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Abstract

Data analysis tasks a t an Ocean Observatory require 
integrative and and domain-specialized use o f  database, 
workflow, visualization systems. We describe a platform  
to support these tasks developed as part o f the cyberin­
frastructure a t the NSF Science and Technology Center 
fo r  Coastal Margin Obser\>ation and Prediction integrat­
ing a provenance-aware workflow system, 3D  visualization, 
and a remote query engine fo r  large-scale ocean circula­
tion models. We show how these disparate tools com ple­
ment each other and give examples o f  real scientific in­
sights delivered by the integrated system. We conclude that 
data management solutions fo r  eScience require this kind 
o f holistic, integrative approach, explain how our approach 
may be generalized, and recommend a broader, application- 
oriented research agenda to explore relevant architectures.

1 Introduction
Computing has led to an information explosion in all 

fields of science. Scientific inquiry is now regularly con­
ducted in silico using complex computational procedures 
assembled from loosely-coupled resources, specialized li­
braries, and services on the grid and on the web. The hetero­
geneity of data sources, analysis techniques, data products, 
and user communities make it difficult to design a system 
that is flexible enough to accommodate broad requirements 
but specialized enough to be of daily use to scientists, policy 
makers, students, and the general public.

Databases, workflow systems, and visualization tools are 
collectively crucial but individually incomplete. Databases 
provide algebraic optimization and physical data in­
dependence, but offer poor support for complex data 
types (meshes, multidimensional arrays) and are change- 
intolerant. Workflow systems are very flexible, but even 
skilled programmers have trouble operating them effec­
tively. Visualization tools are typically designed to effi­
ciently “throw” data through the graphics pipeline, but offer
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little support for data integration and manipulation.
In this paper, we argue that typical data analysis tasks 

at an Ocean Observatory require techniques from all three 
tools, sometimes domain-specialized. To support these 
tasks, we describe a platform developed as part of a collab­
orative cyberinfrastructure at the Center for Coastal Mar­
gin Observation and Prediction (CMOP) [5] integrating a 
provenance-aware workflow system, 3D visualization capa­
bilities, and a remote query engine for large-scale ocean cir­
culation models, in addition to access routines for local files 
and web services. We conclude that data management solu­
tions for eScience require this kind of holistic, integrative 
approach and recommend a broader, application-oriented 
research agenda for the community to study appropriate ar­
chitectures.
Motivation: Understanding Coastal Margins. The Cen­
ter for Coastal Margin Observation and Prediction (CMOP) 
is a multi-disciplinary institution with a mandate to trans­
form ocean science research, education, and policy leverag­
ing expertise in geochemistry, microbiology, oceanography, 
and computer science. A key enabler of the transformation 
is unfettered access to data. To this end, CMOP maintains 
the SATURN observatory: a network of heterogeneous ob­
servation platforms coupled with large-scale simulations of 
ocean circulation.

In this environment, cyberinfrastructure (the software, 
hardware, and data) serves as substrate and catalyst for ef­
fective collaboration between stakeholders: scientists, edu­
cators, students, policy makers, legislators, and the general 
public. D ata products, consisting of data delivered through 
interactive visualizations, convey scientific messages and 
are the currency of communication in this multidisciplinary 
community. For example, a research paper can often be in­
accessible to non-scientists, but a compelling, accurate, and 
well-documented data product can be understood, applied, 
and reused by nearly anyone. An important goal for com­
puter scientists in this domain, then, is to provide tools that 
augment the ability of both experts and non-experts to cre­
ate and organize data products.

At CMOP, there are two basic sources of data: simu­
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lations and observations. Simulation results are generated 
by two systems: a suite of daily forecasts targeting specific 
estuaries, and long-term hindcast databases, where the sim­
ulations are re-executed using observed data as inputs. The 
best hindcast databases predict oceanographic features with 
useful realism: the spatial, tidal, seasonal, and inter-annual 
variations of water level, currents and salinity; locations of 
estuary and plume fronts; and responses of the plume to 
wind shifts. The observational assets incorporate sensors 
for physical variables (temperature, salinity, velocity, irra- 
diance, and optical properties) with sensors for chemical 
and biological variables (oxygen, nitrate, chlorophyll) into 
a variety of fixed and mobile platforms: permanent stations, 
vertically mobile profilers, research vessels, and, soon, au­
tonomous underwater vehicles. In addition to in situ instru­
ments and platforms managed by CMOP, we ingest data 
from third-party assets over the Internet, including remote 
sensing platforms such as satellites and shore-based high- 
frequency radar installations.

The ocean sciences, and environmental science overall, 
are progressing into the computational and informational 
stages of domain sciences [11] and are demanding tools 
to facilitate the shift. The hallmark of this progression is 
that the rate of data acquisition begins to outpace scien­
tists’ collective ability to analyze them. In response to this 
data avalanche, we argue that environmental science has 
become crucially dependent on the advancement and suc­
cessful integration of three areas of CS research: workflow, 
databases, and visualization.
Workflow. Traditional ad-hoc data exploration using, e.g., 
Perl scripts, has serious limitations. Analysis naturally gen­
erates a variety of auxiliary digital artifacts (scripts, inter­
mediate data files, log files, data products, notes) but offer 
no support for using them to streamline analysis, investigate 
problems, compare results, or other meta-analysis activities. 
Workflow systems with integrated provenance models have 
therefore grown in popularity within the scientific commu­
nity [2,8,9,19,20,22], Workflow systems not only support 
the automation of repetitive tasks (the original focus), but 
they also systematically capture provenance information for 
derived data products [6].
Databases. Workflow systems provide a substrate in which 
to manipulate data, but do not provide logical and physical 
data independence — meaning that when the organization 
of the data changes, your program need not. Data indepen­
dence is the core salient feature of relational database man­
agement systems (RDBMS), but their success with busi­
ness data has not been transferred to the complex data types 
and complex operations of eScience. Separation between 
the logical and physical worlds opens the door to all other 
results from the database community—declarative query 
languages, transparent indexing, algebraic cost-based op­
timization, parallel query evaluation. Such techniques col-

Operator Description

bind Associate data with an existing grid.

restrict Cull cells that do not satisfy a predicate.
cross “Multiply” one gridfield by another; 

analogous to set cross product, (written 
as the infix operator <g>).

merge Combine multiple gridfields over the 
intersection of their grids.

accrete “Grow” a gridfield by incorporating 
neighboring cells.

regrid Map one gridfield onto another, aggre­
gating as needed.

fixpoint Allow recursive execution of recipes.

T able 1 . List of gridfield operators and their descriptions

lectively allow the system to fit the computation to the data 
rather than fitting the data to the computation. 
Visualization. As databases scale up, so do the average size 
of query results. For example, a few facts about ocean state 
(the latest salinity and temperature measurements from a 
single buoy) become millions of facts (time-varying fields 
of temperature and salinity from a regional forecast). Thou­
sands of pages of results for sequential browsing are not 
helpful: some form of aggregation or additional filtering 
must be applied before the returned data can be used to in­
form scientific decisions.

1.1 Data Model and Algebra
Visualization offers a different and powerful form of ag­

gregation: millions of facts are rendered into a single (in­
teractive) scene, harnessing the visual acuity of the human 
eye to convey complex scientific messages with fewer bytes. 
Visualization systems typically emphasize efficient manip­
ulation of an individual dataset. However, this mode of op­
eration does not scale with the rate of scientific data acqui­
sition encountered in practice. We can no longer afford to 
move the data to the computation by downloading a file for 
desktop visualization. Instead, we must move the computa­
tion to the data, a hallmark capability provided by the query 
engines of database systems.
Contributions. In the context of an ocean observatory, 
we present a method of integrating workflow, visualization, 
and database-style query evaluation using the VisTrails plat­
form [9,26] — a provenance-enabled workflow and visual­
ization system — augmented with remote access to a server 
powered by GridFields — an algebraic language for manip­
ulating simulation results in the physical sciences. Specifi­
cally, we show how the visual programming, change-based 
provenance, cache-oriented evaluation strategy, and built-in 
visualization features of the VisTrails workflow system can 
be integrated with algebraic optimization and remote pro­
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cessing provided by GridFields. Further, we demonstrate 
how real problems were solved using this platform, and 
show that these problems were crucially dependent on all 
three components.

2 Querying Simulation Results: GridFields
Analysis tasks at CMOP typically involve both simu­

lation output and observed sensor measurements. While 
sensor measurements usually exhibit a tabular structure 
suitable for storage and manipulation using a relational 
database, the simulation results require a different approach, 
for several reasons: First, the fundamental data model is 
one of 3D mesh (not tables) making common queries (e.g., 
interpolation and regridding) difficult to express in SQL. 
Second, explicit foreign keys can triple the storage required 
for these array-like data structures. Third, these results are 
never updated, wasting the overhead incurred by the trans­
actional guarantees that databases are known for.

In previous work, we addressed these problems by devel­
oping an algebra of gridfields for manipulating the results of 
simulations in the physical sciences, especially simulations 
involving unstructured grids [15]. Although unstructured 
grids can be modeled directly as a collection of polyhe- 
dra [13], binary representations of meshes provided greater 
flexibility and better performance [14,15].

2.1 Data Model and Algebra

The fundamental data structure of the algebra is the grid- 
field. A gridfield is a pair (G ,F ), where G is a grid  and F  
is afield. A grid is constructed from sets of cells of various 
dimension connected by an incidence relationship. We ex­
tend the concept of k-simplices to cell structures, defining 
£-cell a cell of dimension k [4], These geometric interpre­
tations of cells guide intuition, but a grid does not explicitly 
indicate its cells’ geometry.

Instead, geometry and other information is captured in 
one or more attributes', functions (represented as arrays) 
mapping cells to data values. Attributes may be associated

with cells of any dimension. For example, attributes named 
x and y  may be associated with 0-cells to represent geomet­
ric information, while an attribute named area may be asso­
ciated with the 2-cells to represent the area of the geometric 
polygon associated with the abstract, topological cell.

The core algebra consists of six operators to manipulate 
the gridfield data structure. Some gridfield operators are 
analogous to relational operators, but grid-enabled. For ex­
ample, the restrict operator filters a gridfield by removing 
cells whose bound data values do not satisfy a predicate. 
However, restrict also ensures that the output grid retains 
certain properties. Other operators are novel, such as re­
grid. The regrid operator maps data from one gridfield to 
another and then aggregates mapped data to produce one 
value per cell.

The operators in the core algebra are shown in Table 1. 
Compositions of these operators (recipes) express construc­
tions of complicated gridfields from primitive components 
or act as queries to extract smaller, simpler gridfields suit­
able for direct rendering1.

For example, Figure 1 illustrates the evolution of the grid 
structure used in the CMOP observatory [1] over different 
versions of the simulation program, simplified to two di­
mensions for clarity. The earliest grid had the form of Fig­
ure 1(a). This grid extends below the bathymetry; a dis­
tinguished value (-99) is stored for these underground posi­
tions to mark them invalid.

Each of these grids, in their full 3D form, can be suc­
cinctly expressed as gridfield expressions, as in Figure 2. 
Figure 2(a) is an illustration of the 2D horizontal grid H  
and the ID vertical V. These cross product of these two 
grids expresses a complete 3D grid. The recipes in Figure 2 
(b), (c), and (d) produce the 3D analogs of the 2D grids in 
Figure 1 (a), (b), and (c), respectively. The fact that these di­
verse situations can be expressed uniformly with GridFields 
demonstrates improved physical data independence. These

1 We avoid the term query plan to emphasize that these expressions are 
written by the programmer rather than generated by the system.
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F ig u re  3. Users collaborate to generate visualizations. 
VisTrails captures all adjustments made to a workflow, pro­
ducing provenance history that represents the workflow’s 
evolution. Derived visualizations at each step are shown at 
right.

recipes can capture the logical and physical change in the 
grid, insulating downstream programs.

2.2 Execution Model

Programmers build recipes by calling operator construc­
tors with the appropriate parameters and composing them. 
The core data structures and operators are written in C++, 
but we provide a Python interface to facilitate recipe manip­
ulation and rapid development.

A gridfield recipe can be evaluated in two ways: query 
mode and interactive mode. In query mode, applications 
construct a tree of operators and submit the tree to the grid­
field server for evaluation using the fetch operator. The 
server is free to transform the recipe prior to and during 
evaluation. Once evaluated, the results are shipped back to 
the application.

In interactive mode, the application may request the re­
sult of any operator in the tree at any time. That is, the 
programmer can construct a recipe to, say, display the aver­
age salinity for Monday, then repeatedly reparametrize the 
recipe to see the results for Tuesday, Wednesday, and Thurs­
day.

The term “mode” suggests that the programmer explic­
itly declares which mode he or she will be using. In fact, the 
situation is simple: execution proceeds in interactive mode 
except in the following circumstances: (1) The programmer 
optimizes a recipe, or (2) the recipe root is a fetch operator.

To optimize a recipe, the programmer calls the optimize 
function, passing the root operator of the recipe tree as the 
only argument. This function analyzes the recipe for oppor­
tunities for algebraic rewrites that result in a less expensive 
recipe. For example, a very common rewrite borrowed from 
relational query optimization is to commute restrict opera­

tors down the tree as far as possible. Since the restrict oper­
ator decreases the size of the gridfield, we want to evaluate 
it as early as possible to lower the memory footprint and 
reduce downstream work.

The return value from this function is a recipe different 
from the input in two ways. First, the optimize function 
may have applied algebraic optimizations, and second, the 
operators, when evaluated, may destructively update previ­
ous results. The optimized recipe is still composed of op­
erators — as opposed to having been compiled to an object 
language — but it is considered opaque to the programmer.

The fetch operator is used in a recipe as any other op­
erator. A logical noop, the fetch operator accepts an input 
operator tree and a url. When the operator is evaluated, it 
marshals the operator tree and ships it to a remote server for 
evaluation. The gridfield server receives the message, com­
piles the recipe, evaluates it, and ships the result back to the 
caller in a packed binary format. Any other fetch operators 
in the transmitted recipe are evaluated similarly, with the 
initial server acting as the client. Simple distributed eval­
uation of gridfield recipes is therefore possible. The fetch 
operator also allows simple distributed optimization: oper­
ator instances can be injected into a recipe automatically to 
balance load between client and server.

3 Provenance, Workflow, Viz: VisTrails
To integrate and visualize data, complex pipelines com­

bining multiple data sources, libraries and visualization 
tools need to be assembled. We achieved this by employ­
ing the VisTrails workflow management system. We chose 
VisTrails as our scientific workflow platform for several rea­
sons. VisTrails uniquely integrates features of both work­
flow and visualization systems. The Visualization Toolkit is 
available as a core package, providing sophisticated 3D al­
gorithms to workflow programmers. Complex 3D scenes 
can be constructed individually but analyzed collectively 
using a spreadsheet metaphor — each cell contains a sep­
arate visualization. Further, a series of related visualiza­
tions can be expressed in one operation using param eter 
explorations. Both features help users quickly navigate the 
enormous parameter space involved in 3D visualization — 
a critical challenge when entraining new users such as fish­
eries biologists. The system transparently captures all the 
steps in the pipeline design process: the provenance for both 
data products and analysis pipelines. Similar to a source 
code version control system, users can make modifications 
to analysis pipelines and check in their changes to a central 
repository. This repository becomes a sharing point, allow­
ing others to check out (and merge) these changes. VisTrails 
also provides intuitive user interfaces that allow users to ex­
plore the information in the repository, including a visual 
difference interface that allows users to compare different 
pipeline versions side by side [9]; a mechanism for query­
ing pipelines by example; and the ability to refine pipelines
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F ig u re  4. VisTrails is used to integrate the gridfields with different tools. The modules are grouped by kind. On the left, a list with 
the gridfield operators implemented as modules. The visualization generated by this workflow is shown on the right.

by analogy [24]. Figure 3 shows a version tree with dif­
ferent pipeline versions that were created in the process of 
analyzing CMOP data. Not only does this tree allow us to 
navigate through all the different versions of the pipelines, 
but it also simplifies collaborative efforts.

We integrated the GridField library into VisTrails as a 
package using the plug-in mechanism. Figure 4 illustrates a 
workflow that executes a gridfield expression, extracts data 
from a local source, requests a web service to convert the 
data to the gridfield’s coordinate system and uses VTK to 
generate 3D visualizations. The corresponding visualiza­
tion is shown on the right. The GridField package provides 
access to the operators as VisTrails modules, as shown in 
the left-hand panel of Figure 4.

The natural execution model for GridField operators in a 
workflow system is interactive mode (Section 2.2) — each 
operator is executed sequentially. However, this naive inte­
gration of the two systems precludes remote execution, al­
gebraic optimization, and efficient destructive updates. In­
stead, GridField modules are evaluated lazily, incrementally 
constructing a tree of closures rather than eagerly manipu­
lating actual data. The expression is only evaluated when 
1) the result is needed by another package (e.g., the Vi­
sualization Toolkit [17] for on-screen rendering), or 2) a 
fetch operator is encountered, in which case the expression 
is shipped to a server for evaluation.

This strategy delivers a form of logical and physical 
data independence for workflow systems: VisTrails is used 
to manage “workflow crafting” tasks by providing prove­
nance tracking and querying features, a rich visual interface, 
the visualization spreadsheet, parameter explorations, and 
more. However, the GridField system remains free to eval­

uate expressions however it sees fit: it can apply algebraic 
optimizations, ship sub-expressions to a remote server, and 
destructively update data structures in memory as necessary. 
Further, lazy evaluation provides fine-grained control over 
the VisTrails cache, which stores intermediate results to re­
duce unnecessary re-computation [3].

Figure 4 shows a workflow that executes a gridfield ex­
pression, extracts data from a local source, requests a web 
service to convert the data to the gridfield’s coordinate sys­
tem and uses VTK to generate 3D visualizations. The visu­
alization generated by this workflow is shown on the right.

Using VisTrails and the GridField Algebra, we devel­
oped two applications involving remote access to CMOP 
simulations and observational data.

4 Examples
Using VisTrails and the GridField Algebra to combine 

simulation and observational data, we were able to help 
fisheries biologists and ocean modelers realize new scien­
tific insight from existing datasets. For the modelers, we 
provided a a 3D analysis tool for simulation results in­
tended to augment or replace the 2D analysis procedures 
employed in the status quo. For the fisheries biologists 
working on the Collaborative Research on Oregon Ocean 
Salmon (CROOS) project [?], we integrated fisheries data 
with oceanographic observations and CMOP model results 
to link physical variables to the ocean ecology of fish popu­
lations in the Pacific Northwest.
Example: Simulation Skill Assessment. There are several 
potential benefits of 3D visualization in this domain: The 
physics of complex physical processes can be directly expe­
rienced in real-time rather than interpreted indirectly from 
2D plots. For example, the shape of the freshwater plume
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F ig u re  5. The source of the upstream salt flux in the River 
estuary model was elusive using 2D methods. A plane 
swept through the 3D field interactively instantly exposed 
the relevant region instantly: the tidal flats, in between the 
two river channels.

can be an indicator of the skill of an ocean circulation sim­
ulation. To ascertain shape in 2D, an ensemble of indirect 
metrics must be calculated: plume volume, surface area, 
the presence or absence of sharp fronts, etc. However, re­
playing an animation of the development of the plume bub­
ble immediately conveys the accuracy of the simulation to 
a trained oceanographer.

On the opposite side of the estuary-ocean interface, the 
salinity intrusion into the estuary is called the salt wedge 
and is a difficult feature to model accurately due to its 
nuanced and highly non-linear dependence on bathymetry, 
river discharge, and tidal influences.

Salinity intrusion length as computed by the model was 
observed to be shorter than suggested by observation. The 
typical procedure for investigating the cause is to visualize 
2D slices of the salt flux (i.e., salinity concentration multi­
plied by velocity). Locations from which to extract a slice 
are found by trial and error, informed by domain expertise. 
As an alternative, we developed an interactive 3D tool that 
calculates salt flux and allows the user to sweep a plane 
through the field arbitrarily, directly visualizing the salt flux 
vectors as barbs. The answer to the question was exposed 
immediately: the salt flux was lower than expected at the 
bottom of the river channels, but higher than expected in 
the tidal flats between the channels.

In Figure 5, the Columbia River Estuary is bounded on 
the left (West) by the ocean interface (the ocean itself is 
omitted for clarity). The cutting plane is oriented verti­
cally, parallel to the left edge of the page and extruded down 
into the page. In the lower left inset, the reader is looking 
down the mouth of the river and can see cross section de­
fined by the plane. The barbs represent residual salt flux 
vectors, colored by depth. The salt flux vectors are tidally- 
averaged over a spring neap cycle from a two-week period

in 1999. Darker barbs are near the surface of the water and 
lighter barbs in the middle and bottom. The star and dia­
mond align positions in the cross section with positions in 
the background: star indicates north channel, diamond in­
dicates south channel. The inset at right details tidal flats 
between the two channels. We can see darker surface barbs 
pointing downstream (towards left) corresponding to the di­
rection of river flow. We can also see lighter near-bottom 
barbs pointing upstream (towards right). These features in­
dicate that salt is flowing out at the surface and in at the 
bottom, which is expected considering the higher density of 
brackish water. What is unexpected is that the salt flux is 
of greater magnitude in the tidal flats between the channels 
than it is in the channels themselves. This feature was im­
mediately exposed by sweeping the plane from left to right 
against the river’s flow and watching the barbs change mag­
nitude and direction.

The shift from static 2D to interactive 3D provided in­
stant insight into the problem, even though the fundamen­
tal visualization technique was similar: arrow glyphs repre­
senting vectors on a plane.
Example: Fisheries Oceanography The continental shelf 
of Western North America is one of the most productive 
fisheries in the world. Yet, the relationship between the 
ocean environment and fish distribution, growth, and sur­
vival is understood only in general terms. Increasingly, the 
focus is on understanding the fine-scale mechanisms of fish 
ecology in the ocean. Project CROOS was founded on the 
idea that fishermen, and commercial salmon trailers in par­
ticular, could collect sample data during the normal course 
of fishing. Since 2006 they have been collecting GPS track- 
log of fishing activity and location and depth of each Chi­
nook salmon caught, along with fin clips and scales for ge­
netic stock identification (GSI) and aging. The result is a 
rich data set with high spatial and temporal specificity pre­
senting unique challenges for data visualization and analy-

The 3D visualization of fishery data combined with 
CMOP simulations of oceanographic conditions helps ex­
plore relationships between ocean conditions and fish catch 
distributions. We constructed a 3D scene by overlaying fish 
catch positions from September and October 2006 colored 
by stock of origin with streamlines of ocean current from 
the simulation data fetched using gridfields.

Figure 6 is a view from beneath the ocean surface look­
ing onshore from the shelf break, revealing the depth dis­
tribution of the fish. Inspection reveals fish throughout the 
water column, including some at the surface, signifying an 
absence of depth data, and some fish beneath the sea floor 
(not visible in this view), clearly out of bounds. Adult Chi­
nook salmon are usually associated with the sea floor un­
less environmental conditions dictate otherwise. Here we 
see there is a well-defined maximum depth for the fish that
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is some distance above the sea floor. During the time period 
these data were collected there were unusual anoxic con­
ditions near the sea floor. This visualization suggests that 
we explore the relationship between dissolved oxygen and 
Chinook vertical distribution. The anoxic “dead zone” is a 
recent feature of the nearshore ocean that is likely caused by 
new wind patterns resulting from global warming. Aided by 
these 3D visualizations, we expect to link warming, winds, 
dead zones, and fine-scale Chinook salmon distributions, 
gaining insights into the ocean ecology of these fish.

There are many other species of fish and invertebrates 
that can be sampled at fine spatial scales using adapta­
tions of the techniques developed by Project CROOS. By 
combining this information with expanded simulations, ex­
panded ocean observation, and the analytic power of 3D vi­
sualization we hope to “see” the ocean ecosystem in funda­
mentally transformative ways.

5 Related Work
Ocean observatories have received increased attention in 

recent years (c.f., [10]). One tool developed in this domain 
is the Trident Scientific Workflow Workbench for Oceanog­
raphy [2], which provides a collection of workflow activi­
ties for processing oceanographic data from netCDF files, 
relational databases, and web services. Trident interop­
erates closely with the COVE oceanographic visualization 
system [12]. We distinguish our approach by a focus on un­
structured grids, a data type for which no standard file for­
mats, database systems, or exchange protocols exist. Fur­
ther, change-based provenance leads to a variety of novel 
features [24,26].

Other workflow systems separate expression from exe­
cution in Grid environments [7,20], but none support alge­
braic optimization or allow destructive sharing of interme­
diate results. These features require a formal data model 
in which safe rewrite rules can be defined. The GridField 
system provides such a data model for a broad class of sci­
entific data types.

Gray managed unstructured grids from finite element 
simulations in materials science with Microsoft’s flagship 
SQL Server database product coupled to IBM’s OpenDX 
visualization platform [13]. Indexes provide efficient ac­
cess to data subsets, and OpenDX renders the results into a 
manipulable scene allowing inspection of non-trivial simu­
lation features such as crack propagation. However, oceano­
graphic simulation results often exhibit an array-like struc­
ture that is difficult to model efficiently in a relational 
database [15].

A different approach to distributed visualization is to 
provide access to the virtual desktop on a remote com­
puting system [16,18,23,25]. Here the data exist entirely 
on the server and only images or graphics primitives are 
transmitted across the network. Other applications, such as 
Visit [18] and Para View [21] provide a scalable visualiza-

F ig u re  6. View from beneath the ocean surface looking 
onshore from the shelf break, revealing the depth distribu­
tion of the fish. Dots represent individual salmon colored 
by stock of origin; water is colored by temperature.

tion and rendering back-end that sends images to a remote 
client.

Several systems have coupled visualization systems to 
relational databases. The Polaris project [27] provides a 
language for specifying tables of small displays based on 
the output of relational queries, especially Online Analyti­
cal Processing (OLAP) operations. These tables, however, 
do not provide 3D visualization.

6 Conclusions and Future Work
We have demonstrated how a database-style remote 

query engine optimized for scientific data can be integrated 
with a provenance-aware, visualization-capable workflow 
system to deliver new insights to scientists in a variety of 
domains. Specifically, the VisTrails system provides a col­
laboration vector for users with diverse backgrounds — 
ocean modelers, fisheries biologists, computer scientists, 
and the general public. However, workflow systems remain 
difficult to program due to physical data dependence — the 
workflow itself is responsible for every detail of data access 
and execution. By borrowing techniques from the database 
community, we have shown that it is possible to raise the 
level of abstraction by allowing the data management sub­
system the freedom to optimize and evaluate workflows in­
dependently of the workflow user interface.

There are several directions we intend to pursue in future 
work. To further improve sharing and re-use and entrain 
non-experts to use and even create new workflows, we are 
currently exploring an interface that allows the creation of 
simplified pipeline abstractions that can be rendered as fa­
miliar web interfaces. To improve integration with remote 
query systems, we are investigating techniques that can in­
telligently exploit local and remote caches and reoptimize 
accordingly.
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