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Orthogonalization of Correlated Gaussian 
Signals for Volterra System Identification 

V. John Mathews, Senior Member, IEEE 

Abstract-This letter presents a simple method for orthogo­
nalizing correlated Gaussian input signals for identification of 
truncated Volterra systems of arbitrary order of nonlinearity P 
and memory length N. The procedure requires a Gram-Schmidt 
orthogonalizer for a vector containing N elements and some 
nonlinear processing of the output elements of the Gram-Schmidt 
processor. However, the nonlinear processors do not depend on 
the statistics of the input signals and, consequently, are easy to 
design and implement. 

I. INTRODUCTION 

NONLINEAR signal processing techniques employing 
truncated Volterra and other types of polynomial system 

models have become very popular in recent years [4], [5]. One 
disadvantage of many such system models and, in particular, 
of truncated Volterra system models, is the large number 
of parameters they often require to satisfactorily represent 
many nonlinear systems. Consequently, problems involving 
parameter estimation tend to become extremely complex for 
all but very simple cases. Similarly, gradient adaptive Volterra 
filters exhibit very slow convergence properties because of the 
large eigenvalue spread of the autocorrelation matrices of the 
input vectors. In both of these situations, orthogonalization of 
the input data will substantially reduce the complications 
associated with direct formulations of the problem. The 
objective of this letter is to present a very simple method 
to orthogonalize the input signals for identifying truncated 
Volterra systems When the input signal is known to be 
Gaussian. 

Consider a finite-memory and finite-order Volterra system 
represented by the input-output relationship 

p 

yen) = ho + :Lhp[x(n)] (1) 

p=l 

where x(n) is the input signal to the system and yen) is the 
output of the system and 

hp[x(n)] = 

"N-l "N-l "N-l h ( ) 
L., m l=OL.,m 2=ml ···L.,mp=mp_l p ml,m2,"',mp' 

(2) 
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Note that the above model incorporates the kernel symmetry 
without any loss of generality. It is convenient to represent 
the system of (1) using vector notation for our derivation. 
Let Xp ( n) represent the vector containing all the pth order 
products of the input signal appearing in (2) and define X( n) 
as 

X(n) = [1, Xf(n), Xf(n), ... , X~(n)f. (3) 

The basic problem considered in this letter is the orthogo­
nalization of the elements of the input vector X(n) in (3). 
We assume that the input signal is zero-mean and Gaussian. 
The assumption that the input signal has zero-mean value 
is not restrictive in any way since the mean value can be 
removed from any signal and the bias term ho in (1) can 
account for any contribution from the nonzero mean value of 
the input signal. Orthogonalization of Gaussian signals for the 
truncated second-order Volterra system identification problem 
has been studied before by Koh and Powers [3] in the context 
of adaptive filters. Orthogonalization of Gaussian input signals 
using G-functionals [5] require that the input signal is white. 
The Schetzen L-functionals described in [5] may be used to 
identify Volterra systems with colored Gaussian inputs. This 
letter presents a new procedure for orthogonalizing colored 
Gaussian input signals for application in the identification of 
truncated Volterra systems of arbitrary but finite order of non­
linearity and finite memory. As with most orthogonalization 
procedures, system identification using the orthogonal basis 
set derived in this paper does not directly estimate the Volterra 
kernels of the unknown system. Instead, an equivalent set of 
parameters is estimated during the procedure. 

II. THE ORTHOGONALIZATION PROCEDURE 

In order to derive the orthogonalizer, consider Xl (n) given 
by 

Xl(n) = [x(n),x(n -1)"" ,x(n - N + l)f (4) 

which consists only of the linear components in the input 
signal set in (3). Let Q be a lower trinagular matrix such 
that the elements of the transformed vector 

(5) 

have unit variance and are mutually orthogonal, i.e. 

E{U1(n)Uf(n)} = I. (6) 

One way of efficiently implementing the Gram-Schmidt or­
thogonalizer for the linear part is to use a lattice predictor [2]. 
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The backward prediction error signals of order 0, 1, ... ,N -
1 orthogonalize the signal set {x(n),x(n - 1)"" ,x(n -
N + 1)}. One additional constraint we have imposed on the 
orthogonalization of the linear part is that the orthogonal 
signals also have unit variance. 

Let ui(n); i = 1, 2, ... , N represent the orthogonal 
signals that make up U 1 ( n ). Then 

(7) 

The elements of the set {Ul(n),U2(n)"",UN(n)} are 
Gaussian, zero-mean, and uncorrelated with each other. 
Since all of them have unit variance, they also have 
identical distribution functions. Furthermore, since uncOT­
related Gaussian processes are also independent processes, 
ul(n),u2(n),"',uN(n) are mutually independent random 
processes. In particular 

whenever i -::F t for arbitrary functions f and g. 
Now, let us define a vector Up,i(n) as 

Up,i(n) = [1, ui(n), u;(n), "', uf(n)jT. (9) 

Let Qp be a lower triangular, (P+1) x (P+1) element matrix 
that orthogonalize Up,i(n). Since all ui(n)'s have identical 
distributions, the same Qp will orthogonalize U P,i (n) for all 
values of i. Furthermore, since the statistics of U P,i (n) are 
known, we can precompute Qp. As an example, for P = 5, 
one possibility for Q5 is 

1 0 0 0 0 0 
0 1 0 0 0 0 

Q5= 
-1 0 1 0 0 0 
0 -3 0 1 0 0 

(10) 

3 0 -6 0 1 0 
0 15 0 -10 0 1 

Let V P,i be an orthogonal vector obtained as 

Vp,i = QpUp,i. (11) 

Theorem 1: The elements of 

Yen) = V p,l(n) Q9 V p,2(n) Q9 ... Q9 V p,N(n) (12) 

where ® denotes the Kronecker product [l], are mutually 
orthogonal. 

Proof" Let VP,i,k(n) denote the kth element of V pAn). 
Recall that Vp,i,k(n) and VP,I,m(n) are independent random 
processes if i -::F t. Any element of Yen) has the form 

VP,l,ml (n)vp,2,m2(n)'" Vp,N,mN(n). (13) 

Now, let us evaluate the cross-correlation of any two elements 
of Yen). The expectation will have the form 

E{ (Vp,l,ml (n)Vp,2,m2 (n) ... VP,N,mN (n))· 

(Vp,l,ll (n)Vp,2.l2(n)··· VP,N,IN(n))} 

= E{ VP,l,ml (n)Vp,l,ll (n)}E{ VP,2,ml (n)Vp,2.l2 (n)) 

.·.E{Vp,N,mN(n)Vp,N,IN(n)}. (14) 

The expectations can be separated as on the right-hand side 
of the above equations because of the independence of the 
various elements involved. The expectations of the form 
E{Vp,i,m,(n)vp,i,dn)} are zero whenever mi =I ti since 
Vp,i,m,(n) and vp,i,dn) are uncorrelated processes and at 
least one of Vp,i,m,(n) and vp,i,dn) have zero-mean value. 
Consequently, the only situation under which (14) is nonzero 
is when ml = h,m2 = t2,'" and mN = IN. This implies 
that the elements of V (n) are mutually orthogonal. 

It is relatively straightforward to show that a linear trans­
formation exists between the elements of V ( n) and those of 
Xaug (n) defined as 

Xaug(n) = Yp(n) Q9Yp(n-1) Q9 ... Q9Yp(n-N +1) 
(15) 

where 

(16) 

It follows immediately that the elements of Yen) is an 
orthogonal basis set for the elements of Xaug(n) . 

While the above result is satisfying in many ways, one 
should not overlook the fact that Xaug(n) as well as Yen) 
has far greater number of elements in them than the number of 
terms in a Pth order Volterra series expansion with N -sample 
memory. It would be useful to derive an orthogonal basis 
set for the signals involved in the general Pth order Volterra 
series expansion. The next theorem provides a solution to this 
problem. 

Theorem 2: 

{vp,l,ml (n)vp,2,m2 (n) ... vP,N,mN (n) 1 

ml + m2 + ... + mN ::; P} 

is an orthogonal basis set for 

{xm1 (n)xm2 (n -1)·· ·xmN(n - N + 1)1 
ml +m2 + ···mN::; Pl· 

Note that v P, i, 0 ( n ) = 1 for all i and that each mi takes 
values from 0 ::; mi ::; P. 

Proof" The proof is a straightforward consequence of the 
fact that v P,i,m, (n) can be written as a linear combination 
of 1,x(n),x(n - 2),- .. x(n - i + 1) and their products of 
order up to mi. Consequently, there exists a one-to-one linear 
transformation between the elements of the two sets defined in 
the theorem. This implies that the elements of both sets span 
the same space. The result follows immediately. 

III. CONCLUDING REMARKS 

This letter presented a simple method to orthogonalize 
Gaussian input signals for identifying truncated Volterra sys­
tems. The complexity of implementing the orthogonalizer is 
comparable to that of the system model itself. This property 
is different from that of lattice orthogonalizers for Volterra 
system identification using arbitrary input signals. Such sys­
tems are over-parameterized [4] and have significantly higher 
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complexity than the system models. Applications of the or­
thogonalizer in system identification and adaptive filtering 
problems are currently being investigated. 
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