
The NSR Processor

E. Brunvand*
Department o f Computer Science

University of Utah
Salt Lake City, UT, 84112

Abstract

The NSR (Non-Synchronous RISC) processor is a
general-purpose computer structured as a collection of
self-timed blocks that operate concurrently and commu­
nicate over bundled data channels in the style of mi­
cropipelines [3 ,16}. These blocks correspond to standard
synchronous pipeline stages such as Instruction Fetch, In­
struction Decode, Execute, Memory and Register File, but
each operates concurrently as a separate self-timed pro­
cess. In addition to being internally self-tinted, the units are
decoupled through self-timed FIFO queues between each of
the units which allows a high degree of overlap in instruc­
tion execution. Branches, jumps, and memory accesses are
also decoupled through the use o f additional FIFO queues
which can hide the execution latency o f these instructions.
A prototype implementation ofthe NSR processor has been
constructed using Actel FPGAs (Field Programmable Gate
Arrays).

1 Introduction

As computer systems continue to grow in size and com­
plexity, the challenges inherent simply in assembling the
system pieces in a way that allows them to work together
also grow. A major cause of the problems lies in the tra­
ditional synchronous design style in which all the system
components are synchronized to a global clock signal. One
solution is to use non-clocked asynchronous techniques or
restricted versions of asynchrony known as self-timed [15].
Self-timed circuits avoid clock-related timing problems by
enforcing a simple communication protocol between parts
of the circuit. This protocol acts as a sort of local clock
to synchronize pieces of the circuit, but does not rely on
specific time intervals or extend to the entire circuit as a
synchronous clock would. This local synchronization al­
lows self-timed circuits to avoid many of the timing-related
difficulties present in large synchronous systems. For ex­
ample, simply distributing the clock signal throughout a

* This work is supported in part by NSF award MIP-9111793

large synchronous system can be a major source of diffi­
culty. Clock skew is a major concern in a large system,
and is becoming significant even within a single chip. At
the chip level, more and more of the power budget is being
used to distribute the clock signal and designing the clock
distribution network can take a significant portion of the
design time.

While there is a growing body of knowledge about how
to build small asynchronous and self-timed systems [3,16,
11, 5, 13, 12, 8], there are still very few real examples of
large systems designed with these techniques [6, 7, 10],
To explore how self-timed techniques can be used in a
larger system, and also to evaluate how these techniques
might affect the basic architecture of a general purpose
computer, we have designed a self-timed computer and
built a prototype version using field programmable gate
arrays (FPGAs).

The NSR (Non-Synchronous RISC1) processor is a gen­
eral purpose computer structured as a collection of self­
timed blocks. These blocks operate concurrently and co­
operate by communicating with other blocks using self­
timed communication protocols. The blocks that make
up the NSR processor correspond to standard synchronous
pipeline stages such as Instruction Fetch, Instruction De­
code, Execute (ALU), Memory Interface and Register File,
but each operates concurrently as a separate self-timed pro­
cess. In addition to being internally self-timed, the units are
decoupled through self-timed FIFO queues between each
of the units which allows a high degree of overlap in in­
struction execution. The prototype NSR processor uses
seven Actel field programmable gate arrays (FPGAs) with
each of the pipeline stages using one or two of the FPGA
chips. The processor is operational and is currently be­
ing used to gather information about the effectiveness of
the self-timed architecture. This paper introduces the NSR
processor in general terms. Further details about the NSR
prototype may be found in another document [14],

1 Because the current instruction set has no explicit HALT instruction,
NSR also stands for “Nantucket Sleigh Ride.”

0-8186-1060-3425/93 $03.00 © 1993 IEEE
428

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Self-Timed Systems

Self-timed circuits are a subset of a broad class of asyn­
chronous circuits. Asynchronous circuits do not use a
global clock for synchronization, instead they rely on the
behavior and arrangement of the circuits to keep the sig­
nals proceeding in the correct sequence. In general these
circuits are very difficult to design and debug without some
additional structure to help the designer deal with the com­
plexity. Traditional clocked synchronous systems are an
example of one particular structure applied to circuit de­
sign to facilitate design and debugging. Important signals
are latched into various registers on a particular edge of
a special clock signal. Between clock signals information
flows between the latches and must be stable at the input
to the latches before the next clock signal. This structure
allows the designer to rely on data values being asserted at
a particular time in relation to this global clock signal.

Self-timed circuits apply a different type of structure
to circuit design. Rather than let signals flow through
the circuit whenever they are able as with an unstruc­
tured asynchronous circuit, or require that the entire system
be synchronized to a single global timing signal as with
clocked systems, self-timed circuits avoid clock-related
timing problems by enforcing a simple communication pro­
tocol between circuit elements. This is quite different from
traditional synchronous signaling conventions where signal
events occur at specific times and may remain asserted for
specific time intervals. In self-timed systems it is impor­
tant only that the correct sequence of signals be maintained.
The timing of these signals is an issue of performance that
can be handled separately.

Recently, asynchronous circuits in general, and self­
timed circuits in particular, are experiencing renewed in­
terest by systems designers [3, 16, 11, 5, 13, 12, 8], The
self-timed techniques being explored, although distinct in
many ways, share the common property of local, rather
than global, synchronization.

Self-timed protocols are often defined in terms of a pair
of signals that request or initiate an action, and acknowledge
that the requested action has been completed. One module,
the sender, sends a request event (Req) to another module,
the receiver. Once the receiver has completed the requested
action, it sends an acknowledge event (Art) back to the
sender to complete the transaction.

This procedure defines the operation of the modules
which follows the simple principle of passing a token of
some sort back and forth between two participants. Imagine
that a single token is owned by the sending module. To issue
a request event it passes that token to the receiver. When
the receiver is finished with its processing it produces an
acknowledge event by passing that token back to the sender.
The sequence of events in this communication transaction is

Req __

Sender Ack Receiver

Data

Figure 1: A Bundled Data Interface

an alternating sequence of request and acknowledge events.
The sequence of events in a communication transaction is
called the protocol. In this case the protocol is simply for
request and acknowledge to alternate, although in general a
protocol may be much more complicated and involve many
interface signals.

Although testing and debugging of unstructured asyn­
chronous circuits can be very difficult indeed, debugging
self-timed circuits is facilitated because of the communi­
cation structure imposed on such circuits. One major de­
bugging aid is the ability to stop the circuit at any point of
communication by simply holding up the outgoing request
signal. With the system paused, circuit information may be
sensed or loaded using any of a number of standard tech­
niques. Scan paths, for example, can be used to sense and
load the data values internal to the circuit. In the absence
of a global clock, individual request signals may also be
used as a “clocking” signal for standard synchronous logic
analyzers. Debugging such circuits does not seem to be
dramatically more difficult than with synchronous circuits,
but variations on standard techniques for designing testable
circuits must be employed.

Although self-timed circuits can be designed in a va­
riety of ways, the circuits used to build the NSR proces­
sor use two-phase transition signalling for control and a
bundled protocol for data paths. Two-phase transition sig­
nalling [15,3] uses transitions on signal wires to communi­
cate the Req and Ack events described previously. Only the
transitions are meaningful; a transition from low to high is
the same as a transition from high to low and the particular
state, high or low, of each wire is not important.

A bundled data path uses a single set of control wires
to indicate the validity of a bundle of data wires. This
requires that the data bundle and the control wires be con­
structed such that the value on the data bundle is stable
at the receiver before a signal appears on the control wire.
This condition is similar to, but weaker than, theequipoten-
tial constraint [15], Two modules connected with a bundled
data path are shown in Figure 1 and a timing diagram show­
ing the sequence of the signal transitions using two-phase
transition signalling is shown in Figure 2.

429

Figure 2: Bundled Transition Signaling

Figure 3: A micropipeline FIFO buffer

2.1 Micropipelines

First-in first-out (FIFO) buffers play an extremely im­
portant role in the NSR prototype. In fact, one way to
look at the architecture of the NSR processor is as a large
FIFO buffer that also modifies the data passing through it
according to some rules. A self-timed FIFO buffer has a
particularly simple circuit realization using the two-phase
bundled protocol. The circuit in Figure 3 is an example
of a FIFO buffer of this type with processing between two
of the stages. This type of FIFO is also known as a mi­
cropipeline [16].

The Req and Ack signals in this circuit are transitions,
and the data are contained in bundles. The controlling gates
are C-elements. Notice that there is logic between the first
two stages of the FIFO. If this logic is not internally self­
timed and able to generate a completion signal, a delay
must be added that models the delay of the data through
that logic as shown in the figure. If no processing is present
between the stages, as seen in the right two stages in the
figure, the pipeline is a simple FIFO buffer.

3 NSR Architecture

The main blocks that make up the NSR processor are
shown in Figure 4. These blocks are organized in the same
way as the circuit in Figure 3. Each stage of the processor
accepts data from its input, processes it in accordance with

its function, and passes the result to the output in FIFO
order. The thick lines in Figure 4 are bundled data paths,
and the thin lines are pairs of request-acknowledge wires.
Not shown in this figure are the FIFO queues that exist
between each of the blocks. These queues decouple the
stages of the NSR processor so that the occasional slow
instruction does not hold up the entire machine.

Each of these blocks operates concurrently and performs
a task roughly equivalent to its synchronous counterpart.
The overall architecture of the NSR is inspired by the syn­
chronous WM [17] and PIPE [9] processors that also use
FIFO queues extensively.

A quick overview of the operation of the machine re­
veals typical instruction pipeline operation. The Instruc­
tion Fetch (IF) stage reads instructions from the Instruction
Memory (IMem) and, unless they are branch or jump in­
structions, passes them to the Instruction Decode (ID) stage.
The ID stage sends register addresses to the Register File
(RF) and decoded instruction information to the Execute
(EX) stage. The RF uses those addresses to send operands
to the EX stage which performs some ALU operation. The
result is written back to the RF. If the instruction computes
addresses or data bound for the Data Memory (DMem), the
result may also go to the Memory Interface (MEM), and if
condition code (CC) bits or jump addresses are computed,
the result may also go back to the IF stage.

Note that unlike a synchronous pipeline, if an instruction
does not need the services of a particular pipeline stage, it
need not pass through that stage. Branches and jumps are
handled in the Instruction Fetch stage and never passed to
the Instruction Decoder and are thus never seen by the rest
of the pipeline. Instructions that do not deal with memory
are never seen by the Memory interface, and instructions
that do not write back to the Register File are not required
to communicate with that stage.

3.1 NSR Instruction Set

The prototype NSR processor is a 16-bit machine and
implements the simple instruction set shown in Figure 5.
Most of the instructions are typical. The NSR is a load-store
machine with all arithmetic and logic instructions operating
only on registers. There are 16 general purpose 16-bit
registers with register RO tied to 0. Writing into register
R0 has no effect. These operations are encoded as three-
addresses instructions. Branches are relative to the current
program counter (PC), and jumps use absolute addresses.
Three different shift instructions implement logical right
and left shift, and arithmetic right shift. Move-immediate
instructions allow data in the instruction word to be loaded
directly into the NSR’s registers. The MVPC instruction
allows the current PC value, plus a sign-extended offset
contained in the instruction, to be moved to a regiater.

430

R / A

D A T A / A D D R

IMem

R / W

D M e m R/A
a d d :

D A T .

■R̂
A^

R / A
^ D A T A / A D D R

I F

L R

I N I T

R / A

C C

J M P A D D R

C L R

R / A
I D R / A

I N S T R F A D D R

R / A I N S T

R / A I N S T

A' cc E X
R / A - M E M

M E M - I N F O
R / A - J M P R E S U L T

R / A

S O U R C E S

R / W M E M - I N F O D A T A
R / A

P t D D R

D A T A

MEM
R / A

L D Q

R / A

A D D R

RF

R / A

S O U R C E S

R/A
L D Q

Figure 4: NSR Architecture Block Diagram

Mnemonic Encoding Action
ADD Rd,Ra,Rb
SJMP Rd,Ra,Rb
LDA Rd,Ra,Rb
STA Rd,Ra,Rb

1100 -Rd- -Ra- -Rb-
1101 -Rd- -Ra- -Rb-
1110 -Rd- -Ra- -Rb-
1111 -Rd--Ra--Rb-

Rd *— Ra + Rb
Rd, Jinp-Queue Ra + Rb
Rd, AQ(load) — Ra + Rb
Rd, A Q (s to re)R a + Rb

SUB R d ^ R b 0100 -Rd- -Ra- -Rb- Rd «— Ra - Rb
AND Rd,Ra,Rb
OR Rd,Ra,Rb
XOR Rd,Ra,Rb
XNOR Rd,Ra,Rb

1000 -Rd- -Ra* -Rb-
1001 -Rd- -Ra- -Rb-
1010 -Rd- -Ra- -Rb-
1011 -Rd- -Ra- -Rb-

Rd «— Ra AND Rb
Rd «- Ra OR Rb
Rd «- Ra XOR Rb
Rd Ra XNOR Rb

BCND offset
JMP

0001 —offset—
0000 xxxx xxxx xxxx

If cc, PC — PC + offset
PC *— Jmp-Queue

MVIH Revalue
MVIL Rd,value

0010 -Rd- -value-
0011 -Rd--value-

Rd.H «— value, Rd.L=0
Rd.L *— value, Rd.H=0

ScoDd Ra, Rb 0101 cond -Ra- -Rb- CC-Queue «— cond bit
MVPCRd
SHcode Rd,Rb

0111 -Rd--offset-
0110 -Rd- code -Rb-

Rd *— PC + offset
Rd «— shifted Rb

Figure 5: NSR Instruction Set (16-bit Prototype)

The interesting parts of the NSR’s instruction set involve
the decoupling of the branches and jumps, and load and
store instructions to the memory. These aspects of the
instruction set are also inspired by the WM machine [17].

3.1.1 Decoupled Control Flow

All flow control decisions are made by the Instruction Fetch
unit based on conditions set up in advance by the Execution
unit. For example, BCND instructions are recognized by
the Instruction Fetch unit and cause the program counter to
either be incremented by one (branch not taken), or to be
updated by adding a signed constant present in the opcode
(branch taken). The decision to take the branch or not is
made based on a condition code (CC) bit. This CC bit is
computed in the Execute unit and stored in a FIFO queue

between the Execute unit and Instruction Fetch unit. The
CC bits generated by the Execute unit (Scond instructions)
and used in the Instruction Fetch unit (BCND instructions)
must obey a one-to-one producer-consumer relationship.

Note that the arithmetic instructions do not set the condi­
tion bit. These CC bits are only set by the explicit condition
code setting instructions. These instructions compare the
values contained in a pair of registers and set the condition
code based on the result of that comparison. The proto­
type NSR processor implements EQ, NEQ, GT, and GE
comparisons.

Jump instructions are also handled in the Instruction
Fetch unit. In this case, the target address is computed
by the Execute unit in advance by adding two registers
(the SJMP instruction). This address is sent to a FIFO
queue and eventually consumed by a JMP instruction. The
Instruction Fetch stage, upon seeing a JMP instruction,
dequeues an address and uses that to update the value of the
PC. Note that the SJMP instruction is exactly the same as an
ADD instruction except that it also causes the result of the
addition to be queued in the jump-address queue. Again,
the jump addresses and JMP instructions must obey the
producer-consumer relationship. One easy way to halt the
NSR processor in a deadlock is to issue a JMP instruction
before any SJMP instruction. The Instruction Fetch unit
will wait forever for the jump addresses to show up in the
queue. Fortunately, a compiler is not likely to make such a
mistake.

The effect of the decoupling of the branch and jump
instructions is similar to the common idea of delay slots.
However, rather than using a fixed number of delay slots,

431

M E M u . n ± C

Figure 6: NSR Memory Queues

the programmer is free to put any number of instructions
between, for example, the SNE instruction and the BCND
that uses the generated condition code. If many instructions
are issued between these two then the condition code will
be waiting when the BCND is executed and there will be
no stalling of the pipeline and no delay. If, on the other
hand, the SNE is followed directly by the BCND, then the
Instruction Fetch stage will simply wait for the condition
code to be produced before proceeding with the branch.
Note that since all the stages are self-timed, no explicit
control of the pipeline is required to implement this possible
stall and no NO-OP instructions are required to fill the delay
slots.

3.1.2 Decoupled Memory Access

Memory access on the NSR is also decoupled through FIFO
queues. There are, in fact, no standard load and store
instructions in the NSR instruction set. Instead, memory
addresses are computed and sent to the Memory Interface
which processes the requests and queues up the results. An
LDA instruction is exactly like an ADD instruction with
the result also sent to the Memory Interface as an address
to load from. The result of an STA instruction is likewise
considered an address in which to store data.

The programmer manipulates data to and from the mem­
ory by accessing register Rl, a special register which is ac­
tually connected to queues to and from the memory. When
the program reads from register Rl (Rl is the source reg­
ister for some operation) the result is data from memory
out of the Load Data Queue (LDQ), and when the pro­
gram stores into register Rl (Rl is the destination register
of some operation), that data gets queued up to be stored
into memory through the Store Data Queue (SDQ). These
queues and another queue for the addresses (AQ) are shown
in Figure 6.

The Memory Interface uses the information in these
queues to perform memory cycles. When a load address
is at the head of the AQ, a read cycle is initiated and the
resulting data are placed in the LDQ. When a store address
is at the head of the AQ, and there are data at the head
of the SDQ, a store cycle is initiated and those data are

stored to memory. Because the memory operations are de­
coupled, several requests may be queued before they are
needed. For example, by placing an LDA instruction sev­
eral instructions in advance of the instruction that requires
the memory contents, the memory access latency is hidden.
Again, this is similar to delayed loads with the advantage
that any number (including zero) instructions may be exe­
cuted between the initiation of the load and the use of the
loaded data.

Note that each time an instruction uses register Rl as a
source, it dequeues one word from the LDQ. This means
that a different value may be received each time Rl is
accessed. For example, if two LDA instructions have been
issued previously, then the instruction ADD R2,R1,R1 will
add the two values loaded from memory and store the result
in R2. In fact, if an address has been queued with an STA
instruction, the instruction ADD R1,R1,R1 will add two
values from memory and store the result back to another
memory location.

Interleaved STA and LDA instructions may be used
without concern. Although the LDQ and SDQ are inde­
pendent, there is only one Address Queue. In addition
to enqueuing the address, a bit is enqueued which indi­
cates whether the address is for a write or read operation.
By sharing the AQ, read-after-write hazards are avoided.
However, the unwary programmer can easily deadlock the
NSR processor by issuing an instruction that uses Rl as
a source before queuing up an address using an LDA in­
struction. The processor will stop and wait for the result
from memory that will never arrive. Note that it is a simple
matter for a compiler to avoid problems of this sort.

3.2 NSR Functional Units

Details of the individual blocks of the NSR are as fol­
lows:

Instruction Fetch The Instruction Fetch unit reads in­
structions from the instruction memory (IMem) and
passes them to the Instruction Decode unit. It also
holds the program counter (PC), and therefore pro­
cesses branch and jump instructions directly. Jump
addresses are generated in the Execute unit and passed
to the Instruction Fetch unit through a single-place
FIFO queue. Condition codes are likewise computed
in the Execute unit and passed to the Instruction Fetch
unit through a FIFO queue, this time 8 places deep.

Instruction Decode The Instruction Decode unit takes the
instruction from the Instruction Fetch unit (through a
FIFO queue) and decodes information for both the
Register File and Execute units. The Register File
receives register address information, and the Execute
unit receives decoded instruction bits.

432

Execute Unit The Execute unit receives its instructions
in pre-decoded form from the Instruction Decoder.
It uses that information, and the necessary operands
from the Register File, to produce a result. This result
can be routed back to the Register File, to the Memory
unit, or, in the case of computing a jump address or a
condition code, to the Instruction Fetch unit.
The Execute unit uses a carry-completion-sensing
adder in its ALU [3]. This form of adder senses when
the addition is complete by looking at the carries at
each stage of the adder and then generates a com­
pletion signal. This allows the time to complete an
addition to depend on the data being added. A sim­
ple ripple-carry version of this adder will complete
quickly on average and only slow down in the rare
case that the carry must ripple through many of the
bits. Because the NSR is self-timed, such variations
in processing speed are not only handled gracefully,
but encouraged as they allow the machine to run closer
to average case speed than worst case speed.

Register File The Register File receives register address
information from the Instruction Decoder. It passes
operands to the Execute unit and receives results from
the Execute unit. It also receives data from the Mem­
ory Interface through the Load Data Queue (LDQ).
Data loaded from the data memory (DMem) are avail­
able by reading a special register, RI, in the Register
File. When this register is accessed, the Register File
requests data from the Memory unit. Data written
to RI are sent to the Store Data Queue (SDQ) in the
Memory Interface to be stored in data memory.
To prevent write-after-read hazards in the Register
File, each register has a single tag bit that tells when
a write is pending on that register. Consider the in­
struction sequence ADD R2,R3,R4 followed directly
by SUB R5,R6,R2. Because there are queues between
the RF and EX units, it would be possible for the old
value in register R2 to be queued up as an argument
to the SUB instruction before the result of the ADD
instruction is written back to the Register File. To
prevent this, a bit is set for each destination address
seen by the Register File. A register may not be read
as long as this bit is set.

Memory Interface The Memory Interface to the NSR
contains the FIFO queues shown in Figure 6. The
LDA and SDA instructions queue up addresses into
an Address Queue (AQ), and the data to be loaded or
stored is also queued up by reading or writing to a
special register. When the Memory Interface has both
an address, and, in the case of a write, the necessary
data, a memory access is initiated. If the operation

Table 1: NSR FPGA Implementation

System Piece Chips Used
Logic

Modules
Percent

Utilization
Instruction Fetch 1 Actel 1020A 547 100%
Instruction Decode 1 Actel 1010A 287 97%
Execute 1 Actel 1020A 518 95%
Register File 2 Actel 1020A 1076 98%
Memory Interface 2 Actel 101OA 554 94%

is a load, the data from memory is queued up and is
available by reading a special register. This memory
queue organization is similar to the WM machine [17],
and the PIPE processor [9]. Our version is shown in
Figure 6.

4 NSR FPGA Implementation

The processes that implement the separate pieces of the
prototypeNSR processor are each implemented using Actel
FPGAs. The two-phase transition control modules and
bundled data modules have been assembled from a library
of macros designed to be used with the Actel parts [2, 1],
The individual units of the NSR are designed to behave
as pipeline stages that also process the information that
flows through them [4, 3]. These parts were designed and
implemented by students in a graduate seminar on VLSI
architecture using the Workview suite of schematic capture
and simulation tools from ViewLogic.

The resulting FPGAs have been assembled as a wire-
wrapped prototype for testing and evaluation. The number
of Actel FPGA chips used to implement each of the parts
of the NSR and the utilization of those chips are shown in
Table 1. The NSR processor is connected to a standard PC
to allow programs to be loaded into the NSR’s memory and
data to be retrieved to the PC for analysis.

Although the 16-bit prototype of the NSR processor has
16 general purpose registers, there was not enough space
on the FPGAs to implement all of these registers. Register
RO is already defined to be tied to 0, and for the FPGA
prototype, register R14 is tied to 1 and register R15 is tied
to -1. Recall that register RI is actually a special purpose
register that acts as the interface to the memory. This leaves
registers R2-R13 as general purpose 16-bit registers.

Because the entire processor is self-timed, stopping at
any stage of the execution is possible simply by delaying
a control transition. To use this feature as an aid in testing
the machine, we installed switches that block the outgoing
Req signal from each pipeline stage of the NSR processor.
We also installed lights on the Req and Ack signals between
each stage. This allows us to hold up instructions at the
output of any stage, or to single-step instructions through

433

the machine while monitoring the state of the communica­
tion at each bundled data interface. This turned out to be
quite useful during debugging of the prototype.

Memory presented another problem. Because the pro­
cessor is self-timed, it expects to send out a memory request,
and receive and acknowledge when the data is available.
Commercial memory chips unfortunately do not provide
such an acknowledge signal. We use digital delay chips
to delay the outgoing request transition long enough to
account for the delay through the memory chips. This
delayed request becomes the acknowledge to the NSR pro­
cessor. This allows us to use standard static RAM chips in
the NSR prototype.

The FPGAs for the prototype were finished in Autumn
Quarter 1991. The prototype board was wire-wrapped in
Winter Quarter 1992, and the processor was assembled,
tested, and debugged in the first part of Spring Quarter
1992. The NSR prototype is fully functional and test
programs are now being written and run to evaluate the
architecture. Performance results are difficult to express
because the number of instructions per second will depend
on the mix of instructions being executed. Preliminary re­
sults for this FPGA-based prototype indicate that the best
case speed is on the order of 1.3 MIPS, although this is a
rather meaningless performance metric. The FPGAs them­
selves are major culprits in the relatively slow instruction
times. Measurements indicate that a 16-bit addition (from
the time the operands are presented at the input to the chip,
until the completion acknowledgment is generated as the
chip output) takes between 225ns and 320ns depending on
the length of the carry in the adder. This time is not com­
pletely due to the adder as it includes the delay of latching
the input data, completing the addition, and latching the
result in the output register.

5 Conclusions

Using a library of self-timed modules, a prototype of a
self-timed general purpose processor was constructed. Fur­
ther details about the prototype may be found in another
document [14], We are very pleased with the results of
this work and plan to continue to investigate the poten­
tial of large self-timed systems. This processor has many
novel features and the FPGA implementation is being used
to gain experience with the architecture before starting to
build a larger 32-bit version of the processor in semicus­
tom CMOS. Major additions to the next version of this
processor, in addition to the increase in word width, will
include an interrupt structure, and I/O subsystems to allow
the processor to communicate with other, more standard,
peripheral devices.

We have found that field programmable gate arrays are
an excellent medium for fast inexpensive system prototyp­
ing provided the necessary circuit primitives can be imple­
mented. The Actel FPGA, and the self-timed library, have
proven to be a very useful and flexible tool.

6 Acknowledgments

Many thanks to my students in the autumn 1991 VLSI
Architecture class for designing and implementing the
FPGA components that are the NSR processor. They are:
IF stage - John Hurdle, Liili Josepheson, ID - Ajay Khoche,
Bill Richardson, Michael Stephenson, RF - Kent Bunker,
V. Chandramouli, Dewey Jones, EX - Corby Bacco, Prab-
hat Jain, Cliff Miller, MEM - Madhu Penugonda, Marshall
Soares. Thanks also to Nick Michell and Bill Richardson
for helping define the NSR architecture.

References

[1] Erik Brunvand. A cell set for self-timed design us­
ing actel FPGAs. Technical Report UUCS-91-013,
University of Utah, 1991.

[2] Erik Brunvand. Implementing self-timed systems
with FPGAs. In W. R. Moore and W. Luk, editors, FP­
GAs, chapter 6.2, pages 312-323. Abingdon EE&CS
Books, 1991.

[3] Erik Brunvand. Translating Concurrent Communi­
cating Programs into Asynchronous Circuits. PhD
thesis, Carnegie Mellon University, 1991. Available
as Technical Report CMU-CS-91-198.

[4] Erik Brunvand and Robert F. Sproull. Translating
concurrent programs into delay-insensitive circuits. In
ICCAD-89, pages 262-265. IEEE, November 1989.

[5] S. Burns. Automated compilation of concurrent pro­
grams into self-timed circuits. Master’s thesis, Cal­
tech, 1987.

[6] Wesley A. Clark. Macromodular computer systems.
In Spring Joint Computer Conference. AFIPS, April
1967.

[7] A.L. Davis. The architecture and system method
for DDM1: A recursively structured data-driven ma­
chine. In 5 th Annual Symp. on Computer Architecture,
April 1978.

[8] Jo C. Ebergen. Translating Programs into Delay-
Insensitive Circuits. PhD thesis, Technische Univer-
siteit Eindhoven, 1987.

434

[9] J. R. Goodman, J Hsieh, K Liou, A. R. Pleszkun,
P. B. Schechter, and H. C. Young. PIPE: A VLSI
decoupled architecture. In 12th Annual International
Symposium on Computer Architecture, pages 20-27.
IEEE Computer Society, June 1985.

[10] Alain Martin, Steven Bums, T.K. Lee, Drazen
Borkovic, and Pieter Hazewindus. The design of an
asynchronous microprocessor. In Proc. Cal Tech Con­
ference on VLSI, 1989.

[11] Alain J. Martin. Compiling communicating processes
into delay insensitive circuits. Distributed Comput­
ing, 1(3), 1986.

[12] T. H.-Y. Meng, R. W. Broderson, and D. G. Messer-
schmitt. Design of clock-free asynchronous systems
for real-time signal processing. In ICASSP-89, pages
2532-5. IEEE, May 1989.

[13] Cees Niessen, C.H. (Kees) van Berkel, Martin Rem,
and Ronald W..IJ. Saeijs. VLSI programming and
silicon compilation; a novel approach from Philips
research. In ICCD, Rye Brook, NY, October 1988.

[14] William F. Richardson and Erik L. Brunvand. The
NSR processor prototype. Technical Report UUCS-
92-029, University of Utah, 1992.

[15] C. L. Seitz. System timing. In Mead and Conway,
Introduction to VLSI Systems, chapter 7. Addison-
Wesley, 1980.

[16] Ivan Sutherland. Micropipelines. CACM, 32(6),
1989.

[17] Wm. A. Wulf. The WM computer architecture. Com­
puter Architecture News, 16(1), March 1988.

435

