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Abstract— The paper presents a novel approach for dynamic 
magnetic resonance imaging (MRI) cardiac perfusion image 
reconstruction from sparse k-space data. It formulates the 
reconstruction problem in an inverse-methods setting. Relevant 
p rior information is incorporated via a param etric model 
for the perfusion process. This wealth of p rior information 
empowers the proposed method to give high-quality recon
structions from very sparse k-space data. The paper presents 
reconstruction results using both Cartesian and radial sampling 
strategies using data simulated from a real acquisition. The 
proposed method produces high-quality reconstructions using 
14% of the k-space data. The model-based approach can 
potentially greatly benefit cardiac myocardial perfusion studies 
as well as other dynamic contrast-enhanced MRI applications 
including tum or imaging.

I. INTRODUCTION

Dynamic imaging is an important and rapidly growing 
area in magnetic resonance imaging (MRI) with profound 
implications for medical diagnosis and treatment. One such 
application is the measurement of myocardial perfusion. 
Subendocardial perfusion has recently been shown to be a 
good indicator of ischemia [1], [2], MRI has the potential 
to become a widely-used non-invasive tool for myocardial 
perfusion measurement. The high spatial resolution in MRI 
allows differentiation between subendocardial and subepicar
dial regions [3], which is not possible with clinical positron 
emission tomography or single photon emission computed 
tomography.

Dynamic contrast-enhanced (DCE) MRI, with gadolinium 
as the contrast agent, tracks the exchange of this contrast 
agent between the blood and the myocardial tissue. The 
exchange is rapid and entails sampling the kinetics of the 
contrast-agent distribution, typically, at every heartbeat [4], 
This need for high temporal resolution severely limits the 
resolution, spatial coverage, and signal-to-noise ratio (SNR) 
of current DCE-MRI acquisitions. For a reasonable field-of- 
view and resolution, complete heart coverage of about 10 
slices with a heartbeat rate of up to 100 beats per minute 
entails acquisition times of less than 50 milliseconds per 
slice. Accounting for the magnetization-preparation time, this 
translates to at most 10-25 lines of k-space for each image.

Conventional MRI reconstruction of dynamic signals ap
plies the inverse-Fourier transform to each image individually 
to produce a time series of images for every slice through
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the heart. Even with cutting-edge multi-coil methods, it 
is virtually impossible to obtain clinically useful images 
from such sparse data by independently reconstructing the 
time frames. Furthermore, even if  the images could be 
reconstructed without artifacts, the SNR would be extremely 
low because SNR is proportional to the square root o f the 
number of acquired k-space lines.

An effective strategy of dealing with sparse data is to 
incorporate prior information in the reconstruction. We pro
pose to introduce such prior information in the form of a 
parametric model for the perfusion process. In this way, we 
reduce the reconstruction task from estimating each pixel 
intensity over time to estimating only the parameters of the 
model.

The proposed model-based reconstruction method leads to 
significant improvements in SNR with very sparse k-space 
data. Moreover, the gain in SNR can be traded for fewer 
k-space samples. This can, in turn, lead to acquisitions with 
higher resolutions in space or time. The proposed method has 
the potential to greatly benefit myocardial perfusion studies 
and other DCE-MRI applications, such as tumor imaging.

II. RELATED W ORK

Over the years, researchers have presented a variety 
of methods for increasing the acquisition speed for many 
dynamic-MRI applications. Typically, speedup is achieved 
by reducing the amount of data acquired in k-space. The 
ratio of the total number of k-space lines to the number 
of lines acquired is termed the reduction fac tor , R. Cur
rent commercial systems offer cardiac perfusion imaging 
sequences that incorporate multi-coil parallel imaging, e.g. 
SENSE [1] and GRAPPA [5], and provide R  «  1.6 (24 
“autocalibration” lines around the center of k-space and every 
other line sampling (R  =  2) outside of the center). The 
TSENSE method with I{ 2 has also recently been applied 
to perfusion imaging [6].

A number of methods use, implicitly or explicitly, an 
a priori model for the perfusion process over time. For 
instance, sliding window is a data-sharing method that 
implicitly assumes slow object or contrast-agent (tracer) 
kinetics. The sliding-window strategy lends itself to both 
Cartesian [7], [8] and radial reconstruction [9], [10] schemes. 
An extension of the sliding-window approach is to use
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specific acquisition patterns to match the k-space contribu
tions o f the tim e-varying signals. For example, the time- 
resolved interpolation for contrast kinetics (TRICKS) [11], 
[12] and the block-regional interpolation scheme for k-space 
(BRISK) [13] m ethods acquire different portions o f k-space 
w ith different tem poral-sam pling rates. Similarly, UNFOLD- 
type m ethods [14], [15], [16] acquire even and odd phase 
encodes alternately in  each temporal frame. Such m ethods 
have found applications in  cardiac perfusion im aging [17], 
cardiac cine im aging [14], as well as functional M RI [14], 

Faster data acquisition is still required for myocardial 
perfusion M RI to increase spatial coverage, increase spatial 
resolution, and reduce m otion artifacts. The contributions 
in  this paper can help speedup the data-acquisition stage. 
The proposed approach poses the reconstruction problem  as 
an inverse problem. Inverse-problem approaches have found 
utility in  static M RI applications [19], [20], Inverse-problem 
m ethods have been applied to cardiac im aging [21], although 
w ithout any param etric models. Parameterized models en
code stronger prior inform ation and, hence, may have the 
ability to produce superior results.

III. A  P A R A M E T R IC  M O D E L  FO R  
C A R D IA C  P E R F U S IO N  IM A G ES

Let us assume that we have a set o f magnetic resonance 
(M R) images for each slice in  the heart, one for each time 
frame t  e  I. Each image com prises a set o f pixels x  €  I D on 
a D-dim ensional Cartesian grid. Thus, D = 2 im plies a slice 
o f data at each time t. Denote the pre-contrast M R image 
intensity at each pixel x  as IP(x).  Denote the input function 
to the heart produced by the incom ing contrast agent by C(t),  
w hich is a function o f the time t. Then the intensities g(x.  t) 
observed at pixel x  at time t  are

<i(x-1 ) =  Ip(x)  +

c ( t )  * p i ( x )  exp ^ 1 * F ( t - ,%)  *

exp exP U (H ^) )  ■ (i)
V f ^ ( x ) )

where * denotes convolution, Ff(t) denotes the discrete 
H eaviside-step function, and j  is the im aginary un it number. 
Thus, the param eter set for the model is

a  =  {I.p( x ) , $ i ( x ) ,  fr>(x), fo(x) , $, \ (x) ,  4>(x) : Va;}. (2)

We observe that (a) f h{x)  corresponds to perfusion and 
scales the input function, (b) i%(x)  and ,33(.t) describe the 
rate o f contrast agent w ashout and the time delay associated 
w ith the first exponential function, respectively, and (c) ,3,t(x) 
describes the decay rate o f the second exponential function. 
The convolution w ith the second exponential function signi
fies the dispersion o f the input signal. This model implicitly 
assumes that the phase (f>(x) in the com plex-M R image 
rem ains constant over time.

One o f the most popular techniques o f sampling the k- 
space is to sample straight lines, along the read direction, 
that follow a specific pattern. For instance, UNFOLD-type 
m ethods [14], [15], [16] acquire all even and all odd phase 
encodes alternating over time frames. The strategies in  the 
proposed m ethod significantly differ from  conventional ones. 
The first proposed sampling is sim ilar to the approach taken 
by Portniaguine et al. [21], Here, the idea is to acquire a fixed 
number o f k-space lines aligned along the read direction, but 
w ith the specific lines selected random ly in  each time frame. 
In each tim e frame, moreover, we take 4 lines from  the center 
o f the k-space. The idea behind this approach is to get the 
low-frequency com ponents in  each time frame via the central 
k-space lines, while making the high-frequency errors across 
time frames as independent as possible. Figure 1(a) shows 
such a sampling scheme for one time frame.

A  num ber o f researchers use radial acquisitions for cardiac 
cine im aging [16] and M R-angiography applications. Radial 
techniques can produce higher spatial resolution, for a given 
am ount o f scan time, as compared to Cartesian im aging [22], 
Com pared to Cartesian k-space sampling, undersam pled ra
dial k-space sampling results in  much-reduced aliasing and 
some streaking [23], Thus, the second proposed sampling 
strategy is to acquire a pattern o f equiangular radial slices 
through the center o f the k-space in each time frame, while 
rotating this acquisition pattern random ly across time frames. 
F igure 1(b) shows the radial sampling scheme for one time 
frame. Figure 2 gives an example o f artifacts from  k-space 
data sampled using the two proposed strategies. The radial 
k-space sampling retains more inform ation from  the imaged 
signal.

Reconstructions from  non-Cartesian k-space sampling, 
such as radial sampling, entail modifications to the Cartesian 
parallel-im aging methods. Recall that we define the param et
ric model for the perfusion process on the m agnitude-M R 
data, and not on the k-space data. Thus we need m ethods to

IV. K-SPACE SAM PLING SCHEM ES

(a) (b)

Fig. 1. Proposed k-space sampling strategies acquiring 14% k-space data. 
The k-space center is at the corners of the image. Black locations indicate 
acquired samples, (a) Sampling along the read direction: random lines in 
each time frame including 4 lines in each time frame passing through the 
k-space center, (b) Radial sampling: a pattern of equiangular radial lines 
through the k-space center. This pattern rotates randomly at each time frame.
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scheme by dealing directly with radial k-space data that is 
not represented on a Cartesian grid using m ethods such as 
POCSENSE [25], The key ideas in the proposed approach 
w ill, however, remain unchanged.

V. M O D E L -B A S E D  
IM A G E  R E C O N S T R U C T IO N

Let us denote the intensity at pixel x  and tim e t  in 
the reconstructed image sequence by </(n. ./•. /). which is a 
function o f the parameter set a  defined in (2). We refer to 
the entire sequence o f reconstructed images by g(a).  Let us 
denote the given sparse k-space data as </(./•. /). Let F(-)  
and F _ l (-) denote Fourier-transform and in verse-Four ier- 
transform operator, respectively. Let W ( - )  denote a reduction  
operator that zeros out those elements from the k-space 
where the data is not provided. Then we define an energy of 
the form

J ( a )  = || W F g ( a )  -  d (3)

that quantifies the discrepancy between the estim ated image 
reconstructions and the data. In a standard inverse-methods 
form ulation, the task is to find such image reconstructions 
g(a),  i.e. such an a ,  that would produce k-space data as 
close to the given data d, thereby m inim izing the energy 
J (a) .  That is

optimal argmin J(a) . (4)

We em ploy an iterative gradient-descent optim ization 
strategy, with finite forward differences. Given an estimate 
o f the parameters a n at iteration n,  we obtain

n+1 : a X
d J ( a )

■■ a X
d J ( a )  dg(a)

d a  dg

where A is the update rate. We have

dJ ( a )

d a

dg
2 F ~  ( W F g ( a )  — d).

(5)

(6)

!!ig. 2. (a) Magnitude of the Courier inverse of 1005( k-space data for 
one time frame. Magnitude of the Courier inverse of the sparse (1450 k- 
space data where samples are acquired along (b) random lines (with 4 in 
the center each time frame) (see Figure 1 (a)), and (c) equiangular radial 
lines through the center of the k-space (see Figure 1(d)). Note: the image 
intensities in (a)-(c) are scaled up so that the lower intensities in the heart 
region are visible, thereby causing the brighter regions outside the heart to 
appear white, (d), (e), and (f) show zoomed versions of images (a),(b), and 
(c), respectively, to clearly show the region around the heart (the region of 
interest).

transform data to, as well as from, the k-space domain. For 
this purpose, we can either (a) interpolate the non-Cartesian 
k-space data to a Cartesian k-space grid [24] and then rely 
on fast discrete-Fourier transform s to move data between 
the domains, or (b) form a direct functional link between 
the m agnitude-M R data on a Cartesian grid to the non
Cartesian k-space data. In this paper, for simplicity, we use 
sim ulated k-space data (sim ulated from real M RI data) on 
Cartesian-grid-discretized radial lines. We can improve this

We have found that the param eter ^ ( x )  does not hold 
significant expressive power in the model. Thus, we can 
elim inate this param eter from the model and still model 
real data accurately using the rem aining parameters. For 
simplicity, we also assume the phase <p(x) to be zero at all 
pixels in all images.

The partial derivatives o f g(a)  with respect to each o f the 
parameters in the set a  are:

dg(a,  x,  t )
d l p (x)

1,

dg(a,  x,  t ) 
d;3t (x)

d g ( a , x,  t ) 
d;3 2(x)

,3i (x)

C (t) * exp

= C(t)* 

t -  f c ( x )

m x ) ) 2

t  -  f%(x) 
M x )

(7)

UU U-r)) .  (8 )

exp t  -  >%(x) 
M x )

H(t M x ) ) ,

(9)

2
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(10)

and

M a . x , , )  _ c ( | ) i J i W

where 5(t) is the discrete delta function.

A. OBTAINING THE INPUT FUNCTION

We can derive an input function (C ( t )) from the right- 
ventricular blood pool in a pre-bolus scan [26], Only a single 
slice is required to estimate the input function and, hence, 
we can use a complete k-space acquisition. Such a pre-bolus 
approach has recently been used by several groups to provide 
accurate input functions free from saturation effects [26], 
[18], The key idea here is that the input function from the 
right ventricle can be used with ( 1) to model everything in 
the field of view. Moreover, the input function has a good 
SNR because it is an average of the time-curves taken from 
a fairly-large spatial region.

B. OBTAINING INITIAL MODEL PARAMETERS

The model-based gradient-descent optimization process 
needs an initial estimate. A gradient-descent process is prone 
to local minima and, hence, it is reasonable that we start the 
model-based optimization using an initial estimate that is 
close to the solution. We can obtain such an initial estimate 
by leveraging any current state-of-the-art methods.

In this paper, we chose an inverse-method reconstruction 
scheme that we presented in [21] to generate the initial esti
mate. The initial image estimate minimizes an energy which 
is the sum of a fidelity term and a temporal-regularization 
term:

V x : { f t ( x ) , 0 ° 2( x ) , % ( x ) }  

=  argmin
{3l(x),3-2(x),03(x)}

each pixel x,  i.e.

g*(x , t )  =  argmin || W F g  — d\ \ \
g(x, l)

V t0 111, (11)

where V t is the gradient operator along time. The second 
term is a penalty on the temporal gradient of the solution, and 
that enforces smoothness on the reconstructed time curves. 
This is the only prior information that we incorporate at this 
stage.

Using this reconstruction, we initialize l £(x)  as the aver
age of the first few time frames (e.g. first 3 out of a total of 
30 frames), i.e.

Vx : I ° (x) 1 V""**
3 ^

£ = 1 ,2 ,3

g*{x, t ) (12)

This is reasonable to do because the perfusion of the contrast 
agent starts only after the first few time frames and, thus, the 
first few images capture the same anatomical signal from the 
heart.

After estimating I ° ( x )  in this manner, we subtract this 
image from all the images in the sequence and fit a paramet
ric time-curve (using ,3i(x), lh (x ) , 3s(x)) ,  independently, at

g(a(x))  -  [g*(x) -  I2(x)

(13)

where g(a(x) )  and g*(x)  denotes the respective time curves 
at pixel x.  We use the Levenberg-Marquardt optimization 
scheme to find the optimal-fitting parameters. Thus,

(14)

forms our initial parameters estimate that we feed into the 
model-based optimization procedure described in Section V.

VI. OVERVIEW  OF THE 
RECO N STRU CTIO N  ALGORITHM

Given sparse k-space data d(x,  t) ,  the proposed reconstruc
tion algorithm proceeds as follows:

1) Obtain an initial estimate of the parameters, a 0.
a) Use any existing method to obtain a reconstruc

tion g*(x,  t).
b) V:c: fit the model to give 

{ I ° ( x ) , f f i (x ) ,P % (x ) ,0 $ ( x ) } ,  as described 
in Section V-B.

2) Given the estimate a n at iteration n, compute a 
new parameter estimate a n+1 via a gradient-descent 
scheme using finite-forward differences to minimize 
J ( a ) .

a) Compute h ( a n) =  2F - l ( W F g ( a n) -  d).
b) :

I p +1(x) = I p(x)  -  X0h ( a \ x )  ■

3 fi + 1 {x ) =  ^ { x ) - \ 1h { a ^ x ) - ^d g ( a "

32+1( x ) = j % ( x ) - \ 2h ( a n, x ) - ? $ £
jn-\-1 / 13% ( x ) -  X3h ( a n, x ) . ^

where • denotes the dot-product operator.

3) If lls(a"
-g(a" <  6 , where 6 is a small threshold,

then terminate, otherwise go to step 2.

VII. SIM ULATING CARDIAC PERFU SIO N  DATA 
FROM  REAL DATA

The parametric cardiac perfusion model assumes that the 
sequence of images is well registered and has no motion arti
facts. Here we simulate well-registered data using complete- 
k-space data from real cardiac perfusion dynamic MR im
ages. We apply an inverse-Fourier transform to this data, and 
then take the magnitude of the resulting complex number at 
each pixel. This essentially gives us a reconstruction using 
complete k-space data that does not necessarily have well- 
registered time frames. To enforce registration, we pixelwise 
fit the parametric-curve model to this magnitude data. The 
smoothness over the time-curves enforced by the parametric 
model generates fitted data that is well-registered. We use 
this fitted magnitude data, assuming a phase <p(x) of zero at 
each point, to generate simulated k-space data.

3

2
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(a) (c)

(b) (d)

Fig. 3. Magnitude of the inverse-Fourier transforms of 100% (a) original k- 
space data, and (b) simulated k-space data, (c) and (d) show zoomed versions 
of images (a) and (b), respectively, to clearly show the region around the 
heart (the region of interest).

Figure 3 shows one time frame of the inverse-Fourier- 
transform  m agnitude images produced by the original 
(100%) data and sim ulated data. The sim ulated data closely 
approxim ates the features and variations in the original data.

V III. R ESU LTS

This section gives the results of the proposed method 
on the sim ulated data com prising 29 time frames of 192 
x  144 pixels each. We perform ed two experiments using 
14% k-space data with the axis-aligned and radial sam pling 
mechanisms described in Section IV. We chose the updates 
rates conservatively: Ao =  10- 2 , Ai =  At =  A3 =  10- 5 . 
The results are not sensitive to the specific values o f these 
parameters. The model fitting to obtain the initial parameter 
estimates c>° takes about 10 m inutes for the sim ulated data 
on a standard Pentium  personal computer. Each iteration of 
the model-based gradient-descent optim ization process takes 
about a quarter minute and the process converges in about
50 iterations. Thus, the entire reconstruction process takes 
about 23 minutes for this dataset.

Figure 4 shows the reconstruction for the thirteenth time 
frame. Figure 4(a) and Figure 4(b) show that both sampling 
schemes produce visually-com parable results. However, the 
difference images in Figure 4(e) and Figure 4(f) show that 
the radial-sam pling scheme produces a reconstruction with 
better fidelity to the original signal. The root mean square

(a) (b)

Fig. 4. One time frame among the reconstructed magnitude-MR sequence 
for 14% k-space data acquired using the (a) axis-aligned sampling strategy 
(see Figure 1(a)), and (b) radial sampling strategy (see Figure 1(b)). (c) and 
(d) show zoomed versions of images (a) and (b), respectively, to clearly 
show the region around the heart (the region of interest), (e) and (f) show 
the difference images for the regions around the heart between the simulated 
data (ground truth) and the reconstructions in (a) and (b), respectively.

errors (RM SEs) for the two reconstructions, normalized with 
respect to the intensity range of the original magnitude-M R 
data, were 1.46% and 0.53%  for the axis-aligned and radial 
sampling, respectively. The RM SEs for a small rectangular 
region around the heart (see F igure 4(c) and Figure 4(d)), 
normalized to the m agnitude-M R intensity range in the 
original image in this region, were 10.18% and 1.86% for 
the axis-aligned and radial sampling, respectively.

IX . D IS C U S S IO N  A N D  C O N C L U S IO N S

The proposed reconstruction m ethod is more com puta
tionally intensive than many o f the m ethods in current use. 
W hile some low resolution rapidly reconstructed images are 
important to gauge the im m ediate success of the acquisition, 
an off-line reconstruction taking thirty minutes or even an 
hour is acceptable to make a diagnosis— post-processing 
required approxim ately an hour per scan in a recent clinical 
study of 102 subjects using SENSE [1],

As well, the proposed algorithm  is trivially parallelizable.

9 4 0



The im plem entation can be m ulti-threaded to exploit m ulti
processor com puter architectures, such as those com mon in 
dual-processor PCs, to y ield virtually linear speedup.

This model assumes that the sequence of images is well 
registered w ith no m otion artifacts. We can incorporate 
registration into the proposed reconstruction scheme so that 
in-plane translations are estimated, along w ith the images, 
at each tim e frame. Alternatively, m otion can, in theory, be 
tracked w ith a  navigator or respiratory strap and incorporated 
into the reconstruction. These issues are beyond the scope 
of the current work, w hich is to establish the potential o f a 
model-based reconstruction m ethod for dynam ic M RI.

The m odel-based reconstruction approach was shown to 
perform  well w ith sim ulated data. The sim ulations were gen
erated from  acquired magnitude data. Thus, the k-space data 
possessed Herm itian symmetry. A n im portant part o f future 
w ork com prises more experiments that explicitly obtain a 
pre-contrast phase map and then estimate the image phase 
temporal variations (which are small). It w ill be im portant 
to assess how well the proposed m ethod works in practice.

The proposed m ethod makes no assum ptions regarding the 
aliasing of the data and, hence, the m ethod can use arbitrary 
sampling patterns. This also means that the m ethod can in 
corporate some ideas, from  kt-BLAST-type techniques [28], 
of estim ating the overlaps due to a specific sampling pattern. 
The proposed m ethod can also be com bined w ith m ulti
coil methods. The m ulti-coil m ethods exact an SNR penalty, 
w hile the m odel-based reconstruction improves SNR.
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