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Chambers' expression for the current density in a normal metal in which the electric field varies over a 
mean free pat~ is derived from.a quantum approach in which use is made of the density matrix in the pres
ence of scattenng centers but In the absence of the field. An approximate expression used for the latter is 
show~ to redu;:e to one derived. b~ Kohn .and. Luttinger for the case of weak scattering. A general space
and .tIme-varYIng electromagnetlC InteractIOn IS treated by first-order perturbation theory. The method is 
apphe? to superconductors, and a general expression derived for the kernel of the Pippard integral for fields 
of arbItrary frequency. The expressions derived can also be used to discuss absorption of electromagnetic 
radiation in thin superconducting films. 

1. INTRODUCTION 

FOR calculations of the anomalous skin effect in 
metals and for related problems, one is interested 

in the response of conduction electrons to high-fre
quency fields which vary in amplitude over a mean free 
path, so that the usual expression for current density 
in terms of bulk conductivity is invalid. A convenient 
method, which has been successfully applied to several 
problems, is to start with an infinite medium, so that 
boundary effects do not come in. Sources of the field 
are introduced into the interior, and the response of 
the electrons to the field is calculated by time-dependent 
perturbation theory. The total field acting on the elec
trons, the sum of the external field and that due to the 
electrons themselves, is taken to be self-consistent.1.2 

Most earlier calculations of the anomalous skin 
effect in normal metals have been based on the Boltz
mann equation. A particularly simple and elegant 
derivation is that due to Chambers.s A quantum-me
chanical derivation similar to the present one has been 
given by Mattis and Dresselhaus4 who obtain exactly 
Chambers' result. Our treatment differs in the way in 
which scattering of the electrons is introduced but also 
leads to the same result. A main purpose is to formulate 
the theory in a way that can readily be extended to 
superconductors. In the low-frequency limit and in the 
absence of scattering, our method reduces to the deriva
tion of the Meissner effect as given by Bardeen, Cooper, 
and Schrieffer. 5 

While in general there are difficulties involved in 
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(Academic Press, Inc., New York, 1954), Vo!' 6, p. 1. 
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preceding paper. M. J. Buckingham (unpublished) was the first 
to give a quantum derivation of Chambers' expression. 

5 Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957). 

applying a solution derived for an infinite medium to a 
finite body of arbitrary shape, there is no problem for 
the case of most practical importance, that of a plane 
boundary. Such a solution may also be used to discuss 
conduction and absorption of radiation in thin films. 

There has been considerable interest recently in 
quantum derivations of conductivity from the density 
matrix formalism. Kub06 has given a formal solution in 
which it is assumed that scattering is present in the 
zero-order Hamiltonian. Kohn and Luttinger7 and also 
Nakan08 have treated both scattering and the external 
field as perturbations, and have shown how Boltzmann's 
equation appears in a certain approximation. The 
connection between the quantum formulation and 
Boltzmann's equation has also been discussed by Lax.9 

Our treatment follows Kubo and Lax in that we 
assume that scattering occurs in zero order. We do not 
use the density matrix formulation directly, but expand 
to first order in perturbation theory the wave functions 
appropriate to an applied external field, in terms of 
those in the absence of the field. This requires some 
knowle.dge about the solutions of the wave equation, 
if;k(r), m the presence of the scattering centers but in 
zero field. What is required for the current is the density 
matrix for an energy shell; that is, (if;k*(r)if;k(r') 
averaged over states of the same energy, Ek, and over 
random distributions of scattering centers. We do not 
derive an expression for this quantity, but assume a 
form based on plausible arguments. A similar method 
was used by one of the authors2 in a discussion of the 
effect of a finite mean free path from elastic scattering 
on the superconducting penetration depth. 

We start with the time-dependent Schrodinger 
equation, 

H 01>+ H ex1>= iha1>jat, (1.1) 

in which Ho is the Hamiltonian in the absence of ex
ternal fields, but including any scattering which may 

6 R. Kubo, Can. J. Phys. 34, 1274 (1956), J. Phys. Soc. Japan 
12, 570 (1957). 

7 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). 
8 H. Nakano, Progr. Theoret. Phys. (Japan) 15, 77 (1956). 
9 M. Lax, Phys. Rev. 109, 1921 (1958). 
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THEORY OF ANOMALOUS SKIN EFFECT 413 

be present, and Hex is the total electromagnetic 
interaction. 

If Hex is expanded in a Fourier series in time, an 
arbitrary function of space and time may be expressed 
in the form 

Hex = est L Hw(rj)e iwt. 
w,j 

(1.2) 

The sum over j is over all electrons. Reality requires 
that H-w=Hw*. The introduction of s, a small positive 
parameter to be set equal to zero in the final expres
sions, insures that the field started from zero in the 
remote past and sets the direction of time for irreversible 
phenomena. Mathematically, s determines how the 
integration over energy denominators is to be carried 
out. 

lt is most convenient to choose a gauge such that the 
vector potential alone represents the applied electro
magnetic fields. The portion of the interaction Hamil
tonian which is linear in the fields is then 

e 
Hex = +- L A(ri,t)· Pi, 

me i 

(1.3) 

(we shall consistently neglect terms quadratic in the 
fields), where A is subject to the gauge condition 

v·A=O, (1.4) 

which expresses mathematically the physical condition 
that no external charges be introduced into the sample 
and that electrical neutrality be maintained throughout. 
The fields are as usual the derivatives 

1 aA 
8=--- and H=vXA. 

e at 
(1.5) 

We are concerned in the anomalous skin effect only 
with transverse fields. For these, in the gauge v· A=O, 
we need to introduce in the perturbation-theory ex
pansion only particle-like excitations of the super
conductor. In an arbitrary gauge, collective excitations 
would have to be included. Further, the expression for 
the density matrix required for both normal and super
conducting metals appears to be simpler in this gauge. 

The procedure is to expand cP in a series of the time
independent eigenstates, 'Ph of H 0: 

(1.6) 

so that if the unperturbed state is 'Po, then 

cp=exp( -iWot/ft)'Po+L aj(t) exp( -iWjt/ft)'Pj. (1.7) 
iY'O 

The expression for the expansion coefficient is 

(jIHwIO) exp[i(w-is)tJ 
a/t) = . (1.8) 

Wo- Wj-ft(w-is) 

The wave function cP is then used to calculate the cur
rent density. 

2. ANOMALOUS SKIN EFFECT IN 
NORMAL METALS 

We take a simple model for which the single-particle 
states in the absence of scattering are plane waves 
designated by the wave vector k and rtormalized to 
unit volume. lt is assumed that the electrons move 
independently and the exclusion principle is taken into 
account only in the statistics. The exact one-particle 
wave functions, ,/Ik(r), in the presence of elastic scatter
ing are made up in large part of linear combinations of 
plane waves of approximately the same energy. Here k 
is a quantum number which designates the common 
energy, €k=h2k2/2m, but is without significance as a 
wave vector. If the scattering is not too strong, the 
energy of the states will not be changed much by the 
presence of the scattering centers. The probability of 
occupancy of a state '/;k of energy Ek is given, in the 
absence of an external field, by the Fermi-Dirac func
tion j(Ek). 

Wave functions, Wk, in the presence of an external 
field may be expanded in a series of the unperturbed 
wave functions '/;k. To the first order in H w, 

Wk(r,t) = {'/;k(r)+ Lk,ak'k (t)'/;k' (r)} 

Xexp( -iEkt/h), (2.1) 
where the coefficients are 

(k' 1 Hw 1 k)eiwt 
ak'k(t)=estL , 

w Ek- Ek,-ft(w-is) 

In the latter we have made use of Hw*=H_w. 
The expression for the current density is 

eft 
j(r,t) = -- L jk(Wk *VWk-WkVWk*) 

2mi k 

e2 

-- L jkA(r,t) IWk(r,t) 12 
me k 

-e 
=- L A('/;k*V'/;k,ak'k+ak'k*'/;k'*V'/;k) 

2mi k,k 

ne'2 

(2.2a) 

(2.2b) 

-compo conj.--A(r,t), (2.3) 
me 

where jk is the probability that k is occupied and 
n= L jk'/;k *'/;k is the density of electrons, assumed 
constant. We have included in (2.3) only terms to the 
first order in applied fields and have supposed (as must 
be true in thermal equilibrium) that the current van
ishes in the absence of the field. 

A typical term in the expression for the current 
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density contains products of the form l/1k*(r)Vif;dr) 
Xif;k,*(r')V'if;k(r') multiplied by factors dependent on 
the energies fk and fk'. If we first sum over terms for 
fixed fk and fk', we need the average over an energy 
shell of 

(2.4) 

For plane waves, we average over the directions of the 
wave vector k and find 

p,= (sinkR)/kR, (2.5) 

whereR=lr-r'l andk=lkl. 
For a particular set of scattering centers, p, is a 

complicated function of both rand r'. What we want 
is an average of p, over random distributions of scatter
ing centers, which would be expected to depend only 
on the distance R between rand r'. This amounts to 
the neglect of off-diagonal components of p, in the 
momentum representation, which are zero only on the 
average. Arguments given in reference 2 suggest that 
the appropriate average for elastic scattering describ
able by a mean free path l( f) islO 

sinkR 
p,(R) = __ e-R/21. 

kR 
(2.6) 

In a metal, the significant values of k and l are those 
for the Fermi surface, k = kF • 

Some remarks should be made concerning the limita
tions of (2.6): (1) It may be expected to be valid only 
if the mean free path is large compared with the inter
atomic distance, or if kF l»1. (2) It should be used only 
when the charge density is uniform, as would not be 
the case for an electrostatic potential varying in space. 
(3) It is not gauge invariant. A change of gauge 
would multiply the individual wave functions by 
exp[ie\O(r)/hc] and p, by exp{ie[\O(r')- \0 (r)]/hc} ; 
which in general is not a function of R alone. (4) The 
expression is an average over a random distribution of 
scattering centers and so is not a solution of Schrod
inger's equation as a true density matrix must be. 
(5) Isotropic scattering is implied. (6) When it is used 
to evaluate (2.3), the additional assumption is made 
that the average of the product of two po's for different 
energies is the product of the averages. 

From the above discussion, we expect (2.6) to be 
valid only when the gauge is chosen so that divA=O. 
It can be shown (Appendix A) to be correct in the limit 
of a low density of weak scattering centers, for which l 
can be computed by conventional scattering theory. It 
is a simple form which has the right general features to 
describe scattering for more general cases which would 
be difficult to treat accurately. A further advantage is 

10 Since the above was written, we have been informed of a 
derivation by P. R. Weiss and E. Abrahams [Phys. Rev. (to be 
published)], who show that (2.6) follows approximately from a 
perturbation expansion. It has also been called to our attention 
by M. Lax that (2.6) follows from the optical model for treatment 
of multiple scattering [see M. Lax, Revs. Modern Phys. 23, 287 
(1951), Eqs. (6.35) and (5.29)]. 

that it can be used to discuss superconducting as well 
as normal metals. A more complete mathematical 
derivation and justification from first principles would, 
of course, be highly desirable. 

With p, defined by (2.3), the expression (1.11) for 
the current density becomes 

j(r,t) = lim.L eiwt 

8-..0 w 

Xfdr'[Aw(r')' R]R(ap,(R») (apE' (R») 

R2 aR aR 

[ 
j(/)- j(f) j(~')- j(f) ]} (2.7) 

X f-f'+h(w-is)+f-~'-h(w-is) . 

The evaluation of (2.7) for the limit w -'> 0 has been 
given by one of the authors2 who found that it leads 
to Landau's expression for the diamagnetism of free 
electrons. Small corrections which appear, of order 
(kFl)-2, are of doubtful validity because of the limita
tions on (2.6). The conclusion is that, except for possible 
corrections of this order, scattering does not affect the 
diamagnetic properties of normal metals. 

The integration in (2.7) can be carried out most 
readily by first performing that with j(~) over k' and 
that with j(f') over k. We need the derivative with 
respect to R of 

"'[ 1 1] 11=1 + k'2p,,(R)dk' 
o E-l+h(w-is) E-/-h(w-is) 

= _ ~(2m) exp( -R/2l){exp[iR(k2_2h-lmw)!] 
2R h2 

+exp[ -iR(k2+2h-lmw)t]} , (2.8) 

provided that h2k2/2m '2.hw. Since most of the con
tribution from the integral over k is for h2k2/2m»hw, 
we may expand the square roots and keep terms linear 
in w as follows: 

1

'" ap, all 
j(~) __ k2dk 

o aRaR 

2m7r fkF 
= __ e-R / l dk exp( -iwmR/hk) 

h2R2 0 

X {iWmk COS2(kR)+k2(~+~) cos(2kR) 
h R 2l 

+!k3 sin(2kR)[1-~(~+~) 
k2 R 2l 

(
iwm 1 1)]} X -+-+- . 
hk R 2l 

(2.9) 
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The first term in curly brackets, which gives the 
part in phase with the electric field and thus the re
sistive contribution, will be discussed later. The other 
terms, together with the gauge current proportional to 
A, give the diamagnetic contribution. Since these terms 
have cos(2kR) or sin(2kR) as factors, they are rapidly 
oscillating for kR> 1, and so are important only for R 
very small, of the order of the interatomic distance. 
For such small R, we may expand Aw(r') in a series 
about r: 

Aw(r') = Aw(r)+ R· V Aw(r) 
+HR· v)2Aw(r)+' . '. (2.10) 

When the integration over R is carried out, which may 
be done before the final integration over k, it is found 
that the constant term, proportional to Aw(r), exactly 
cancels the gauge current, - (ne2/mc)Aw (r). The second 
term averages to zero and the third gives the Landau 
diamagnetic contribution to the current density.2 

A different methodll is more convenient for evalua
tion of the resistive contribution. If in place of the 
gauge current we subtract from the integrand in (2.7) 
the corresponding expression for w=O, we get as a 
factor 

![f(e')-f(e)]{ , ~( . ) 
e-e + w-zs 

1 
+----

e- e' -hew-is) 
(2.11) 

which is appreciable only for energies within "'hw or 
",kT of the Fermi surface. Further, because of the 
antisymmetry of { ... } in e and e', we may replace 
f(/)- fee) by -2f(e) if we are careful to treat e and 
e' symmetrically in the evaluation of semiconvergent 
integrals. For this purpose, it is convenient to let e be 
the energy measured from the Fermi surface, to intro
duce the convergence factor 

(2.12) 

and then take the limit as a -'> 00. 

Near the Fermi surface, we may approximate the 
factors from the density matrices as follows: 

apE apE' = e-
R11 

[kR coskR- (1 + R) sinkR] 
aR aR kk'R4 21 

X[k'RCOSk'R-(1+ ~) sink'R] 

e-R/l e-R/l 
~- cos[(k-k')R]=- cos[a(e-e')], (2.13) 

2R2 2R2 

11 This is similar to that used for the calculation of the Meissner 
effect (reference 5). 

where a= (dk/de)pR. We have omitted rapidly oscillat
ing terms and neglected terms of order (1/kF R)2 or 
(1/kF l)2. Further, we replace integrations over k by 
integrations over e as follows: 

(2.14) 

where N (0) is the density of states of one spin in 
energy at the Fermi surface: 

27rW(O) = kp2(dk/ de)p. (2.15) 

We then need to evaluate the integral 

{ 1 1} X + dede'. 
e':'- / +h(w-is) e- e' -hew-is) 

(2.16) 

The integration over e' can be carried out by con
tour integration. The contribution from poles at e' 
=±i(e2+a2)! vanish in the limit a-'> 00. Poles at 
e' = e±h(w-is) give 

(2.17) 

J
oo a2[f(e)- f(e+hw)] 

= -7ri lim exp( -iahw) de 
a~OO -00 a2+ e2+ (e+hw)2 

= -7rihwe-Rw1v ., (2.18) 

where we have introduced the velocity at the Fermi 
surface, vo=h-1(de/dk). The third term, 2/(e-e'), in 
(2.11) gives a vanishing contribution for finite R, but 
serves to cancel the 0 function at R=O from the first 
two terms. 

We thus arrive at Chambers' expression3 for the 
current density: 

e2h2 fR(R' A) e-R/le-iRwlvo 
j(r,t) = --1: N(0)2(i7rhw) dr' 

m2c w R4 

ew(o)vofR[R' S(r', t-R/vo)] 
--------,e-R/ldr'. 

27r R4 
(2.19) 

Note that the electric field, S, is evaluated at the re
tarded time, t- R/vo. When the field is constant over a 
mean free path, (2.19) reduces to Ohm's law, with 
conductivity u given by 

u=jeW(O)vol. (2.20) 

In the earlier derivation,4 scattering was introduced 
by use of a phenomenological relaxation time, r. In
stead of taking the limit s -'> 0, one sets s= 1/r and 
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uses the plane wave expression (2.5) for the density 
matrix. This procedure also gives (2.19) with l=VOT. 

3. ANOMALOUS SKIN EFFECT IN SUPERCONDUCTORS 

Expressions for the current density in superconduc
tors which apply at microwave or infrared frequencies 
may be obtained by extensions of the method used in 
Secs. 1 and 2 and of the method used in the low-fre
quency limit (w=o) by Bardeen, Cooper, and Schrieffer5 

to discuss the Meissner effect. We find that L(~,~') used 
in (5.15) of BCS5 is to be replaced by 

( 
f-f f-f 

X E-E'-h(w-is) + E-E'+h(w-iS) 

( 
1-f-f 1-f-f) 

X + , 
E+E'-h(w-is) E+E'+h(w-is) 

(3.1) 

which may also be written in the form 

{ 

E+h(w-is)+[ (~02+ ~c')/ E] 
L(w,~,c') = -H1- 2f) 

E'L[E+h(w-is)]2 

E-h(w-is)+[(~02+~c')/ E]} 
+ , 

E'2-[E-h(w-is)]2 
(3.2) 

in which use has been made of the symmetry in c and 
c'. The second form is most convenient for subsequent 
integration over c'. We have followed the convention 
of BCS to take E=+(~2+c02)t and define f=f(E), 
l' = f(E'), where f is the usual Fermi-Dirac function. 
Note that (2.11) of Sec. 2 corresponds to the difference 
L(w,~,c')-L(O,~,~') for normal metals (co=O). The 
apparent difference in form arises from the fact that c 
takes on both positive and negative values, while E is 
always positive. 

Scattering can be introduced as in Sec. 2. If if;k is a 
given wave function in the presence of scattering, 
another wave function of the same energy is if;-k=if;k *. 
Unless if;k is real (except for a possible constant phase 
factor), these can be chosen to be orthogonal. If the 
paired states are (kt, -k./.), as for plane waves, the 
same density matrix over an energy shell, (2.4), is 
required for evaluation of superconducting as for normal 
metals. The net effect of scattering is then to introduce 
an extra factor, e-RIl , into the kernel of the integral for 
the current density. 

The integration for the current density can be carried 
out as in Sec. 2 by introduction of the convergence 
factor (2.12) and contour integration. The expression 
for the kernel in the Pippard expression for the current 

density, 
eW(O)vo 

j(r,t)=L ~--
27r2hc 

xjR[R'Aw(r')]I(w,R,T)e-R11dr' 
R4 ' (3.3) 

IS 

J""f"" { f(c)- f(~')} 
I(w,R,T)= _"" -00 L(w,~,~')--c~ 

Xcos[a(c-~')]d~d~', (3.4) 

where a is again R/hvo. The integral in the limits -+ 0 is 

f
,a 

I(w,R,T) = -7ri [1-2f(E+hw)] 
Eo-hw 

X[g(E) cos(a~2)-i sin(ac2)]eia"dE 

-7rif"" {[1-2f(E+hw)] 
'0 

X [geE) cos (aE2) -i sin (ac2) ]eia ,,_ [1- 2f(E)] 

X[g(E) cos(a~l)+i sin(a~1)]e-iaE2}dE, (3.5) 

where ~l and ~2 are the Bloch energies corresponding to 
E and E+hw, respectively: 

~l= (E2-c02)t, ~2=[(E+hw)2-c02]~; (3.6) 
and 

geE) = (E2+ ~02+hwE)/ ~1~2. (3.7) 

For a negative argument, -x, (-x)!=ix!. The negative 
sign of the square root is to be taken when hw- E> ~o. 
The expression reduces to the appropriate value for 
the normal state, -7rihwe-iRw/va, in the limit ~o -+ 0. 

In the extreme anornalous limit, for which the pene
tration of field is small compared with the coherence 
distance ~o'""vo/7r~o(O), we may set a=R/hvo=O. It is 
then convenient to introduce, following Glover and 
Tinkham,12 a complex conductivity (J = (Jl- i(J2 for the 
superconducting state. We then have, for the ratio of 
the superconducting to normal conductivity, 

(Jl-i(J2 I(w,O,T) 

-7rihw 
(3.8) 

Expressions for (Jl and (J2 are 

(Jl 2 f"" 
-=- [j(E)- f(E+hw)]g(E)dE 
(IN hw EO 

1 -EO 

+-f [1-2f(E+hw)]g(E)dE, 
hw Eo-hw 

(3.9) 

~=~fEa [1-2f(E+hw)](E2+~02+hwE) 

(IN hw ,o-nw,-,o (~02-E2)'[(E+hw)2-c02]! 
(3.10) 

12 R. E. Glover, III, and M. Tinkham, Phys. Rev. 108 243 
(1957). ' 
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Note that (3.9) is the same as the expression for the 
ratio of absorption for superconducting to normal 
metals for an interaction which follows case II of 
BCS.s The second term of (3.9) does not appear unless 
Jiw> 2Eo, in which case the lower limit of the integral 
in (3.10) is - EO instead of EO-JiW. Signs of the square 
roots are such that geE) is positive in both integrals 
of (3.9). 

Numerical integration is required for T>O, but the 
integrals can be carried out explicitly in terms of com
plete elliptic integrals for T= O. When we set f(E) = 0, 
the first integral of (3.9) vanishes. There is absorption 
only for liw> 2EO, in which case 

~= (1 + 2€O)E(k) - 2(
2E

O)K(k), (liw> 2Eo). 
UN Jiw liw 

(3.11) 

An expression for U2 valid for all w is 

U2 =~{ (2
E

O +l)E(k')+ (
2E

O -l)K(k') }, 
UN 2 liw liw 

(3.12) 

where the arguments of the elliptic integrals E and K are 

k= 12€o-liwl/12€o+liwl, k'= (1-k2)!. (3.13) 

The ratio of the surface impedance in the extreme 
anomalous limit in the superconducting state, Zoos, to 
that in the normal state, Z",n, is given by 

Zoos = (Ul-iU2) i. 

Z",n UN 
(3.14) 

These expressions should be useful not only for 
interpretation of measurements on the anomalous skin 
effect, but also for absorption in thin super conducting 
films. Comparisons which have been made with data of 
Glover and Tinkham12 on absorption of microwave and 
far-infrared radiation in thin superconducting films 
show good agreement between theory and experimentP 

APPENDIX A 

We wish to show here the connection between the 
expression we have used for the density matrix over an 
energy shell and a corresponding expression derived 
by Kohn and Luttinger7 by a perturbation theory 
expansion. If the probability of occupancy of a state 
of energy E' is HE'), the over-all density matrix is 

sin (k'R) 
p=I:f(E') e-R /21 , (A.1) 

k' k'R 

where in general the mean free path 1 may be a func
tion of E'. 

In the perturbation expansion, it is assumed that the 
unperturbed states are plane waves and the density 
matrix is expressed in the momentum representation. 
When averaged over random positions of the scattering 

13 See A. T. Forrester, Phys. Rev. 110, 769 (1958); M. Tinkham 
and R. E. Glover, III, Phys. Rev. 110, 771 (1958). 

centers, the density matrix is diagonal. The expansion 
(C.l) of KL gives to terms of second order 

Pkk= f(E)+I: (IHkk'12) 
k' 

f(e')- f(e)+(E-e')(df/de) 
X------------------ (A.2) 

(e'-e)2 

where (I H kk' 12) is an average of the scattering matrix 
element over random distributions. The mean free 
path, l, is given in terms of the relaxation time, T, by 

v/l=1/r=271'(dk/de)(IHkk'12)N(e), for e''"'-'e, (A.3) 

where N(e) is the density of states in energy. 
The expression (A.l) is diagonal in the momentum 

representation and the diagonal component is given by 
the Fourier transform of (A.l): 

Pkk= I: f(e') (47r/kk')i'" sinkR sink'R e-R /21dR 
k' 0 

1 } . (A.4 
(k+k')2+(2l)-2 ) 

If we change variables from k and k' to e and e' and the 
sum over k' to an integral over e'=1i2k'2/2m, we find 
after some reduction 

if f( e') (1i/2r')de' 

Pkk=; [e-e'+(1i2/8ml2)]2+(h/2r')2' (A.S) 

where r'=lv'=ml/lik'. 
We may neglect (Ii2/8ml2) in comparison with e in 

the denominator, since we are assuming that kl»1. For 
weak scattering, Ii/Tis likewise small, so that the major 
contribution to the integral is for e' close to E. The 
singularity at e=e' gives just fee). If we add terms to 
fee') to eliminate this singularity and write fee) as a 
separate term, we find, with neglect of small terms in 
the denominator, 

Ji ff(e')- f(e)+(e-e')(df/de) de' 
Pkk= f(e)+-- -. 

271' (e-e')2 r' 
(A.6) 

The equivalence to the perturbation-theory result 
follows when 1/r' is replaced by (A.3). 
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