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Abstract

The NSR (Non-Synchronous RISC) processor is a 
general-purpose computer structured as a collection of 
self-timed blocks that operate concurrently and commu­
nicate over bundled data channels in the style of mi­
cropipelines [3 ,16}. These blocks correspond to standard 
synchronous pipeline stages such as Instruction Fetch, In­
struction Decode, Execute, Memory and Register File, but 
each operates concurrently as a separate self-timed pro­
cess. In addition to being internally self-tinted, the units are 
decoupled through self-timed FIFO queues between each of 
the units which allows a high degree of overlap in instruc­
tion execution. Branches, jumps, and memory accesses are 
also decoupled through the use o f additional FIFO queues 
which can hide the execution latency o f these instructions. 
A prototype implementation ofthe NSR processor has been 
constructed using Actel FPGAs (Field Programmable Gate 
Arrays).

1 Introduction

As computer systems continue to grow in size and com­
plexity, the challenges inherent simply in assembling the 
system pieces in a way that allows them to work together 
also grow. A major cause of the problems lies in the tra­
ditional synchronous design style in which all the system 
components are synchronized to a global clock signal. One 
solution is to use non-clocked asynchronous techniques or 
restricted versions of asynchrony known as self-timed [15]. 
Self-timed circuits avoid clock-related timing problems by 
enforcing a simple communication protocol between parts 
of the circuit. This protocol acts as a sort of local clock 
to synchronize pieces of the circuit, but does not rely on 
specific time intervals or extend to the entire circuit as a 
synchronous clock would. This local synchronization al­
lows self-timed circuits to avoid many of the timing-related 
difficulties present in large synchronous systems. For ex­
ample, simply distributing the clock signal throughout a
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large synchronous system can be a major source of diffi­
culty. Clock skew is a major concern in a large system, 
and is becoming significant even within a single chip. At 
the chip level, more and more of the power budget is being 
used to distribute the clock signal and designing the clock 
distribution network can take a significant portion of the 
design time.

While there is a growing body of knowledge about how 
to build small asynchronous and self-timed systems [3,16,
11, 5, 13, 12, 8], there are still very few real examples of 
large systems designed with these techniques [6, 7, 10], 
To explore how self-timed techniques can be used in a 
larger system, and also to evaluate how these techniques 
might affect the basic architecture of a general purpose 
computer, we have designed a self-timed computer and 
built a prototype version using field programmable gate 
arrays (FPGAs).

The NSR (Non-Synchronous RISC1) processor is a gen­
eral purpose computer structured as a collection of self­
timed blocks. These blocks operate concurrently and co­
operate by communicating with other blocks using self­
timed communication protocols. The blocks that make 
up the NSR processor correspond to standard synchronous 
pipeline stages such as Instruction Fetch, Instruction De­
code, Execute (ALU), Memory Interface and Register File, 
but each operates concurrently as a separate self-timed pro­
cess. In addition to being internally self-timed, the units are 
decoupled through self-timed FIFO queues between each 
of the units which allows a high degree of overlap in in­
struction execution. The prototype NSR processor uses 
seven Actel field programmable gate arrays (FPGAs) with 
each of the pipeline stages using one or two of the FPGA 
chips. The processor is operational and is currently be­
ing used to gather information about the effectiveness of 
the self-timed architecture. This paper introduces the NSR 
processor in general terms. Further details about the NSR 
prototype may be found in another document [14],

1 Because the current instruction set has no explicit HALT instruction, 
NSR also stands for “Nantucket Sleigh Ride.”
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2 Self-Timed Systems

Self-timed circuits are a subset of a broad class of asyn­
chronous circuits. Asynchronous circuits do not use a 
global clock for synchronization, instead they rely on the 
behavior and arrangement of the circuits to keep the sig­
nals proceeding in the correct sequence. In general these 
circuits are very difficult to design and debug without some 
additional structure to help the designer deal with the com­
plexity. Traditional clocked synchronous systems are an 
example of one particular structure applied to circuit de­
sign to facilitate design and debugging. Important signals 
are latched into various registers on a particular edge of 
a special clock signal. Between clock signals information 
flows between the latches and must be stable at the input 
to the latches before the next clock signal. This structure 
allows the designer to rely on data values being asserted at 
a particular time in relation to this global clock signal.

Self-timed circuits apply a different type of structure 
to circuit design. Rather than let signals flow through 
the circuit whenever they are able as with an unstruc­
tured asynchronous circuit, or require that the entire system 
be synchronized to a single global timing signal as with 
clocked systems, self-timed circuits avoid clock-related 
timing problems by enforcing a simple communication pro­
tocol between circuit elements. This is quite different from 
traditional synchronous signaling conventions where signal 
events occur at specific times and may remain asserted for 
specific time intervals. In self-timed systems it is impor­
tant only that the correct sequence of signals be maintained. 
The timing of these signals is an issue of performance that 
can be handled separately.

Recently, asynchronous circuits in general, and self­
timed circuits in particular, are experiencing renewed in­
terest by systems designers [3, 16, 11, 5, 13, 12, 8], The 
self-timed techniques being explored, although distinct in 
many ways, share the common property of local, rather 
than global, synchronization.

Self-timed protocols are often defined in terms of a pair 
of signals that request or initiate an action, and acknowledge 
that the requested action has been completed. One module, 
the sender, sends a request event (Req) to another module, 
the receiver. Once the receiver has completed the requested 
action, it sends an acknowledge event (Art) back to the 
sender to complete the transaction.

This procedure defines the operation of the modules 
which follows the simple principle of passing a token of 
some sort back and forth between two participants. Imagine 
that a single token is owned by the sending module. To issue 
a request event it passes that token to the receiver. When 
the receiver is finished with its processing it produces an 
acknowledge event by passing that token back to the sender. 
The sequence of events in this communication transaction is

Req __

Sender Ack Receiver

Data

Figure 1: A Bundled Data Interface

an alternating sequence of request and acknowledge events. 
The sequence of events in a communication transaction is 
called the protocol. In this case the protocol is simply for 
request and acknowledge to alternate, although in general a 
protocol may be much more complicated and involve many 
interface signals.

Although testing and debugging of unstructured asyn­
chronous circuits can be very difficult indeed, debugging 
self-timed circuits is facilitated because of the communi­
cation structure imposed on such circuits. One major de­
bugging aid is the ability to stop the circuit at any point of 
communication by simply holding up the outgoing request 
signal. With the system paused, circuit information may be 
sensed or loaded using any of a number of standard tech­
niques. Scan paths, for example, can be used to sense and 
load the data values internal to the circuit. In the absence 
of a global clock, individual request signals may also be 
used as a “clocking” signal for standard synchronous logic 
analyzers. Debugging such circuits does not seem to be 
dramatically more difficult than with synchronous circuits, 
but variations on standard techniques for designing testable 
circuits must be employed.

Although self-timed circuits can be designed in a va­
riety of ways, the circuits used to build the NSR proces­
sor use two-phase transition signalling for control and a 
bundled protocol for data paths. Two-phase transition sig­
nalling [15,3] uses transitions on signal wires to communi­
cate the Req and Ack events described previously. Only the 
transitions are meaningful; a transition from low to high is 
the same as a transition from high to low and the particular 
state, high or low, of each wire is not important.

A bundled data path uses a single set of control wires 
to indicate the validity of a bundle of data wires. This 
requires that the data bundle and the control wires be con­
structed such that the value on the data bundle is stable 
at the receiver before a signal appears on the control wire. 
This condition is similar to, but weaker than, theequipoten- 
tial constraint [15], Two modules connected with a bundled 
data path are shown in Figure 1 and a timing diagram show­
ing the sequence of the signal transitions using two-phase 
transition signalling is shown in Figure 2.
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Figure 2: Bundled Transition Signaling

Figure 3: A micropipeline FIFO buffer

2.1 Micropipelines

First-in first-out (FIFO) buffers play an extremely im­
portant role in the NSR prototype. In fact, one way to 
look at the architecture of the NSR processor is as a large 
FIFO buffer that also modifies the data passing through it 
according to some rules. A self-timed FIFO buffer has a 
particularly simple circuit realization using the two-phase 
bundled protocol. The circuit in Figure 3 is an example 
of a FIFO buffer of this type with processing between two 
of the stages. This type of FIFO is also known as a mi­
cropipeline [16].

The Req and Ack signals in this circuit are transitions, 
and the data are contained in bundles. The controlling gates 
are C-elements. Notice that there is logic between the first 
two stages of the FIFO. If this logic is not internally self­
timed and able to generate a completion signal, a delay 
must be added that models the delay of the data through 
that logic as shown in the figure. If no processing is present 
between the stages, as seen in the right two stages in the 
figure, the pipeline is a simple FIFO buffer.

3 NSR Architecture

The main blocks that make up the NSR processor are 
shown in Figure 4. These blocks are organized in the same 
way as the circuit in Figure 3. Each stage of the processor 
accepts data from its input, processes it in accordance with

its function, and passes the result to the output in FIFO 
order. The thick lines in Figure 4 are bundled data paths, 
and the thin lines are pairs of request-acknowledge wires. 
Not shown in this figure are the FIFO queues that exist 
between each of the blocks. These queues decouple the 
stages of the NSR processor so that the occasional slow 
instruction does not hold up the entire machine.

Each of these blocks operates concurrently and performs 
a task roughly equivalent to its synchronous counterpart. 
The overall architecture of the NSR is inspired by the syn­
chronous WM [17] and PIPE [9] processors that also use 
FIFO queues extensively.

A quick overview of the operation of the machine re­
veals typical instruction pipeline operation. The Instruc­
tion Fetch (IF) stage reads instructions from the Instruction 
Memory (IMem) and, unless they are branch or jump in­
structions, passes them to the Instruction Decode (ID) stage. 
The ID stage sends register addresses to the Register File 
(RF) and decoded instruction information to the Execute 
(EX) stage. The RF uses those addresses to send operands 
to the EX stage which performs some ALU operation. The 
result is written back to the RF. If the instruction computes 
addresses or data bound for the Data Memory (DMem), the 
result may also go to the Memory Interface (MEM), and if 
condition code (CC) bits or jump addresses are computed, 
the result may also go back to the IF stage.

Note that unlike a synchronous pipeline, if an instruction 
does not need the services of a particular pipeline stage, it 
need not pass through that stage. Branches and jumps are 
handled in the Instruction Fetch stage and never passed to 
the Instruction Decoder and are thus never seen by the rest 
of the pipeline. Instructions that do not deal with memory 
are never seen by the Memory interface, and instructions 
that do not write back to the Register File are not required 
to communicate with that stage.

3.1 NSR Instruction Set

The prototype NSR processor is a 16-bit machine and 
implements the simple instruction set shown in Figure 5. 
Most of the instructions are typical. The NSR is a load-store 
machine with all arithmetic and logic instructions operating 
only on registers. There are 16 general purpose 16-bit 
registers with register RO tied to 0. Writing into register 
R0 has no effect. These operations are encoded as three- 
addresses instructions. Branches are relative to the current 
program counter (PC), and jumps use absolute addresses. 
Three different shift instructions implement logical right 
and left shift, and arithmetic right shift. Move-immediate 
instructions allow data in the instruction word to be loaded 
directly into the NSR’s registers. The MVPC instruction 
allows the current PC value, plus a sign-extended offset 
contained in the instruction, to be moved to a regiater.
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Figure 4: NSR Architecture Block Diagram

Mnemonic Encoding Action
ADD Rd,Ra,Rb 
SJMP Rd,Ra,Rb 
LDA Rd,Ra,Rb 
STA Rd,Ra,Rb

1100 -Rd- -Ra- -Rb-
1101 -Rd- -Ra- -Rb-
1110 -Rd- -Ra- -Rb-
1111 -Rd--Ra--Rb-

Rd *— Ra + Rb 
Rd, Jinp-Queue Ra + Rb 
Rd, AQ(load) — Ra + Rb 
Rd, A Q (s to re )R a  + Rb

SUB R d ^ R b 0100 -Rd- -Ra- -Rb- Rd «— Ra - Rb
AND Rd,Ra,Rb 
OR Rd,Ra,Rb 
XOR Rd,Ra,Rb 
XNOR Rd,Ra,Rb

1000 -Rd- -Ra* -Rb-
1001 -Rd- -Ra- -Rb-
1010 -Rd- -Ra- -Rb-
1011 -Rd- -Ra- -Rb-

Rd «— Ra AND Rb 
Rd «- Ra OR Rb 
Rd «- Ra XOR Rb 
Rd Ra XNOR Rb

BCND offset 
JMP

0001 —offset—
0000 xxxx xxxx xxxx

If  cc, PC — PC + offset 
PC *— Jmp-Queue

MVIH Revalue 
MVIL Rd,value

0010 -Rd- -value-
0011 -Rd--value-

Rd.H «— value, Rd.L=0 
Rd.L *— value, Rd.H=0

ScoDd Ra, Rb 0101 cond -Ra- -Rb- CC-Queue «— cond bit
MVPCRd 
SHcode Rd,Rb

0111 -Rd--offset- 
0110 -Rd- code -Rb-

Rd *— PC + offset 
Rd «— shifted Rb

Figure 5: NSR Instruction Set (16-bit Prototype)

The interesting parts of the NSR’s instruction set involve 
the decoupling of the branches and jumps, and load and 
store instructions to the memory. These aspects of the 
instruction set are also inspired by the WM machine [17].

3.1.1 Decoupled Control Flow

All flow control decisions are made by the Instruction Fetch 
unit based on conditions set up in advance by the Execution 
unit. For example, BCND instructions are recognized by 
the Instruction Fetch unit and cause the program counter to 
either be incremented by one (branch not taken), or to be 
updated by adding a signed constant present in the opcode 
(branch taken). The decision to take the branch or not is 
made based on a condition code (CC) bit. This CC bit is 
computed in the Execute unit and stored in a FIFO queue

between the Execute unit and Instruction Fetch unit. The 
CC bits generated by the Execute unit (Scond instructions) 
and used in the Instruction Fetch unit (BCND instructions) 
must obey a one-to-one producer-consumer relationship.

Note that the arithmetic instructions do not set the condi­
tion bit. These CC bits are only set by the explicit condition 
code setting instructions. These instructions compare the 
values contained in a pair of registers and set the condition 
code based on the result of that comparison. The proto­
type NSR processor implements EQ, NEQ, GT, and GE 
comparisons.

Jump instructions are also handled in the Instruction 
Fetch unit. In this case, the target address is computed 
by the Execute unit in advance by adding two registers 
(the SJMP instruction). This address is sent to a FIFO 
queue and eventually consumed by a JMP instruction. The 
Instruction Fetch stage, upon seeing a JMP instruction, 
dequeues an address and uses that to update the value of the 
PC. Note that the SJMP instruction is exactly the same as an 
ADD instruction except that it also causes the result of the 
addition to be queued in the jump-address queue. Again, 
the jump addresses and JMP instructions must obey the 
producer-consumer relationship. One easy way to halt the 
NSR processor in a deadlock is to issue a JMP instruction 
before any SJMP instruction. The Instruction Fetch unit 
will wait forever for the jump addresses to show up in the 
queue. Fortunately, a compiler is not likely to make such a 
mistake.

The effect of the decoupling of the branch and jump 
instructions is similar to the common idea of delay slots. 
However, rather than using a fixed number of delay slots,
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Figure 6: NSR Memory Queues

the programmer is free to put any number of instructions 
between, for example, the SNE instruction and the BCND 
that uses the generated condition code. If many instructions 
are issued between these two then the condition code will 
be waiting when the BCND is executed and there will be 
no stalling of the pipeline and no delay. If, on the other 
hand, the SNE is followed directly by the BCND, then the 
Instruction Fetch stage will simply wait for the condition 
code to be produced before proceeding with the branch. 
Note that since all the stages are self-timed, no explicit 
control of the pipeline is required to implement this possible 
stall and no NO-OP instructions are required to fill the delay 
slots.

3.1.2 Decoupled Memory Access

Memory access on the NSR is also decoupled through FIFO 
queues. There are, in fact, no standard load and store 
instructions in the NSR instruction set. Instead, memory 
addresses are computed and sent to the Memory Interface 
which processes the requests and queues up the results. An 
LDA instruction is exactly like an ADD instruction with 
the result also sent to the Memory Interface as an address 
to load from. The result of an STA instruction is likewise 
considered an address in which to store data.

The programmer manipulates data to and from the mem­
ory by accessing register Rl, a special register which is ac­
tually connected to queues to and from the memory. When 
the program reads from register Rl (Rl is the source reg­
ister for some operation) the result is data from memory 
out of the Load Data Queue (LDQ), and when the pro­
gram stores into register Rl (Rl is the destination register 
of some operation), that data gets queued up to be stored 
into memory through the Store Data Queue (SDQ). These 
queues and another queue for the addresses (AQ) are shown 
in Figure 6.

The Memory Interface uses the information in these 
queues to perform memory cycles. When a load address 
is at the head of the AQ, a read cycle is initiated and the 
resulting data are placed in the LDQ. When a store address 
is at the head of the AQ, and there are data at the head 
of the SDQ, a store cycle is initiated and those data are

stored to memory. Because the memory operations are de­
coupled, several requests may be queued before they are 
needed. For example, by placing an LDA instruction sev­
eral instructions in advance of the instruction that requires 
the memory contents, the memory access latency is hidden. 
Again, this is similar to delayed loads with the advantage 
that any number (including zero) instructions may be exe­
cuted between the initiation of the load and the use of the 
loaded data.

Note that each time an instruction uses register Rl as a 
source, it dequeues one word from the LDQ. This means 
that a different value may be received each time Rl is 
accessed. For example, if two LDA instructions have been 
issued previously, then the instruction ADD R2,R1,R1 will 
add the two values loaded from memory and store the result 
in R2. In fact, if an address has been queued with an STA 
instruction, the instruction ADD R1,R1,R1 will add two 
values from memory and store the result back to another 
memory location.

Interleaved STA and LDA instructions may be used 
without concern. Although the LDQ and SDQ are inde­
pendent, there is only one Address Queue. In addition 
to enqueuing the address, a bit is enqueued which indi­
cates whether the address is for a write or read operation. 
By sharing the AQ, read-after-write hazards are avoided. 
However, the unwary programmer can easily deadlock the 
NSR processor by issuing an instruction that uses Rl as 
a source before queuing up an address using an LDA in­
struction. The processor will stop and wait for the result 
from memory that will never arrive. Note that it is a simple 
matter for a compiler to avoid problems of this sort.

3.2 NSR Functional Units

Details of the individual blocks of the NSR are as fol­
lows:

Instruction Fetch The Instruction Fetch unit reads in­
structions from the instruction memory (IMem) and 
passes them to the Instruction Decode unit. It also 
holds the program counter (PC), and therefore pro­
cesses branch and jump instructions directly. Jump 
addresses are generated in the Execute unit and passed 
to the Instruction Fetch unit through a single-place 
FIFO queue. Condition codes are likewise computed 
in the Execute unit and passed to the Instruction Fetch 
unit through a FIFO queue, this time 8 places deep.

Instruction Decode The Instruction Decode unit takes the 
instruction from the Instruction Fetch unit (through a 
FIFO queue) and decodes information for both the 
Register File and Execute units. The Register File 
receives register address information, and the Execute 
unit receives decoded instruction bits.
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Execute Unit The Execute unit receives its instructions 
in pre-decoded form from the Instruction Decoder. 
It uses that information, and the necessary operands 
from the Register File, to produce a result. This result 
can be routed back to the Register File, to the Memory 
unit, or, in the case of computing a jump address or a 
condition code, to the Instruction Fetch unit.
The Execute unit uses a carry-completion-sensing 
adder in its ALU [3]. This form of adder senses when 
the addition is complete by looking at the carries at 
each stage of the adder and then generates a com­
pletion signal. This allows the time to complete an 
addition to depend on the data being added. A sim­
ple ripple-carry version of this adder will complete 
quickly on average and only slow down in the rare 
case that the carry must ripple through many of the 
bits. Because the NSR is self-timed, such variations 
in processing speed are not only handled gracefully, 
but encouraged as they allow the machine to run closer 
to average case speed than worst case speed.

Register File The Register File receives register address 
information from the Instruction Decoder. It passes 
operands to the Execute unit and receives results from 
the Execute unit. It also receives data from the Mem­
ory Interface through the Load Data Queue (LDQ). 
Data loaded from the data memory (DMem) are avail­
able by reading a special register, RI, in the Register 
File. When this register is accessed, the Register File 
requests data from the Memory unit. Data written 
to RI are sent to the Store Data Queue (SDQ) in the 
Memory Interface to be stored in data memory.
To prevent write-after-read hazards in the Register 
File, each register has a single tag bit that tells when 
a write is pending on that register. Consider the in­
struction sequence ADD R2,R3,R4 followed directly 
by SUB R5,R6,R2. Because there are queues between 
the RF and EX units, it would be possible for the old 
value in register R2 to be queued up as an argument 
to the SUB instruction before the result of the ADD 
instruction is written back to the Register File. To 
prevent this, a bit is set for each destination address 
seen by the Register File. A register may not be read 
as long as this bit is set.

Memory Interface The Memory Interface to the NSR 
contains the FIFO queues shown in Figure 6. The 
LDA and SDA instructions queue up addresses into 
an Address Queue (AQ), and the data to be loaded or 
stored is also queued up by reading or writing to a 
special register. When the Memory Interface has both 
an address, and, in the case of a write, the necessary 
data, a memory access is initiated. If the operation

Table 1: NSR FPGA Implementation

System Piece Chips Used
Logic

Modules
Percent

Utilization
Instruction Fetch 1 Actel 1020A 547 100%
Instruction Decode 1 Actel 1010A 287 97%
Execute 1 Actel 1020A 518 95%
Register File 2 Actel 1020A 1076 98%
Memory Interface 2 Actel 101OA 554 94%

is a load, the data from memory is queued up and is 
available by reading a special register. This memory 
queue organization is similar to the WM machine [17], 
and the PIPE processor [9]. Our version is shown in 
Figure 6.

4 NSR FPGA Implementation

The processes that implement the separate pieces of the 
prototypeNSR processor are each implemented using Actel 
FPGAs. The two-phase transition control modules and 
bundled data modules have been assembled from a library 
of macros designed to be used with the Actel parts [2, 1], 
The individual units of the NSR are designed to behave 
as pipeline stages that also process the information that 
flows through them [4, 3]. These parts were designed and 
implemented by students in a graduate seminar on VLSI 
architecture using the Workview suite of schematic capture 
and simulation tools from ViewLogic.

The resulting FPGAs have been assembled as a wire- 
wrapped prototype for testing and evaluation. The number 
of Actel FPGA chips used to implement each of the parts 
of the NSR and the utilization of those chips are shown in 
Table 1. The NSR processor is connected to a standard PC 
to allow programs to be loaded into the NSR’s memory and 
data to be retrieved to the PC for analysis.

Although the 16-bit prototype of the NSR processor has
16 general purpose registers, there was not enough space 
on the FPGAs to implement all of these registers. Register 
RO is already defined to be tied to 0, and for the FPGA 
prototype, register R14 is tied to 1 and register R15 is tied 
to -1. Recall that register RI is actually a special purpose 
register that acts as the interface to the memory. This leaves 
registers R2-R13 as general purpose 16-bit registers.

Because the entire processor is self-timed, stopping at 
any stage of the execution is possible simply by delaying 
a control transition. To use this feature as an aid in testing 
the machine, we installed switches that block the outgoing 
Req signal from each pipeline stage of the NSR processor. 
We also installed lights on the Req and Ack signals between 
each stage. This allows us to hold up instructions at the 
output of any stage, or to single-step instructions through
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the machine while monitoring the state of the communica­
tion at each bundled data interface. This turned out to be 
quite useful during debugging of the prototype.

Memory presented another problem. Because the pro­
cessor is self-timed, it expects to send out a memory request, 
and receive and acknowledge when the data is available. 
Commercial memory chips unfortunately do not provide 
such an acknowledge signal. We use digital delay chips 
to delay the outgoing request transition long enough to 
account for the delay through the memory chips. This 
delayed request becomes the acknowledge to the NSR pro­
cessor. This allows us to use standard static RAM chips in 
the NSR prototype.

The FPGAs for the prototype were finished in Autumn 
Quarter 1991. The prototype board was wire-wrapped in 
Winter Quarter 1992, and the processor was assembled, 
tested, and debugged in the first part of Spring Quarter
1992. The NSR prototype is fully functional and test 
programs are now being written and run to evaluate the 
architecture. Performance results are difficult to express 
because the number of instructions per second will depend 
on the mix of instructions being executed. Preliminary re­
sults for this FPGA-based prototype indicate that the best 
case speed is on the order of 1.3 MIPS, although this is a 
rather meaningless performance metric. The FPGAs them­
selves are major culprits in the relatively slow instruction 
times. Measurements indicate that a 16-bit addition (from 
the time the operands are presented at the input to the chip, 
until the completion acknowledgment is generated as the 
chip output) takes between 225ns and 320ns depending on 
the length of the carry in the adder. This time is not com­
pletely due to the adder as it includes the delay of latching 
the input data, completing the addition, and latching the 
result in the output register.

5 Conclusions

Using a library of self-timed modules, a prototype of a 
self-timed general purpose processor was constructed. Fur­
ther details about the prototype may be found in another 
document [14], We are very pleased with the results of 
this work and plan to continue to investigate the poten­
tial of large self-timed systems. This processor has many 
novel features and the FPGA implementation is being used 
to gain experience with the architecture before starting to 
build a larger 32-bit version of the processor in semicus­
tom CMOS. Major additions to the next version of this 
processor, in addition to the increase in word width, will 
include an interrupt structure, and I/O subsystems to allow 
the processor to communicate with other, more standard, 
peripheral devices.

We have found that field programmable gate arrays are 
an excellent medium for fast inexpensive system prototyp­
ing provided the necessary circuit primitives can be imple­
mented. The Actel FPGA, and the self-timed library, have 
proven to be a very useful and flexible tool.
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