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ABSTRACT 

This paper introduces an adaptive filter 
structure that requires zero mUltiplications for 
its implementations. The primary input signals 
are quantized using DPCM and the DPCM outputs are 
processed by the adaptive filter. The filter 
coefficients are updated using the sign 
algorithm. We show that if the parameters are 
chosen properly, hardware implementation of this 
filter structure requires no multipliers. Under 
the assumption that the signals are zero mean, 
wide-sense stationary, and Gaussian random 
processes, we derive theoretical results for the 
mean and mean-squared behavior of the filter. A 
simulation example is presented that shows very 
good match between theoretical and empirical 
results. 

I. INTRODUCTION 

Time invariant digital FIR filters requiring 
zero multiplications for their implementation were 
introduced by Peled and Liu [7] employing delta 
modulation techniques. Lee and Un [3] have 
studied the properties of such filters. Lee, Un 
and Lee [4] recently introduced an adaptive filter 
structure that processes a differentially pulse 
code modulated (DPCM) primary input Signal. They 
used the popular least mean squared (LMS) 
algorithm [12] to update the coefficients of their 
filter and therefore requires N multiplications (N 
is the order of the filter) every time the 
coefficients are updated. The purpose of this 
paper is to introduce and study a new adaptive 
filter structure that requires no multiplications 
for its implementation. The structure is similar 
to that of Lee, Un and Lee [4], but ell'ploys the 
sign algorithm (SA) [5] for updating the filter 
coefficients, thereby eliminating the need for 
multiplications for its implementation. 

Consider the FIR adaptive filtering problem 
of estimating the desired sequence den) using the 
primary input vector sequence X(n). In this 
paper, we consider the single channel case, where 
the input vector X(n) is formed by n most recent 
samples of the input sequence x(n), Le., XT(n) = 
{x(n), x(n-l, ••• x(n-N+l)}. Let H(n) denote the 

N-vector of adaptive filter coefficients at time 
n. Then the following set of equations describe 
the multiplication-free adaptive digital filter 
(MADF) that we will investigate in this paper. 

X(n) = BX(n-l) 
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(1) 

~(n) = X(n) - X(n) 

B(n) " Q {~(n)} 

(2) 

(3) 

where Q{.} is the vector consisting of quantized 
values of elements of e(n). We employ uniform 
quantization here and- the quantization step 
size t. is a (possibly negative) integer power of 
two, 

X(n) = X(n) + B(n) (4) 

fen) = HT(n) B(n) (5) 

g(n) = g(n) + fen) (6) 

g(n) = Bg(n-l) (7) 

e(n) den) - g(n) (8) 
and 

H(n+l) lI(n) + II X(n) sign {e(n)} • (9) 

The structure is depicted in Fig. 1. In Eq. 9, 

sign {e(n)} L: e(n) < 0 (l0) 

e(n) .. ° 

If in Eqs. 1-10, we choose B and II to be negative 
integer powers of two (or 1 - a power of two), we 
can see that the implementation of MADF requires 
multiplications only to compute fen) in Eq. 5. 
However, since the quantization step size t. is 
also an integer power of two, each multiplication 
in Eq. 5 can be done by a very few number of 
shifts and adds, as long as the number of 
quantization levels are relatively small. For 
example, if the number of quantization levels are 
5 or less (-2t., -t., 0, t., 2t.), each multiplication 
can be done using a single shift. Similarly, for 
up to 13 levels ranging from -6t. to 6t., each 
Multiplication can be done by at most two shifts 
and one addition operation. Thus, we can see that 
we have a system that needs practically no 
multipliers at all for its implementation. 
It is easy to show 

g(n) = I?(n) )(n) - II u(n) (11) 
where 

u(n) S[u(n-l) + XT(n-l) X(n-l) sign {e(n-l)}]. 
(12) 

From Eq. 11 we can see that for small values of II 
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and small reconstruction errors, our multiplier
free implementation is a good approximation to the 
direct implementation of the filter. 

II. ANALYSIS OF THE MADF 

To make the analysis mathematically 
tractable, we need to make several simplifying 
assumptions. They are summarized below. 

1. The primary input sequence X(n), the 
reconstructed sequence X(n) and the desired output 
sequence d(n) are all jointly wide sense 
stationary, zero mean, Gaussian random processes. 

2. The reconstruction error vector n(n) = 
X(n) - X(n) is a ~ro mean white process with 
covariance matrix a I. Furthermore n(n) and X(n) 
are mutually uncorr'klated. We will also assume 
that the e1.emel\ts of n(n) are uniformlY distri
buted in [- 2' 2) so that 

2 6. 2 
an = IT (13) 

3. In inputs {X(n), X(n), d(n)} are uncor
related for different values of time. 

4. The error sequ~ce e(n) is zero mean and 
Gaussian with variance a I (n) conditioned on the 
coefficient vector H(n). e Hecause of the presence 
of 1.1 u(n) in the error sequence, its conditional 
probability distribution function is non
Gaussian. However, for small values of 1.1, the 
deviations from Gaussian distribution is very 
small. Moreover, the variations in the statistics 
of H(n) are sm!ll enough so that the conditional 
expectation E{e (n)IH(n)} can b2 aPrroximated as 
the unconditional expectation E{e (n) • 

Taking the statistical expectation of both 
sides of Eq. 9, we get 

E{H(n+I)} = E{H(n)} + 1.1 E{X(n) sign {e(n)}}. (14) 

Since both X(n) and e(n) are 
mean and Gaussian, we can 
expectation on the right-hand 

assumed to be zero 
write the ~econd 

side of Eq. 14 as 
[2) 

E{x(n) sign e(n)} 

Now, 

E{X(n) e(n)} 

E{E{X(n) sirn {e(n)} IH(n)}} 

E{X(n) e(n)} E{ le(n)1 IH(n)} 

E{e
2

(n) IH(n)} 
(lSa) 

= a 1 ( ) E{X(n) e(n)}, 
rr aelH n (ISb) 

.. If a ~n) E {X(n) e(n)} 
e (lSc) 

E{X(n) [d(n) 

+ 1.1 u(n)]} 

P - R E{H(n)} 

~T 
- x: (n) H(n) 

(16a) 

(16b) 

where R is the autocorrelation matrix of X(n) and 
P is the cross-correlation vector of X(n) and 

d(n). 
In deriving Eg. 16, we have made use of the 

uncorrelated input signals assumption, which is 
turn implies that X(n) and H(n) are uncorrelated 
and also that X(n) and u(n) are uncorrelated. In 
addition, we have also made use of the fact that 
the recons truction error vector n (n) is uncorre
lated with X(n). Using Eq. 14-16 and substituting 
V(n) + Hopt for H(n), we get 

E{V(n+l)} E{V(n)} (17) 

where I denotes the N x N identity matrix. It is 
easy to show that the above system converges if 

I21i a (n) 
o < 1.1 < _-:->._e __ 

max 
(18) 

for all n. A 
condition can be 
rr:. in Eq. 18. mln 

more conservative but simpler 
obtained by replacing ae(n) by 

This will give 

0<1.1 (19) 

as a sufficient condition for convergence of the 
mean behavior of the adaptive filter coeffi
cients. In Eq. 18 and 19, >. denotes the 
maximum eigenvalue of the autocoPllIation matrix 
R, and if convergence does occur, 

-1 
lim E{H(n)} = R P = Hopt 
n+oo 

(20) 

To complete the analysis of the MADF we need 
to dev.elop an expression for a (n) which in turn 
will require us to develop ~n expression for 
K(n). This is done next. 

It is straightforward to show that 

a~(n) = E{e 2 (n)} = ~min + tr{R K(n)} + 1.1
2 

E{u
2

(n)} 

+ a2 {UH n2 + 2 H
opt 

E{V(n)} + tr {K(n)}}. 
n opt (21) 

where 
{ 

2 T 
~. = E d (n)} - H P 
mln opt 

(22) 

is the minimum mean-squared es tima tion error. l-Ie 
can see from Eq. 21 that the steady state, mean 
squared error will be larger than the usual 

2 {2} 2 { n
2 

~ + tr{R K(oo)} by 1.1 E u (n) + an IHopt min ss . 
+ tr{K(oo)}}. By properly designing the MADF, ln 
many applications we can assure that th{S2 eX~fa 
error is small compared with ~mi2 (Ess u (n 

is the steady-state value of E{u (n)}). NOW, 
from Eq. 12 and using. the uncorrelatedness 

assumption, 

F{u 2 (n)} = 82 [E{u
2

(n-1)} 

+ E{XT(n-l) X(n-1) xTn-l) X (n-O}]. 
(23) 



Even though assuming that u(n) and XT(n)X(n) are 
uncorrelated is gross, the effect of this 
assumption on the overall mean squared error 
calcul~tion is 2very small since the depende~ce 
of E{ u (n)} on 0 (n) is only proportional to II • 
The fourth orde~ expectation in Eq. 23 can be 
simplified using the Gaussian assumption and one 
can easily show that 

E{xT(n) X(n) XT(n) X(n)} = tr2{R} 

+ tr{R(R + O~ I)} + nRn~. (24) 

In Eq. 24 11 RII ~ is the Frobenuis norm of .the matrix 
R with elements ri,j given by 

nRII~ = I r~,j. 
i,j 

(25) 

In the limit, E{u2 (n)} will converge to 

2 62 
lim E{u (n)} = --2 
n+oo 1-6 

+ tr R(R + O~Il 
(26) 

A recursive expression for K(n) is given next. 
Details of the derivation can be found in [6]. 

K(n+I) = K(n) + 112R - ~ ~ ___ I ___ [R K(n) 
11 0e(n) 

+ K(n) R] (27) 

By looking at the individual elements of the 
matrix Eq. 27 it is very easy to show that the 
system converges if II satisfies at every time (see 
[5] for similar derivations) 

If °e(n) 
0<11 < .;....=. .... A~

max 
(28) 

However, 0 (n). depends on K(n). A sufficient and 
simpler co~di tionfor mean-squared convergence of 
the MADF is 

o < II < /fc: 
A 
max 

(29) 

Let K(oo) and 02 (00) denote the steady-state 
e

2 values of K(n) and 0 (n). (Note that if K(n) 
2 e 

converges, so does 0e(n». Some manipulations of 
(21) and (27) will g~ve the steady-state values 

(30) 

and 

(31) 

where 
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and 

y = ~ i + i E {u2 (n)} + (i {IIH 112}. (33) m n ss n opt 

Solving for 0e(oo) in Eq. 31 and retaining 
the positive root, we get 

0e{OO) = a + 0 34) 

By substituting for a and y in Eq. 2 34, 
squaring and neglecting all terms involving II , we 
get an approximate expression for the steady-state 
mean-squared estimation error as 

(35) 
Remarks 

1. Comparing this result with that for the 
sign algorithm [5], we can see that the recon
struction error in DPCM produces additional excess 
mean-squared estimation error in the MADF. How
ever, in many applicat ions of interes t, the mini
mum mean-squared error ~min will be fairly larfe 
compared with the reconstruction error power 0 
and we can design the MADF such that the overa'll 
performance of tbe system is still very good. 

2. The choices of quantization step 
size ~ and the predictor coefficient 6 are very 
important in the performance of the MAnF. In our 
work we optimized these two parameters 
individually. Details of this aspect may be found 
in [1]. 

3. For the MADF to work well, the input 
signal must be sufficiently correlated for small 
lags. Otherwise, the performances of the linear 
predictor and the quantizer will suffer. However, 
if we use a relatively large number of Quantiza
tion levels, fairly small amounts of oversampling 
will produce adequate resul ts. Our experiments 
have indicated that if we use 13 quantization 
levels and sample the input sequences at twice the 
Nyquist rate, signal-to-reconstruction noise 
ratios around 20 dB can be obtained. 

III. A SIMULATION EXAMPLE 

For our experiments, we chose a fourth-order 
autoregressive signal described by 

x(n) 1.79 x(n-l) - 1.9425 x(n-2) + 1.27 x(n-3) 

- 0.5 x(n-4) + 0.4 ~(n) (36) 

where ~(n) is a zero mean, white, Gaussian signal 
wi th uni t variance. The MADF was opera ted as a 
fourth-order linear predictor. Note that the 
ratio of the maximum and minimum eigenvalues of 
the autocorrelation matrix of the input signal is 
more than 80. The following parameters were 
selected for our system: 

6 = 0.75, 6 = 0.5 and II = 2-7 • 
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The results presented here are averaged over 
200 independent runs using 8000 data samples 
each. Figure 2b displays plots of the mean 
behavior of the third predictor coefficient 
obtained from the simulations and from the 
theoretical results. Figure 2 displays the 
corresponding second moment behavior. We can see 
that in spite of the fairlY large eigenvalue 
spread of the input correlation matrix, the 
theoretical results show fairly close match to the 
empirical results. 

IV. CONCLUSIONS 

In this paper we presented and analyzed an 
efficient algorithm for adaptive FIR filtering. 
The performance of the MADF indicates that it is a 
viable and attractive alternative to traditional 
adaptive filtering techniques, especially when the 
input signals are sufficiently lowpass. 
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Fig. 1. Block diagram of the multiplica~ion free adaptive filter. 
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Fig. 2. 

Time (n) 
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Predicted (----) and simulated (----) (a) mean and (b) mean squared 
behavior of the third coefficient (h3 (n» in the example. 


