 
implementation, one shortest regular concrete trace is selected.

TABLE I
Comparison Between SI-Circuit-Synthesis Tools

Circuits
Synthesis time (sec.) Literal Counts

Prop. moebius csatf Prop. moebius csat
PpWkCsc(3,9)
PpWkCsc(3,12)
TangramCsc(3,2)
TangramCsc(4,3)
ArtCsc(10,9)

0.2
0.3
0.4

12.7
298.6

2.0
13.0 
3.0

39.0 
6240.0

0.1
0.3
0.2
1.3

7545.6

156
210
106
248

1423

130
173
103
247

2128

156
210
100
244

1283
f : SAT instance generation times are not included.

case complexity for finding a regular trace is exponential in the 
size of the STG, because phase 1 of the guided simulation may 
have to generate every firing sequence associated with each 
conflicting transition using the backtracking mechanism. The 
number of these sequences is exponential in the size of the STG 
in worst cases. This high worst case complexity is, however, not 
a big problem, because STGs do not usually contain so many 
conflicting transitions. To obtain the timed causality relation, 
max_eftf ( t , u )  and m ax_lft/(t, u) need to be computed for 
each pair (£, u) of transitions and a regular concrete trace, each 
of which can be done with cost linear in the size of / .  Thus, 
the whole computation needs the complexity 0 ( | / | 3). Note that 
I/I is linear in the size of the STG, because a regular concrete 
trace does not contain any repeated behavior. Finally, the worst 
case cost to find the candidates of input signals for each /  is 
exponential in | / | ,  because the number of interleavings created 
by concurrent transitions is in general exponential in | / | .  Note 
that this cost can also be controlled by limiting the recursion 
depth of find_essential at the sacrifice of the optimality.

VII. E x p e r im e n t a l  R e s u l t s

The proposed method has been naively implemented using 
the C language.6 This section evaluates the potential perfor
mance of the proposed method and the area overhead of the 
synthesized circuits. The experiments here have been done on a 
2.8-GHz Pentium-4 workstation with 4 GB of memory.

For speed-independent circuit synthesis, tools moebius [22] 
and csat [23] use a similar decomposition-based synthesis. 
Our tool has an optional mode to handle untimed STGs and 
synthesize speed-independent circuits by just using untimed 
state-space exploration and untimed trace analysis. Using this 
untimed mode of our tool, this section first compares the 
performance of speed-independent circuit synthesis between 
our method and the above tools. Since moebius is not currently 
available to the public due to a licensing problem, we used their 
benchmark suites and compared our results with the experimen
tal results from their latest paper [32]. Their experiments were 
done on a 2.53-GHz Pentium 4 with 512-MB memory. As for 
csat, Khomenko sent us the experimental version of their tool. 
Since it works on a Windows machine, our experiments use a 
3.06-GHz Pentium 4 with 1-GB memory. The results in Table I 
show this comparison. It seems that the literal counts shown in 
[32] were obtained from logic equations optimized in some way

6The interleaving generation part in find_essential is not fully implemented 
currently. It means that some noninterface signal that can actually resolve the 
CSC violation may not be found by our current implementation. This may lead 
to larger input sets, and so, a larger number of literals may be needed in the 
synthesized circuits.
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TABLE II 
Experimental Results (1)

Circuit Literal counts
atacs Proposed

alloc-outbound 16 16
atod 9 9
chu150 11 11
chul72 6 6
converta 12 12
dff 8 8
master-read 26 26
mp-forward-pkt 16 16
nak-pa 20 20
nowick 18 18
pe-rcv-ifc 50 51
pe-send-ifc 60 61
ram-read-sbuf 20 20
rev-setup 8 8
sbuf-ram-write 19 19
sbuf-read-ctl 13 13
sbuf-send-pkt2 19 19
sendr-done 5 5
trimos-send 21 21
vbelOb 21 21
vbe4a 6 6
vbe6a 17 17
vmebus-arb 9 9
wrdata 11 11
wrdatab 29 26
rappid 152 152

(e.g., gate sharing). Thus, their values are sometimes smaller. It 
should also be noted that csat currently builds all the speed- 
independent solutions with minimal supports and that there can 
be combinatorially many of them.

For the timed circuit synthesis, in order to evaluate the area 
overhead of the proposed method, small timed specifications, 
which are obtained from the standard benchmarks by adding the 
fixed lower bound and upper bounds to each transition ([3], [5] 
for output transitions, [8], [10] for input transitions), are synthe
sized by the proposed method and a timed circuit synthesis tool 
atacs [33], and the literal counts of the synthesized circuits are 
compared. Table II, except for the last line, shows these results. 
These results show that the quality at least with respect to the 
area size is not badly affected, even though our method uses 
restricted information for synthesizing subcircuits, and so may 
choose nonoptimal input sets. Since these example are small, 
the CPU times for both methods are almost the same.

The last example shown in Table II is the control circuit for 
RAPPID. This example is larger, and so, atacs cannot com
plete the synthesis on the flat specification without hierarchical 
decomposition. The literal count shown for atacs in the table 
is obtained using hierarchical decomposition. The proposed 
method synthesizes it within 15 s.

Table III shows the results for much larger examples, which 
are taken from [15]. They are specifications for HR filters, 
FIR filters, and the first phase of the discrete-cosine-transform 
(DCT) circuit obtained from SpecC/Balsa high-level specifica
tions (slightly modified versions are used for this paper due to 
some improvement of our Balsa compiler). Those with “_b” 
are allowed to use more operational units. Thus, they have 
more concurrence than those with “_a.” In order to evaluate the 
performance of the timed circuit synthesis, this table also shows 
the performance of synthesis of the untimed version (speed

TABLE III
Comparison Between Untimed and Timed-Circuit Synthesis

Circuits Synthesis time (sec.) Literal counts
Untimed Timed Untimed Timed

IIR_a 13.9 18.1 449 391
IIR_b 19.2 65.0 567 462
FIR_a 215.5 268.0 1155 923
FIR_b 285.7 952.7 1604 1116
DCT_a 2952.0 3700.3 2207 1870
DCT_b 2752.2 3345.9 2496 1902

independent) of the above specifications. Note that partial order 
reduction and POSET techniques are used for these examples, 
because otherwise, timed circuit synthesis does not terminate 
due to many dummy transitions left by the exact timed net 
contraction (the untimed circuit synthesis has not improved 
much by these techniques). Although the timed circuit synthesis 
takes a longer time especially for the specifications with more 
concurrence, much more compact circuits (compared with the 
untimed versions) are successfully synthesized (by using the 
above techniques) without significant performance penalty.

The untimed version of IIR_a is synthesized by atacs in 
about 200 s, but it runs out of memory for the other specifica
tions. Since there is no hierarchy information for those designs, 
the hierarchal synthesis of atacs does not work. The only circuit 
synthesized by atacs from the untimed version of IIR_a has the 
same literal count 449 as the one synthesized by our method.

Finally, in order to discuss the limits of the proposed method, 
this section considers one more example. This is a circuit 
also for the first phase of DCT, but four ALUs, four multipli
ers, and two two-port memories are used to obtain maximal 
performance utilizing the maximal concurrence of the DCT 
algorithm. This circuit is taken from our ongoing project, 
which aims at the precise comparison between synchronous and 
asynchronous practical implementations of the same algorithm 
on the same platform (e.g., a field programmable gate array). 
Since its timed STG is much more concurrent than those of 
previous examples, its synthesis cost is very high. Actually, 
our method could not synthesize subcircuits for several outputs 
from the original STG due to memory overflow. Thus, in order 
to reduce the concurrence of those output signals, two auxiliary 
signals are inserted to the original STG by hand. It makes it 
possible to synthesize all subcircuits successfully. The total 
time for synthesis was 36 206 s. This paper has suggested that 
one of the limits in our method is decided by the concurrence. 
To make it clearer, a simple scalable STG shown in Fig. 17 is 
considered. Table IV shows the CPU times and the amount of 
memory needed for the synthesis. Our method cannot handle 
the STG with n  = 20 due to memory overflow. This is because 
our method uses an explicit timed-state representation. This 
problem may be avoided to some degree by using a symbolic 
timed-state representation like the one proposed in [34], but it 
is not clear how difficult it is to implement the CSC-violation- 
trace analysis on it.

VIII. C o n c l u s io n

This paper presents a decomposition-based method for effi
cient synthesis of large timed circuits. The idea proposed for
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Fig. 17. Simple scalable STG.

TABLE IV
Synthesis Times and Amount of Memory Needed fo r Various n

speed-independent circuits [24] has been extended for timed 
circuit synthesis. Since the state spaces of the original timed 
STGs are not needed to be explored, the proposed method 
allows for the synthesis of large timed circuits that could 
not be synthesized using conventional flat synthesis methods. 
Although this method does have some area overhead for small 
circuits, the experimental results show that the overhead ap
pears to be very small.

Our future work includes an extension of the proposed 
method such that it can handle specifications without CSC. 
Since the cost for solving CSC is usually very high, it would 
be nice if a CSC-solving algorithm could be applied to reduced 
STGs. A state variable insertion is one of the major approaches 
to automatic CSC solving. It is, however, allowed only before 
the output-signal transitions on an STG, because the interface 
behavior should not be changed. This restriction makes the 
state variable insertion in the reduced STG difficult, because 
almost all transitions in the reduced STG are for input signals 
in our definition. Actually, some input signals in the reduced 
STG are output signals in the original STG. Therefore, our 
algorithm first needs to be extended to handle reduced STGs 
containing multiple output signals. Then, finding appropriate 
output signals before which state variables for solving CSC are 
inserted can be done based on the idea similar to the CSC- 
violation analysis proposed in this paper. It is very interesting 
to see how this decomposition-based CSC-solving approach

improves the performance compared to the traditional full- 
state-based CSC solvers.

A p p e n d ix  
D e c o m p o s it io n  T h e o r y

In this appendix, it is assumed that the given STG G is 
synthesizable and timed implementable.

For x  G Out, ES(x- \- ) denotes a set of nondecorated signal 
states mapped from reachable timed states of a dummy-free 
timed state graph Qq , where their decorated signal states have 
R  for x, and QS(x-\~) denotes a set of similar nondecorated 
signal states except that their decorated signal states have one 
for x. E S ( x - )  and Q S ( x - )  are defined similarly. The other 
nondecorated signal states are unreachable, and this set is 
denoted by UR.  From the definition of CSC, if and only if an 
STG has CSC, its E S (x + ) ,  Q S (x+ ) ,  E S ( x - ) ,  and Q S { x ~ )  
are disjoint for each x  G Out.

A circuit is defined by a set of logic functions (i.e., the 
technology mapping is beyond the scope of this paper), and 
a logic function is specified by a cover, which is a set of 
nondecorated signal states where the logic function takes the 
value of one. In this paper, the implementation technologies 
considered are atomic gates and generalized-C (gC) elements. 
In the atomic-gate implementation, an STG G defines for each 
x  G O ut  a cover, denoted by C (x),  satisfying

C (x) — U R  = E S ( x + )  U Q S (x+ ) .

In the gC implementation, G defines two covers C{x+ )  and 
C ( x - )  satisfying

E S ( x + )  C C{x+ ) - U R  C E S { x + )  U Q S (x + )  

E S ( x - )  c  C ( x - )  - U R  c  E S { x - )  U Q S ( x - ) .

An STG G i is cover-correct with respect to G, if for each 
output signal of G\,  the covers C \(x )  or C\(x-\~), C i ( x - )  
for G\  satisfy the above conditions of the covers for G. For 
example, in the case of the atomic-gate implementation, C\ (x) 
satisfying C \(x )  — U R \ =  E S \ ( x + )  U Q S i(x + )  must satisfy 
C i (a) - U R  = E S ( x + )  U Q S (x+ ) .

In order that a correct delay can be assigned to the synthe
sized circuit, another property is needed for the correctness 
of G\.  An STG G\  is delay-correct with respect to G, if G\  
is timed implementable, and for every output signal x  of G\,  
every x  transition of G\ has the same firing-time bounds (i.e., 
[Eft(t), Lft(t)]) as x  transitions in G.

If G i is both cover-correct and delay-correct with respect 
to G, G\  is correct with respect to G. Intuitively, a circuit 
synthesized from G\  behaves as expected in G in a sense 
that the logic function takes the value one in the states where 
G expects the output to be excited or stable high, as long 
as the circuit is in the context that G considers. Note that 
from the timed implementability of G, the delay-correctness 
of G i is easily achieved by disallowing the contraction for the 
transitions in trigger(x) U {x}  for x  G O u ti. Thus, the rest of 
this appendix focuses on the cover-correctness.
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For STGs Gi and G 2 with Outi =  Out2 and Ini =  I112, a 
simulation from Gi to G 2 is a relation S  between timed states 
ofQ$[ =  ((V{■, and Qq2 =  {(Vi,E'2),o%), satisfying

D K  > 4 )  e  S;
2) for any . a 2) e  S ,  out_excited(ffi) out_excited

(a2 ) holds;
3) for any (tri, <r2) € S  and any (a i,  t i ,  u'i) € E[, there ex

ists some <2 and a 2 such that (̂<2) =  l{h ) ,  (cr2 !t 2 !cr,2) € 
E 2, and (<Tj_, cr2) G S  hold.

Let Gi  G2 denote that Gi and G2 have the same input- 
and output-signal sets and that there exists a simulation from 
Gi to G2 -

Lemma 2: For STGs Gi and G2, if Gi G2 and G2 has 
CSC, then for x  € Outi, the following hold:

E S i(x~(~) ^ E S 2 , D*52(x~l~) — D*5i(x-|-) U R \

Q S i(x + )  C Q S 2(z + ) , Q S 2(z + )  -  Q S i(a;+ ) C UR.

E S i ( x - )  C E S 2 ( x —), E S 2 ( x —) — E S i ( x - )  C UR%

Q S t ( x - )  C Q 5 2( x - ) ,  Q 5 2(a :-)  -  Q S i(a ;-)  C U R t  

U R t D U R 2.

Proof: For si e  E S \ ( x + ) ,  let a  1 denote a timed state 
of Q$x from which si is mapped, and suppose that <ti is 
reached from cr® by a sequence t>i of transitions on Qq . 
From Gi G 2 , a timed state, denoted by (T2 , is reachable 
on Qq by a sequence t>2 of transitions such that l{v{) =  
l{V2 ), where l { t i t 2 • • •) =  • • • (note that A is deleted
in this sequence). Thus, is also mapped to si. Since 
out_excited(ui) =  out_excited(<T2) and si € E S i ( x + )  hold, 
si € E S 2 ( x + ) also holds. Hence, E S \{ x + )  C USl2(a;+) 
holds. The other three cases can be proved similarly. Next, 
suppose that 82 € E S 2(3;+) — E S \ ( x + )  holds. Since the value 
for x  is zero in 8 2 , 82 is included in either Q S \ ( x —) or 
U R i.  If 82 € Q S i ( x - )  holds, then 82 € Q S 2 ( x —') holds from 
Q S i ( x - )  C Q S 2 ( x —). This, however, violates that G 2 has 
CSC from 82 € E S 2 (x+).  Hence, 82 must be in U R \.  The 
remaining three cases can be proved similarly. Finally, since 
additional reachable signal states in G2 are in U R \,  U R \  2  
U R 2 holds. ■

The key of this proof is that the corresponding timed states in 
Qq and Qq have the same set of excited signals. For untimed 
methods, the trace-equivalence relation is used to guarantee this 
(e.g., in [22]). For timed methods, however, such a relation 
on traces are not helpful, because excited transitions does not 
necessarily fire as shown in Fig. 1, i.e., the traces defined by 
transition firings do not give sufficient excitation information. 
Hence, the simulation relation defined above is necessary.

For a nondecorated signal state s and a set D  of signals, the 
D-closure of s, denoted by Cd ($), is a set of all nondecorated 
signal states, including s, such that their binary vectors are the 
same if the signals in D  are projected out. The core of a D- 
closure is the common binary vector obtained by projecting 
out the signals in D. For example, for s =  (abed) =  (1101) 
and D = { a , h } ,  CD (s) =  {0001,0101,1001,1101} and its 
core is (ed) =  (01). The mappings from D-closure Cd (s ) 
to its core s' and its inverse are defined by ^ o]d {Cd {s ))

and projr,1(s/). Note that both are the one-to-one map
pings. The D-closure and these mappings are extended 
to sets as follows: CD (S)  =  L U s c d (s )* proj^C ^S1)) =  
{projr,(Cr>(s))|s e  S} ,  and proj^S") =  U ^eS/ proj^V)-

For an STG G and x  E Out,  a set D of signals is an irrelevant 
input set for x, if:

1) D C  I n  LJ O ut — {x };
2) C d ( E S ( x + )) — U R  =  ES(x+)',
3) C d { E S { x —)) — U R  =  E S ( x - ) .

From this definition, the following lemma holds.
Lemma 3: For x  € O ut  and any irrelevant input set D  for x, 

the following hold:

Cd (Q S (x+ ))  - U R = Q S ( x +) 

Cd  (Q S ( x - )) -  U R = Q S { x ~ ) .

Proof: Suppose C d (Q S (x + )) — U R  ^  Q S (x + ) .  From 
Q S (x + )  C Cd ( Q S ( x +) ) ,  this means that for some s  €  
Cd ( Q S ( x + ) )  -  UR, s £  Q S (x + )  holds. From x  ^ D, such 
that s must be in E S ( x - ) .  Since s € Cd ( Q S ( x + )) holds, 
there exists 82 € Q S {x+ )  such that s € £ 0 (52)- From s € 
C d ( s ) ,  C d ( s )  and C d { » 2 ) have a common element, which im
plies C d(s ) =  Cd{s2 ) and, so, 82 € Cd(s). From s £  E S ( x - )  
and C d ( E S ( x —)) — U R  =  E S ( x - ) ,  82 € E S ( x - )  is de
rived, which however, contradicts that G has CSC, and so, 
E S ( x - )  and Q S (x + )  are disjoint. The remaining case can be 
proved similarly. ■

For an STG G, x  € O ut  and a set D of signals with x  ^ D, 
let G d .x denote an STG obtained from G by making transitions 
related to signals in D dummy, which has the input-signal set 
sig(G) — D — {x}  and the output-signal set {x}.  Let E S i ,  
Q S \ ,  and so on be for G d .x-

Lemma 4: For x  € O ut  and any irrelevant input set D  for x, 
the following hold:

proĵ ,1 (E S i ( x + ) )  = C d  (E S ( x + )) 

proĵ ,1 ( E S i ( x —)) = C d  (E S ( x —)) 

proj^1 (Q S \(x + ))  = C D (Q S ( x + )) 

proj^1 (Q S 1 ( x - ) )  = C d ( Q S ( x - ) )  

p r o j^ iU R t )  C UR.

Proof: Since G d .x has the same flow relation as G except 
that some transitions are dummy in G d .x> there exists a one- 
to-one mapping between timed states of Q q  and Q q d  r . In the 
dummy-free timed state graph Q q  , however, some timed 
states that are in Q q  are deleted from the construction of the 
dummy-free timed state graphs, as shown in Fig. 18. Note that 
Q q  and Q q d  r also have a one-to-one mapping if G have no 
dummy transitions, and Fig. 18 shows this case.

The proof of this lemma first shows E S i(x + )  C 
projI)(C_D(DSl(a;+))). Suppose that si € E S i ( x + ) ,  and let 
cr 1 be the timed state in Q q  that is mapped to si. This <ti 
exists also in Q q  from the above relation between Q q  and 
Q q  , and let s  be its signal state. Then, si =  proj^C ^s)) 
holds. Furthermore, s € E S ( x + )  holds from the following
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Fig. 18. Relation between and Qq  •

reason. From the signal excitation of Qq , must be 
excited to rise in some timed state reached only by transitions 
related to the signals in D , such as cr2 shown in Fig. 18. Let s2 
be its signal state. Then, s2 G E S ( x + )  and s G C d (s2) — U R  
hold. Since D  is an irrelevant input set, C d {E S {x+ ))  — 
U R  =  ES(x-\~) holds, and so, s G ES(x-\~) holds. Hence, 
s i G projd (C d(E S{x+ )))  is derived.

Next, E S X (xH-) ^  pxo^jj(C]j (^ES(xH-))) is proved by show
ing that for s G ES{x-\~), s 1 =  projd (Cd(s)) satisfies s\  G 
E S i(x + ) . Let a  be the timed state in Qq that is mapped to s. 
This a  may or may not exist in Qq . In the former case, it has 
the signal state s 1 =  projd (Cd(s)) in Qq , and x  is excited 
to rise in a. Hence, s 1 G E S i (# + )  is derived. In the latter 
case, from the construction of dummy-free state graphs, there 
exists a timed state a  1 included in both Qq and Qqd , from 
which a  is reached only by transitions related to the signals 
in D  (see Fig. 18). From this relation between a  and a\,  g\  
has the signal state s' Cd(s) — U R  and s 1 =  projd (Cd(s)) 
in Qqd . Since D  is an irrelevant input set, C d {E S {x+ ))  — 
U R  = ES(x-\-) holds, and so, s' G ES(x-\-)  holds. Thus, x  is 
excited to rise in a' in Q q,  and therefore, s 1 G E S i ( x + )  is 
derived.

Hence, E S i(x + )  =  projd (Cd ( E S ( x +))) is shown. Apply
ing proj^1 derives the first property. The proofs for the other 
three properties are similar.

Furthermore, from the above discussion, if a  mapped to s is 
reached in Q q,  then some a' mapped to s 1 =  projd (Cd(s)) 
is also reached in Qgd x - Thus, if s i G U R \  holds, then 
every s G proj^)1(s i)  is also in UR. Hence, the final property 
holds. ■

Lemma 5: For x  G O ut  and a set D  of signals with D  C 
I n  U Out  — {x}, if Gd,x  has CSC, and D  H trigger(x) =  0 
holds, then D  is an irrelevant input set.

Proof: Suppose that D  is not an irrelevant input set. 
Then, there exist signal states s G E S ( x + )  and s' G Cd (s ) — 
U R  such that s' £ E S { x Jr ), or there exist signal states s G 
E S ( x —) an d s; G C d (s )  — U R  such that s' ^  E S ( x —). In this 
proof, the former case is considered, but the latter case can be 
proved similarly. There exist timed states a  and a' in Qq whose 
signal states are s and s', respectively. From the construction 
of the dummy-free timed state graphs, there exist timed state

a 1 and in Qq whose signal states are s 1 and s[, satisfy
ing s i =  projd (Cd (s)) and s\  =  projD(CD (s/)) (see Fig. 18). 
Note that s i =  s[ holds from projd (Cd(s)) =  projd {Cd{s')). 
These o\  and a[ cannot be the same for the following reason, a 
and <ti can be the same, only when one of them is reached from 
the other on Qq only by transitions related to the signals in
D. In this case, however, from s G ES(x-\-)  and s' ^ ES(x-\~), 
either x +  is disabled without firing x+ ,  which violates the 
output semimodularity of G, or x-\- is enabled without firing 
any transition in trigger(x) from D  n  trigger(x) =  0, which 
is impossible. Thus, and a[ must be different. Since x  is 
excited to rise in cr, so is it in a  1 of Qq . On the other hand, 
although x  is not excited in a ' , x  may be considered to be 
excited to rise in o'x of Qq from the excitation definition, 
if x +  is enabled in some timed state of Qgd .x (such as a 2 in 
Fig. 18) that is reached from a' by only dummy transitions. 
But, this cannot happen because x +  is disabled in a' and 
D  n  trigger(x) =  0 holds. Therefore, x  is not excited in cr[ of 
Qq either. This contradicts that Gd,x  has CSC, because x  is 
excited in o ' , not excited in a[, and si =  holds. Hence, D  
should be an irrelevant input set. ■

Lemma 6: For x  G O ut  and any irrelevant input set D  for x, 
suppose that G' satisfies Gd,x ^  G'. If G' has CSC, then G' is 
cover-correct with respect to G.

Proof: This proof focuses on the gC implementation, and 
furthermore, only the cover for x +  is considered, because the 
proofs for the other cases can be done similarly. Let E S \ ,  Q S \,  
and U R i  be for G d ,x , and E S 2, Q S 2, and U R 2 be for G '.

Let C2(x+ ) denote the cover for G' and x-\~. From the 
definition of covers

E S 2{x+) C C2(x+ ) -  U R 2 C E S 2{x+) U Q S 2(x+)  (1)

holds. This proof shows that C2 (x+ ) is also a cover of G. Since 
C2 (x+)  should be considered in the signal state space of G, this 
is shown by

£ S (a ;+ ) C proj^,1 (C2(x+)) - U R  C E S (  x+ )  U Q S( x+ ).
(2)

To show the aforementioned equation, this proof first shows

E S ! ( x +) C C2(x+ ) -  URx C E S ^ x ^ r )  U Q 5i(a ;+ ) (3)

and then (2) is shown.
The above (1) is rewritten by removing U R \  as follows:

E S 2{x+) -  U R 1 C C2(x + ) -  U R 2 -  U R X

C E S 2{x+) U Q S 2{x+) -  U R 1 . (4)

From U R \  ^  U R 2 as shown in Lemma 2

C 2 ( x + )  -  U R 2 -  U R ,  =  C 2 ( x + )  -  U R 1
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holds. Furthermore, E S 2(x + ) — URi'is  rewritten to E S i  (&+) 
as follows using Lemma 2:

E S 2( x + ) -  UR,i

= E S i{ x + )  U (E S 2( x + ) -  £ S i ( z + ) )  -  U R i  

= E S i ( x + )  - U R i  

= E S i ( x + ) .

Similarly, Q S 2(x+) — U R \ = Q S i (x + )  holds. Hence, (4) is 
rewritten to (3).

Next, applying proĵ ,1 to (3) derives

projp1 ( E S 1(x+))  C projp1 (C2(x+)  -  U R f

C projp1 ( E S ! ( x +) U Q S i(a ;+ )) .

From Lemma 4, this is rewritten as

CD (E S ( x + )) C proj^,1 (C2(x+) -  U R - f  

C C d ( E S ( x + ) ) U C d (Q S (x + ))

and by removing U R

CD (E S ( x + )) - U R C  proj^1 (C2(x+) -  U R - f  -  U R  

C (CD (E S ( x + )) -  U R)  U (CD (Q S ( x + )) -  U R))

is obtained. Since D  is an irrelevant input set, Cd ( E S ( x +)) — 
U R  = E S ( x + )  holds, and from Lemma 3, Cd (Q S ( x + )) — 
U R  = Q S (x + )  holds. Thus

E S ( x + )  C proj^1 (C2(x+) -  U R i)  -  U R  

C E S ( x + )  U Q S (x + )  (5) 

holds. The above proj]f (C2(x+)  -  U R f  -  U R  can be rewrit
ten as follows from projp1( [ /JR i) C U R  by Lemma 4: 

pwfIf { C 2{ x + ) - U R f - U R  

=  projp1 (C2(x+))  -  p ro iU U R t)  -  U R  

= proTDl (C2( x + ) ) - U R .  (6)

Hence, from (5) and (6), (2) is obtained. ■
For an STG G, x  e  Out,  and V  C sig(G) such that x  €  V, 

let abs(G, V, x) be any STG such that Gd.x ^  abs(G, V, x) 
with D  =  sig(G) — V. The main theorem is as follows.

Theorem 3: If abs(G, V, x) has CSC for V  with trigger(a;) C 
V,  then abs(G, V, x)  is cover-correct with respect to G.

Proof: From trigger(a;) C V ,  D  =  sig(G) — V  satisfies 
D  D trigger(a;) =  0. abs(G ,V ,x )  has CSC. Thus, from 
Lemma 5, D  is an irrelevant input set for x. From the above 
definition, Gd.x  abs(G, V, x) holds, and abs(G ,V ,x )  has 
CSC. Hence, from Lemma 6, abs(G, V, x)  is cover-correct with 
respect to G. ■
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