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Abstract
Obtaining high quality images in MR is desirable not 
only for accurate visual assessment but also for 
automatic processing to extract clinically relevant 
parameters. Filtering-based techniques are extremely 
useful for reducing artifacts caused due to 
undersampling o f  k-space (to reduce scan lime). The 
recently proposed Non-Local Means (NLM) filtering 
method offers a promising means to denoise images. 
Compared to most previous approaches, NLM is 
based on a more realistic model o f  images, which 
results in little loss o f  infonnation while removing the 
noise. Here we extend the NLM method for A4R image 
reconstruction from undersampled k-space data. The 
method is applied on T1-weighted images o f  the breast 
and T2-weighted anatomical brain images. Results 
show that NLM  offers a promising method that can be 
used for accelerating A4R data acquisitions.

1. Introduction
Image quality and high signal to noise ratio (SNR) arc 
always sought in MRI for better visual assessment and 
accuratc quantification of clinical parameters. The 
inherent low signal level in MRI and the desire to 
acquirc images rapidly motivates the use of post­
processing methods for obtaining better images. A 
number of filtering tcchniqucs have been proposed and 
have played a crucial role in improving image quality 
in eases when k-spacc data were fully sampled (for 
removing noise) as well as when undcrsamplcd (in 
order to rcducc the scan time).

When k-spacc data arc undcrsamplcd, artifacts 
arising due to violation of Nyquist criterion can also 
be resolved using filtering tcchniqucs. The UNFOLD 
method for dynamic imaging [1,2] uses a temporal low 
pass filter to remove the side lobes at the Nyquist 
frcqucncics arising from interleaved undcrsampling. In 
order to obtain even higher acceleration factors the k-t 
BLAST method based on a Wiener filter approach was 
proposed [3], The method uses training data to capmrc 
the spatio-temporal characteristics of dynamic images 
and designs a filter to cffcctivcly resolve the artifacts 
in the undcrsamplcd acquisition. More rcccntly non-
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linear Total Variation (TV) filtering method [4] has 
been extended to remove the artifacts from 
undcrsampling. In this approach, instead of preserving 
fidelity to the entire image as in standard image 
denoising [4], data fidelity is preserved only at the 
sampled locations in k-spacc while minimizing the 
Z^norm of the gradients of the signal intensities. This 
method fits in the mathematical framework of 
comprcsscd sensing, which suggests cxact 
reconstructions of a sparse signal from incomplete 
Fourier data can be possible by minimizing its 
norm [5,6]. The method was applied to accclcrating a 
number of dynamic and static MR imaging tcchniqucs 
[7-9], However a limitation of the TV approach is that 
fine strucmrcs in images can be lost or have poor 
contrast [8].

Rcccntly a Non-Local Means denoising method 
was proposed by Baudcs ct al [10], which is based on 
averaging similar pixels in the image by exploiting the 
natural redundancy in images. At the same time, an 
alternative approach based on a statistical framework, 
unsupcrviscd information-thcorctic adaptive filtering 
(UINTA), was introduced [11,12], These methods 
produced statc-of-thc-art denoising results on a wide 
variety of namrally occurring images that have a lot of 
tcxmrc. NLM tcchniquc was adapted and applied to 
dcnoisc simulated and acftial 2D/3D brain MR images 
[13, 14] and also extended to simultaneously use 
information from multi-componcnt T1-weighted, T2- 
wcightcd and proton density images of the brain for 
improved denoising of cach individual image [15], 
Unlike its previous MR applications for image 
denoising, here wc extend the method to do MR image 
reconstruction from undcrsamplcd k-spacc data. The 
approach is tested on in-vivo MR data of perfusion of 
breast and anatomical brain.

2. Methods

2.1. Non-Local Means

In the NLM algorithm, cach pixel of interest p  in the 
given image m  is dcnoiscd by computing a weighted 
average of pixels that arc not ncccssarily spatially 
local to p. The filtered image, in is given by



_  . I.qew in(p)w (p,q)m (q)
m (p ) =  w -----—  -  (1 )

Z^q€Win(p) w lPi H)

where W in {p ) is a spatial search window around pixel 
p  whose pixels are used for computing the weighted 
mean. The weights, w (p ,q ) are computed based on 
the amount of similarity in spatial neighborhoods 
according to
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where d (p ,q )  is the Gaussian weighted h2 norm 
distance between the neighborhoods Np and Nq around 
pixels p  and q respectively within W in (p). h is the 
filtering parameter which controls decay of the 
weights. In essence a pixel that is more similar to the 
pixel of interest in terms of spatial neighborhoods 
receives higher weight. In order to avoid 
overweighting of the pixel p, w (p ,p )  is chosen as the 
maximum of the weights computed for other pixels, 
rather than 1.

2.2 MR image reconstruction

When k-space data are undersampled, the resulting 
artifacts can be resolved basing on the above filter by 
minimizing the functional,
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In the above expression, E is the forward modeling 
operator for the image estimate (m) which computes 
its Fourier transform at the k-space sampling locations 
to match the acquired data, d. Np and Nqare 
neighborhoods around pixels p  and q respectively that 
are not necessarily same as Np and Nq. The 
minimization term penalizes the weighted h2 norm 
distance between neighborhoods in the images. This is 
in contrast to the TV term, which penalizes L1 norm of 
the local intensity gradients. Motivation for using 
such a non-local term stems from the fact that images 
in general have redundancies in terms of 
neighborhoods rather than local/individual pixels. 
Image reconstruction is performed using an alternating 
minimization scheme in a POCS framework [16-18]. 
In each iteration, the complex image estimate is 
projected on to the data fidelity term and minimization 
of the neighborhood penalty term is performed. In 
order to simplify computation of the minimization 
term and its derivative, we make two assumptions (i) 
Nq represents a 1X1 neighborhood for pixel q and (ii) 
only one sub-iteration of the penalty term is done with 
constant pre-determined weights. With these 
assumptions, minimization of the penalty functional is 
equivalent to applying the NLM filter in Eqn. ( l ) o n m

as was shown in [19], The above simplified 
framework favors a reconstructed image such that 
each pixel in it is similar to a larger neighborhood of 
pixels with Gaussian weighting while ensuring data 
consistency. The steps in the reconstruction algorithm 
are outlined below.

(i) Choose an initial guess: m°
(ii) Project the current image estimate on-to the data 
consistency term: m^ata =  m n +  E '(d  — Em n), E' is 
the adjoint operator of E
(iii) Compute weights w (p ,q ) according to Eqn. (2) 
using m%a ta .
(iv) Minimize the neighborhood term by applying 
once NLM separately on the real and imaginary parts 
of current complex image estimate using weights from 
(iii): =  NLM(m%ata)
(v) Update the image estimate: m n+1 =  m n +  
a(m^jLM — m n), a  is the step size.

Steps (ii)-(v) are repeated until the difference between 
new image estimate, m n+1 and current image m n is 
below a certain threshold or a certain maximum 
number of iterations (500) is reached. The 
reconstruction parameters were chosen as W in (p ) =  
7X7, h =  0.5a, Np =  Nq =  5X5, a  =  0.1, m° was 
chosen as the inverse Fourier transform of 
undersampled data.

A similar type of approach but using a bilateral 
filter was proposed recently [20]. It was reported that 
using a bilateral filter fits in as a homotopic 
approximation of the L0 norm and results in sparse 
solutions. The method was tested on simulated 
phantom and in-vivo MR images and results were 
similar to those obtained when using an Lx norm/TV 
approach. The approach here is built on a more 
realistic NLM based model for MR images and results 
in improved reconstructions over Ll norm approach.

2.3. Data acquisition

Fully sampled Cartesian k-space data of TI-weighted 
breast images (TR=2.35 ms, TE=0.99 ms, flip 
angle=10°, 3D gradient echo saturation recovery 
sequence) and of the brain (TR=3730 ms, TE=105 ms, 
slice thickness=5mm, 2D spin echo sequence) were 
acquired on Siemens 1.5T scanners. The data was 
undersampled offline by a factor of two (R=2) to 
simulate an accelerated acquisition. A variable density 
random sampling scheme was used in which 13 
contiguous central k-space phase encoding lines were 
kept and remaining lines were discarded or kept in a 
random fashion. For dynamic breast data since the 
data was in 3D k-space, a ID Inverse Fourier 
Transform (1FT) was first applied and each slice and 
each time frame was processed separately.

3. Results
Figures 1 and 2 show the results on breast and brain 
datasets respectively. A relatively noisy coil was
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chosen for breast data in order test the method's 
robustness to reconstruction. Figures lc and 2c show 
vastly improved quality over Figures lb and 2b in 
terms of removing the artifacts. For comparison we 
show the images obtained from R=2 data using the Lt 
norm/TV approach [7-9], Iterative gradient descent 
was used for TV reconstruction as described in [9], 
While the images in Figures Id and 2d have reduced 
artifacts, overall they have lower fidelity to images 
from fully sampled data and higher residual ghosting 
as compared to Figures lc and 2c respectively. For 
example the smaller tumor in the breast image is better 
delineated with NLM approach and the difference 
image for NLM has less defined circumference of the 
breast as compared to TV method. Sulcal CSF

structures in grey matter in the brain image are 
smudged and are blockier with TV reconstruction as 
shown in the zoomed images. The RMS error for the 
LI reconstruction was higher than that for NLM 
reconstruction by 17% for breast image and by 21% 
for brain image. SNR index was also computed by 
dividing mean signal from a uniform region in the 
image with the standard deviation of noise computed 
from a region in the background. Same regions were 
used for all the methods. While the LI method had 
higher SNR than original fully sampled image for 
breast data, NLM reconstruction had 22% higher SNR 
than the LI approach. For the brain image NLM had 
20% higher SNR than LI reconstruction.

Figure 1. Single coil images of a sagittal 
slice of a human breast. One time point 
from the dynamic contrast enhanced T1- 
weighted sequence is shown. Arrows 
point to tumors in the image, (a). Image 
obtained from fully sampled k-space data 
by using IFT. (b-d). I FT, NLM and TV 
reconstructions from R=2 data 
respectively, (e-f) Difference images 
between (c-a) and (d-a) respectively.

Figure 2. Images of an axial slice of 
an in-vivo human brain, (a-d) Same 
as in caption for Figure 1. (e,f). 
Zoomed versions of (c,d) respectively 
around transverse sinus region 
showing structures in the grey 
matter.
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4. Discussion
The results show that the NLM framework can be used 
to improve the image reconstruction significantly 
when the data are undersampled. Unlike the linear 
approaches or the non-linear methods that use local 
information like signal intensity gradients, NLM uses 
information from a larger neighborhood and results in 
better artifact reduction. We note that the framework 
proposed here can be extended to dynamic MR 
imaging situations by using a temporal NLM 
constraint similar to the approach in [9],

4.1 Param eter Choice

As with most iterative reconstruction methods, 
choosing optimal parameters is important to obtain 
good results - choosing a large h results in blurry 
images while the artifacts can be exacerbated when h 
is too small. Parameters W in (p ) and Np depend on 
image resolution and choosing a very large W in (p ) 
may not be optimal as it results in using pixels that are 
not similar to pixel of interest even though their 
weights are small. Choosing a large Np results in 
finding fewer similar neighborhoods and can result in 
poor artifact suppression. We found that empirically 
determined set of parameters gave similar results for 
datasets within the same class.

4.2. Computation Time

The NLM approach is a computationally intensive 
algorithm but allows for parallel implementation on 
multi-core processors which can offer significant 
speed ups. For example with an efficient parallel 
implementation on a two core 2.5 Ghz processor in 
Matlab, it took about 0.5 secs for steps (iii, iv) above 
for the breast data (104X80). Methods proposed in 
[21, 22] can also be used to further speed up and 
improve the results.

5. Conclusion

Non-local means offers a promising method to 
improve MR image reconstruction from undersampled 
k-space data. The method has great potential to 
overcome limitations of traditional reconstruction 
methods for accelerating data acquisitions even when 
the original data is noisy.
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