
MetaComm: A Meta-Directory for Telecommunications

Juliana Freire1 Daniel Lieuwen1 Joann Ordille1
Lalit Garg2 Michael Holder2 Hector Urroz2

Gavin Michael3 Julian Orbach3 Luke Tucker3 Qian Ye1 Robert Arlein1

lBell Labs Research, 600 Mountain Ave., Murray Hill, NJ 07974
{juliana, lieuwen,joann, qy, rma} @ research, bell-labs. com
2Bell Labs, 11900 N Pecos St, Westminster, CO 80234

{lalit,mholder,hau}@ lucent, com
3Bell Labs, 15 Talavera Road, North Ryde, NSW 2113 Australia

gavinm @ aul. ibm. com, {juliano, luketucker} @ lucent, com

A b strac t

A great deal o f corporate data is buried in network devices
— such as PBX messaging/email platforms, and data net
working equipment — where it is difficult to access and
modify. Typically, the data is only available to the device
itself fo r its internal purposes and it must be administered
using either a proprietary interface or a standard protocol
against a proprietary schema. This leads to many prob
lems, most notably: the need fo r data replication and dif
ficult interoperation with other devices and applications.
MetaComm addresses these problems by providing a frame
work to integrate data from multiple devices into a meta
directory. The system allows user information to be mod
ified through a directory using the LDAP protocol as well
as directly through two legacy devices: a DefinityQ) PBX
and a voice messaging system. In order to prevent data
inconsistencies, updates to any system must be reflected ap
propriately in all systems. This paper describes how
MetaComm maintains consistency when data integration is
performed across several systems with no triggers and with
extremely weak typing and transactional support. We also
discuss implementation details and experiences.

1. In trodu ction

Directory Enabled Networking (DEN) [7] simplifies a
wide variety of tasks including provisioning network ser
vices, allocating resources, reporting, managing end-to-end
security, and offering mobile users customized features [6].
While this technology is not limited to LDAP directories
[11, 26] or to any particular standard1, it is frequently as
sociated with efforts by equipment and software vendors

1 In fact, Novell Directory Service has supplied many o f the DEN capa
bilities for some time.

to standardize LDAP schemas to support DEN. To supply
all the functionality that users expect, middleware to inte
grate the LDAP directories with network and telecommuni
cation devices is needed. This integration makes data that
has traditionally been buried in network/telecommunication
devices like routers, PBXs, and messaging platforms avail
able to new applications that can add value to the data. In
addition, since much of this data is replicated in multiple de
vices, corporate directories, and provisioning systems, inte
gration reduces the need to manually re-enter such data, and
consequently it reduces data inconsistencies across reposi
tories.

MetaComm makes it far easier to query and modify com
mon data in the devices. The MetaComm system integrates
data from multiple telecom devices into an LDAP directory
server, making it possible to manage these devices using the
LDAP protocol. As a result, MetaComm allows voice prod
ucts to be integrated with data products through DEN. Be
sides maintaining data consistency across multiple devices,
MetaComm also makes it far easier to modify common data
in the devices than is currently possible using legacy in
terfaces. It allows users to choose any tool that can per
form LDAP updates for handling their updates (e.g., a Web
browser).

In this paper we describe our initial effort where user
data from two legacy devices, a Definity® PBX and a mes
saging platform, are integrated into a meta-directory. User
data is the most valuable and the most likely to be dupli
cated, so it was a natural first choice. As shown in Figure 1,
our implementation allows user data to be modified in two
ways: the data can be modified through an LDAP directory
which materializes the data from legacy devices; and users
can continue to modify the telecommunication devices di
rectly through existing, often proprietary, interfaces. Offer
ing multiple paths to modify parameters in crucial telecom
munication devices preserves the experience base of device
administrators. In addition, it increases the overall reliabil
ity and availability of the system, since updates can still be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LTAP

Figure 1. Architecture o f MetaComm

made directly to the device even if the directory becomes
inaccessible.

However, allowing multiple update paths also adds com
plexity to the system, especially since some platforms lack
triggers and only provide weak typing and transactional
support. MetaComm addresses these issues by using: (1)
well-known techniques for materialized views and updating
through views (e.g., [17]); (2) clever schema design and up
date ordering; and (3) new tools such as lexpress [23], for
performing schema translation and integration, and LTAP
[19], which provides trigger support for LDAP directories.

The main contributions of this paper include techniques
we developed to handle the transactional weaknesses and
integration of the underlying systems, as well as the novel
combination of existing techniques. The paper is organized
as follows. Section 2 gives an overview of the LDAP pro
tocol. Section 3 reviews related data integration work. Sec
tion 4 describes the architecture of the MetaComm system.
Our experiences in building MetaComm, the trade-offs, and
alternatives for a number of the architectural choices are de
scribed in Section 5. Section 6 surveys related work. We
conclude in Section 7 with some future directions.

Figure 2. Sample LDAP tree

Directory entries are stored in a tree or forest. LDAP’s
hierarchical structure makes LDAP directories very scalable
— it is straightforward to move an arbitrary sub-tree to its
own server.

Figure 2 is an example of a typical tree, simplified to
remove all but one attribute from each entry. Each en
try in the tree is identified by a Distinguished Name (DN)
which is a path from the root of the tree to the entry itself.
The DN is produced by concatenating the Relative Distin
guished Name (RDN) of each entry in the path. The RDN
for an entry is set at creation time and consists of an attribute
name/value pair — or in more complicated cases, a collec
tion of these pairs. The RDN of an entry must be unique
among the children of a particular parent entry. For exam
ple, in Figure 2, “o=Lucent” and “cn=John Doe” are RDNs,
and the DN for John Doe is “cn=John Doe, o=Marketing,
o=Lucent”. Note the leaf-to-root order is the reverse of that
for the representation of a UNIX file or a URL.

The only update commands are to create or delete a sin
gle leaf node or to modify a single node. There are two
kinds of modification commands: Modify, to modify any
fields except those appearing in the RDN; and Modify RDN,
to modify attribute/value pairs appearing in the RDN. Fur
thermore, while individual update commands are atomic,
one cannot group several update commands into a transac
tion. For instance, one cannot atomically change a person’s
name and telephone number if the name is part of the per
son’s RDN but the telephone number is not.

LDAP servers make extensive use of replication to make
directory information highly available. Replication and
backups are used to handle system and media failure. More
traditional database solutions to handle failure and increase
availability have also recently become available with Oracle
Internet Directory [22],

3. D ata in tegra tion

2. L D A P overv iew

LDAP is a widely deployed directory access protocol
with implementations by a large number of vendors (see
[13] for a partial list). From a database perspective, LDAP
can be thought of as very simple query and update proto
col. Compared to traditional relational databases, LDAP
has some benefits in that it deals well with heterogeneity

The emerging need to provide organization-wide access
to data is creating a demand to interconnect previously iso
lated systems. As a result, integrating information from
multiple heterogeneous data sources has become a central
issue in modern information systems. A data integration
system provides uniform and transparent access to multiple
data sources, making information more readily accessible
and allowing users to pose queries without having to inter
act with a specific source using a particular interface.

Even though integrated systems produce many advan
tages, difficult problems arise when integrating information
from multiple sources, most notably: autonomy and hetero
geneity. Autonomous systems are often under separate and
independent control, using their own data model and ap
plication programming interface (API). Heterogeneity can
arise at different levels. For instance, different systems may
use different APIs, vocabularies (i.e., different systems may
use the same term for different concepts or different terms
for the same concept), schemas, etc.

There are many steps involved in integrating data from
multiple sources:

• Schema and language translation: wrappers have to be
created for sources to provide access to the underly
ing data, and mappings between local and global data
models are needed to resolve syntactic heterogeneity.
The wrappers provide a canonical API and representa
tion for the data in all sources.

• Schema integration', schemas corresponding to each
source are combined into a single global schema (e.g.,
[21]). This step resolves structural and semantic het
erogeneity (i.e., differences in naming, structure, for
mat, missing/conflicting data, and data interpretation).
For example, an example of structural differences oc
curs when names are represented as a single attribute
in one schema and as a composite attribute (e.g., first
name and surname) in another. A naming conflict is
an example of semantic heterogeneity. It occurs when
identical data items are named differently, or semanti
cally different items are named identically.

• Maintaining consistency and dependencies: The inte
gration system needs to capture the specification of se
mantically related data stored in different data sources,
so that as updates are applied, these sources remain
consistent.

Building custom integration applications that assemble
data from appropriate locations is not always a practical
solution. It can be prohibitively expensive, inflexible, and
hard to maintain. Several research projects have developed
mediator systems [27] to address these problems (see e.g.,
[18, 9, 1]). Mediators provide an intermediate layer be
tween the user and the data sources. Each data source is
wrapped by software that translates local terms, values and
concepts into global concepts shared by some or all sources
— smoothing the semantic heterogeneity among the various
integrated sources. The mediator then obtains information
from one or more wrapped components and exports such
information to other components. Queries to the mediator
are in a uniform language, independent of the distribution
of data over sources and the APIs o f the source.

In designing MetaComm, we used several ideas from
existing mediator systems for the actual integration. For
example, like in the Information Manifold [18], each data
source has an associated description file that defines the
mapping of the local schema into the global schema, as

well as constraints on values and mappings of local val
ues into global values. However, there are important differ
ences. Whereas most of the work on mediators concentrates
on read-only queries, MetaComm must handle updates. In
addition, unlike mediators where queries posed against the
unified system are dynamically executed at the various data
sources, because of reliability and performance require
ments, MetaComm materializes subsets of the data from the
various sources in an integrated directory. Even though this
approach at a first glance resembles data warehouses [12],
MetaComm must do much more than a data warehouse. Be
sides propagating updates from the data sources to the mate
rialized directory, MetaComm must also propagate updates
that are applied to the meta-directory to the various data
sources.

In the next section, we give a detailed description o f the
architecture of MetaComm and discuss how the various is
sues of data integration are addressed in the system.

4. A rch itectu re

MetaComm is a data integration system that creates an
integrated materialized view of data from independent, het
erogeneous repositories. The main challenge of MetaComm
is to foster the cooperation of the multiple repositories, en
suring that data is kept consistent when updates are applied
to the various repositories, including the materialized view
of the integrated schema.

Figure 1 shows the various components of MetaComm.
The integrated schema of MetaComm is an extension of a
standard X.500 class [3] that describes people, with auxil
iary classes to represent device specific information (details
about the schema are given in Section 5.2). The material
ized view of the integrated information is stored in an LDAP
server.

The Update Manager (UM) is the central component of
the system — it ensures that the data in the devices and
in the LDAP server are consistent. Consistency is not just
a matter of applying the same update to each data reposi
tory in a global transaction. Because the repositories lack
most basic transaction facilities, MetaComm cannot sup
port traditional transaction semantics. Instead, it uses other
techniques to ensure that the repositories converge to the
same values after some delay [25, 5]. For example, in
MetaComm updates may be applied more than once on cer
tain repositories to ensure correct update ordering, and re
synchronization of repositories is used for recovery from
catastrophic communication or storage errors. (Directory
systems, such as LDAP, maintain a relaxed write-write con
sistency by ensuring that updates eventually result in the
same values for object attributes being present in each copy
of the object. MetaComm extends this relaxed write-write
consistency to meta-directory updates by reapplying up
dates that are initially applied in different orders at differ
ent directories. When directory applications require read-
write consistency, they must supply the transaction disci
pline necessary to ensure that consistency. Our LTAP work
provides one approach to enhancing directory transaction
capabilities.)

Maintaining the consistency of the repositories also re
quires that the semantics of the data are properly reflected
in each repository. A filter or wrapper is associated with
each repository. In MetaComm there are three such filters,
the PBX filter, the Messaging Platform (MP) filter and the
LDAP filter, depicted in Figure 1. Each filter has a proto
col converter for communicating with its associated repos
itory and a mapper for translating update commands to the
schema of the repository. The schema translation and in
tegration of the mapper are realized through lexpress (de
scribed in Section 4.2). lexpress uses semantic characteris
tics of the data to provide better data integration. In particu
lar, lexpress uses data dependencies to propagate data wher
ever it is needed in the global or device schema, and par
titioning constraints to translate schema updates correctly
and route them to the proper repositories.

Each repository in the system (i.e., legacy device or
LDAP directory server) must notify the UM when a change
occurs. The LTAP module adds active functionality to the
LDAP server and notifies the UM of changes to data in the
LDAP directory (see Section 4.3 for details). The main
thread of the UM, the coordinator, responds to update and
synchronization requests by propagating update commands
to the appropriate filters. The mapper component in the fil
ter further analyzes the request to ensure that updates are
properly forwarded to the associated data repository.

Also shown in Figure 1 is the Web-Based Administration
(WBA), which provides a single point of administration for
the telecom devices. It is worth pointing out that any LDAP
tool can contact LTAP to administer the telecom devices,
for example, any LDAP enabled Web browser.

4.1. Filters for data sources

In MetaComm, a filter is associated with each repository
type. Each filter has two components: a protocol converter
and mapper. The protocol converter provides a unified API
for all repositories, which consists of:

• a method to retrieve a record given its key (or id);

• the ability to receive notifications from the device; and

• methods to add, modify and delete records in the de
vice.

Additionally, if a repository is to be synchronized with
another repository, in particular a device with the LDAP
server, the API must also provide a method to retrieve all
relevant data from the repository. (A device is synchronized
with the LDAP directory when its data is initially loaded
into the directory. It is also synchronized with the direc
tory after the directory and the device have temporarily be
come unable to communicate with each other, and updates
that should have been sent from one to the other have been
lost — this can occur due to process crash or network prob
lems.)

The second component of filters, the mapper, uses the
information available in the lexpress description file (e.g.,

set of attributes, keys, mapping rules) to translate update re
quests expressed in lexpress’ canonical form into updates
against the relevant repository. When a filter receives a
change notification from its associated repository, it cre
ates a lexpress update descriptor of the change. The UM
coordinator chooses the appropriate filters to receive the de
scriptor. When a filter receives a descriptor, it uses lexpress
to translate and apply the update. This separation between
protocol and mapping allows protocol-specific software to
be reused with varying schema.

MetaComm uses lexpress to describe the mapper com
ponent for the various filters, lexpress is a tool for schema
translation and integration whose declarative mapping lan
guage supports string operations and table translations of at
tributes, alternate attribute mappings, multi-valued attribute
processing, and pattern matching. Matching the pattern of
input attributes allows mappings to be resilient when faced
with dirty data. Patterns allow mappings to be refined in
crementally with a list of special cases.

Users create mappings in the lexpress language that
specify the relationship between two schemas as well as
other update requirements. Mappings are specified from a
source schema to a target schema, so two lexpress mappings
are specified for each schema pair. The same filter can be
used with multiple schema pairs if the protocols for com
municating with the target of the update in each pair are
the same. Only the lexpress mapping, which is input data
to the lexpress routines, needs to change to accommodate
different schema or different versions of the same schema.

lexpress supports propagation of changes to wherever
they are needed. Since setting one attribute may affect a set
of related attributes, lexpress calculates the transitive clo
sure of the attribute mappings. For example, the LDAP
attributes telephoneNumber and DefinityExtension are re
lated through the Definity® attribute Extension. If either
changes, lexpress changes the other when the update is
propagated to the LDAP Server.

The transitive closure can also propagate changes to
other devices in the meta-directory. For example, consider
two lexpress mappings: one from the extension for a tele
phone on a PBX to a telephone number in the LDAP di
rectory, and another from the telephone number to a voice
mailbox identifier in the voice messaging platform. When
the extension of an existing object changes, the PBX-to-
LDAP lexpress mapping requires lexpress to change the
telephone number. Because lexpress processes the transitive
closure of mappings, it also uses the LDAP-to-MP mapping
to change the voice mailbox identifier.

Integration conflicts arise when a client explicitly up
dates multiple attributes in a transitive closure inconsis
tently. When such a conflict arises, the first mapping in
the transitive closure to be satisfied sets all other unset at
tributes in the transitive closure. The algorithm does not
change the values of explicitly set attributes. In the ear
lier example, changes to the telephoneNumber or Defini
tyExtension in the LDAP schema cause the Extension in

4.2. lexpress

the Definity to change and vice versa. If telephoneNumber
and DefinityExtension are set inconsistently, i.e., they map
to different values for Extension, then the first mapping sat
isfied, e.g., telephoneNumber to Extension, sets Extension.
The other mapping in the closure, e.g., Extension to Defin
ityExtension, is not executed and DefinityExtension retains
its new value. Thus, the inconsistently set attributes do not
affect each other’s values and only one of them has its value
propagated to other attributes. We are currently enhancing
lexpress to identify cyclic dependencies that do not reach
a fixpoint and take appropriate action, at compile time (if
a fixpoint can never be reached) or at execution time (if a
fixpoint will not be reached for a current update).

Another useful feature of lexpress is the support for par
titioning constraints — it automatically migrates data to the
right object manager for the data. When an update is sent
to a target system, lexpress transforms each update to the
correct series of add, delete and modify operations to mi
grate data to the proper destination. For example, when
a person’s telephone number changes, the Definity® PBX
that manages the person’s extension may also change. In
this case lexpress translates a modification of a telephone
number into two updates: a deletion in one PBX and an add
in another PBX.

In general, when a modification of an existing object
is requested, lexpress checks the partitioning constraints
against both the old and new attributes of the object. For
example, when a particular PBX accepts updates for phone
numbers beginning with “+1 908-582-9” , lexpress checks
the old phone number for the object to determine that the
object was stored in the PBX and the new attributes for the
object to determine that object is still stored in the PBX.
Depending on the combination of constraint satisfaction by
the old and new attributes, different operations are done on
the target directory. Specifically, if the old attributes violate
the constraints and the new attributes satisfy them, then the
update is forwarded as an add to the target because the ob
ject was not previously managed by the target. If the old
and new attributes satisfy the constraints, then the update
is forwarded as a modify to the target. I f the old, but not
the new, attributes satisfy the constraints, then the update is
forwarded a delete to the target. I f neither set of attributes
satisfy the constraints, the operation is skipped at the target
because the object is not under the target’s management.

The components of lexpress are a declarative language
for specifying the relationship between two schemas, a
compiler that generates machine-independent byte code
from the declarative language, and an interpreter for execut
ing the byte codes. The compiler and interpreter are avail
able in a subroutine library that can be called from any pro
gram. A library of common mappings for telecommunica
tions directories is available. Descriptions for new sources
or changes to descriptions for old sources can be added
dynamically (to running programs) by compiling them at
run-time using the appropriate lexpress routine. Experience
with the language indicates that a few minutes are sufficient
to map a new source to the global schema and vice versa.
For more details on lexpress the reader is referred to [23].

4.3. Lightweight trigger access process

LDAP servers currently available provide no support for
triggers. In MetaComm we used LTAP [19] as a portable
solution to add active functionality to LDAP servers. LTAP
works as a gateway that pretends to be an LDAP server —
LDAP commands intended for the LDAP server are inter
cepted by LTAP which does trigger processing in addition
to servicing the original LDAP command. LTAP also
provides locking facilities, forbidding updates to an entry
while trigger processing is being performed on that entry.
In MetaComm, locking is used to help ensure that the de
vices and directory converge in time to achieve write-write
consistency.

4.4. Update manager

The Update Manager (UM) keeps the data in the LDAP
directory synchronized with the data in the telecom devices.
It responds to update requests that originate from client ap
plications such as the WBA, or from one of the devices, and
it ensures that after an update is applied, the information in
all devices and directories remains consistent.

As depicted in Figure 1, update requests from client ap
plications such as the WBA are sent to LTAP, which traps
the requests and notifies the UM. Update notifications are
sent from LTAP to the LDAP filter, which in turn creates a
lexpress update descriptor for the update that is then added
to a global queue in the UM. The main thread of the UM,
the coordinator, iterates through the global update queue,
and for each update request, it tells the appropriate filters
to generate a sequence of updates to all applicable devices
and to the LDAP server. Locking at LTAP (see Section 4.3)
blocks conflicting LDAP update requests from being sent
to the UM until after the sequence of updates has been ap
plied (e.g., if LTAP receives an update request to an object
“cn=John Doe, o=Marketing, o=Lucent”, no other LDAP up
date to this object is allowed to proceed until the UM com
pletes the update sequence and notifies LTAP).

However, no such locks are obtained when updates orig
inate at the devices themselves. A direct device update
(DDU) is applied to the device itself. The update is noted
during transaction commit at the device and a notification
is sent to the appropriate device filter. A better alterna
tive would be to have the device alert the UM that an up
date is being requested and then have the UM queue the
request (effectively creating a global ordering for all up
dates). However, this was not practical because the devices
must be usable with or without MetaComm. The update
sequence for a DDU is as follows:

• the device filter creates a lexpress update descriptor for
the update that it forwards to the LDAP filter;

• the LDAP filter translates the descriptor into an update
against the LDAP schema and forwards it to LTAP;

• the update is eventually sent back to the UM after
proper LTAP locks are obtained.

LTAP is used to obtain locks because the PBX, MP and the
LDAP server do not expose their locking capabilities. A
consistent ordering of updates is obtained by possibly reap
plying the update to the devices. (If updates have occurred
at the device entry since the DDU, the update must be reap
plied at the device to ensure write-write consistency. The
queue maintained by the UM enforces a serialization order.)
This technique works because a small number of DDUs are
made against any given entry per day. Thus, it is unlikely
that a DDU and an overlapping LDAP command will be
issued at roughly the same time. If they are, the queue or
der reapplication quickly resolves the inconsistencies. This
technique would not work well if some entries received fre
quent DDUs. Note that brief inconsistencies between the
LDAP server and the device are sometimes created, but
quickly eliminated.

If failure occurs while an update is being applied to one
of the various devices (e.g., an update is invalid), the up
date is aborted, an error is logged into the directory, and a
notification is sent to the administrator. The administrator
can browse through the errors and manually fix the result
ing inconsistencies at a later time. A later version of the
system will use pre-update information to attempt to undo
device updates, making the overall technique akin to sagas
[10]. However, logging will always be required for extreme
cases, such as when devices and the directory are discon
nected for an extended period of time. Note that it is the lack
of support for two-phase commit in the underlying reposi
tories that limits the ability of MetaComm to handle these
failures.

The UM also supports the synchronization of pre
existing directories. This is necessary to populate the direc
tory initially and to recover from disconnected operations
of devices without logging facilities.

4.5. New applications enabled by M etaCom m

MetaComm allows modification of PBX/messaging set
tings through any LDAP tool (there are a variety of GUI in
terfaces to LDAP directories). For our project, we were able
quickly to generate an intuitive Web interface that compares
favorably with proprietary interfaces.

Using MetaComm administration, an authorized
user/program can easily redirect a telephone extension to a
port in another room. An example of using the simplicity
of administering telecom devices through MetaComm to
produce a hoteling (shared workspaces that are reserved as
needed) application is given in [2],

4.6. MetaCom m status

MetaComm was included in a demo at InterOp [20]. Lu
cent has announced a product that will use the MetaComm
technology (called Directory Synchronization Technology
in the press release) to control Definity© PBXs through an
LDAP directory. The technology is currently being transi
tioned and hardened for commercial use.

5.1. Maintaining consistency

One of the main issues we faced in designing and devel
oping MetaComm was keeping the various devices consis
tent with the directory. Since neither LDAP nor the inte
grated devices provide transaction facilities, all we can as
sume about these data sources is that an update to a single
object is atomic. A number of design decisions were influ
enced by this deficiency. For example, the integrated LDAP
schema had to be designed in such a way to ensure that all
attributes that are to be read/written as a unit belong to a
single object. Even designing the schema this way did not
entirely eliminate non-atomic updates — updates that mod
ify both the RDN and other attributes must be handled by
a ModifyRDN/Modify pair of operations. While this is not
a problem for updates to the LDAP server (as LDAP can
not be used to express such a pair as a single operation), a
DDU may be translated into a pair of LDAP updates. For
instance, a direct PBX update might change a person’s name
(which is used in their RDN) and extension (which is not).
Typically, one would expect changes to RDNs to be quite
infrequent as attributes like name do not change very often.

Note that locking at the LTAP level prevents the inter
leaving of operations at the LDAP level. However, if the
UM crashes between the ModifyRDN and the Modify op
erations, the entry will be inconsistent for readers. (Writers
will not be able to execute until the UM restarts.) When
the UM restarts and re-synchronizes the directory with the
devices, the inconsistencies will be eliminated. Note that a
UM crash is a catastrophic failure. Furthermore, this prob
lem will only occur in the infrequent case where such a fail
ure occurs at the same time a “complex” DDU update is
being applied that modifies both the RDN and some other
user data. Such a coincidence of infrequent events is likely
to be extremely rare.

In order to provide the synchronization facility (see Sec
tion 4.4), MetaComm must guarantee that after a synchro
nization request is processed, the LDAP server, the device
being synchronized, and other devices that share the data
being synchronized are consistent. Even though synchro
nization requests might be viewed as a sequence of individ
ual updates, the set of updates must be applied in isolation,
i.e., other updates must not be allowed concurrently. This
required two modifications to LTAP. First, LTAP originally
only allowed a single update per connection from LTAP to a
trigger action server (e.g., UM), but to differentiate synchro
nization requests from individual updates, persistent con
nections were added which allow a sequence of updates.
Second, in order to guarantee that synchronization requests
are executed in isolation, all updates must be disallowed
while a synchronization request is being processed. To sup
port this, a new quiesce facility was added to LTAP.

5.2. Designing the integrated schema

In designing the integrated schema, we wanted to ensure
that it would be easy to add new repositories, and no mod

5. Exp erien ces

ifications to standard X.500 classes would be needed. The
initial solution we decided upon to meet these criterion was
to store all the information related to a person’s use of a
device (e.g., a PBX) in a child entry of the person in the
directory tree. When a new device is added, information
about the user/device interaction could be added as a new
child. Moreover, most of these user/device entries could
use a generic class with lots of optional attributes, rather
than creating a new objectclass for each new device. How
ever, the lack of transactions in LDAP forced us to give up
this technique. Since many updates to an LDAP directory
would require modifying both a parent and a child and these
updates cannot be done atomically, we were forced instead
to create a new auxiliary objectclass for each new device
(to represent user information for that device) and to create
new names for the attributes of each auxiliary class.2

One practical limitation of auxiliary classes is that they
cannot have mandatory attributes. The inability to specify
mandatory attributes for auxiliary classes makes it impossi
ble to prevent certain anomolies — like entries whose list
of objectclass values indicate that a person uses a PBX, but
where no PBX Extension field exists. This will not occur
for those who use our tools exclusively. However, users can
create such peculiarities easily using off-the-shelf LDAP
browsers. Hence, the presence of an auxiliary objectclass
only indicates that a person may use a device, not that the
person certainly does. To determine more, we must look
to see if the PBX Extension field is set, for example. This
solution was less elegant than we would have liked, but it
does meet the criterion above. It is a general solution for
dealing with these kinds of relationships in systems that al
low updates through LDAP. If LDAP were extended with
transactions, the original solution would be viable as well.

5.3. Limitations o f LD A P

As mentioned previously, LDAP has a variety of weak
nesses that limits its uses. In addition to the lack of support
for triggers (for which LTAP provides a portable solution),
LDAP has very weak typing and no transaction support be
yond atomic update to a single object. LDAP’s chief advan
tages include scalability and increased flexibility [15], so its
disadvantages are closely related to its advantages since full
transactions would harm scalability as two-phase commit
would be required. However, transactions that allow sev
eral entries at a single site to be modified atomically would
be a good compromise — solving our atomicity problems
while retaining scalability although at the cost of asymme
try. Improving typing with intra-entry constraints would not
harm scalability or flexibility and would do much to main
tain data quality.

LDAP provides set-valued attributes which could be
quite useful in data modeling had they been implemented
differently. However, LDAP only allows sets of atomic
valued items (e.g., strings). Thus, they are not very use
ful in practice because there is no way to correlate related

2An auxiliary class can be added to an existing object at any time to
add new attributes to the object. However, to identify which fields belong
to the auxiliary class, unique names for its fields are required.

fields, e.g., phone numbers and addresses. This inability
to correlate fields forced us to forgo the use of set-valued
attributes. Instead, we require that a given person have a
different directory entry for each location associated with
that person. Extending LDAP to allow fields to be arrays or
sets of records would solve this problem.

5.4. Extensions needed to lexpress

In MetaComm, we achieve write-write consistency by
reapplying updates to a device that originates the update.
For example, if the PBX is updated, it notifies the UM of
the update and the UM reapplies the update to the PBX.
Problems arose because reapplying add or delete requests
to devices where those operations had already occurred pro
duces errors.

lexpress was extended to identify updates that had previ
ously been seen by the device. First, the LDAP schema was
extended with a LastUpdater attribute. This attribute is set
to the name of the source of an update by the lexpress map
pings from a device to the LDAP directory. Each mapping
from LDAP to a device was enhanced with a mapping char
acteristic called Originator that designates which attribute
contains the name of the source of the update. When
lexpress processes the updates, it returns conditional update
operations if updates are being sent to a target that is the
same as the source listed in the Originator. Conditional up
date operations indicate that an update is being repeated and
which operation should be used to reapply the update. I f a
filter knows that the operation is being reapplied at its tar
get, it can take different steps to recover from errors then it
would with a normal (i.e., not a reapplied) update. For ex
ample, add operations are reapplied as conditional modify
operations. If a conditional modify fails, the update filters
then attempt to add the record. I f a normal modify fails, no
add is attempted.

Although the lexpress mappings are simple to construct,
we found them to be repetitive for integrating several de
vices with closely related mappings. A graphical user in
terface (GUI) was implemented that eliminates the need to
enter redundant information. Although transitive closure of
dependencies between the source-target pair is automatic in
lexpress, transitive closure across all repositories is a mat
ter o f design. In particular, all dependencies in a transitive
closure must be known in all relevant source-target map
pings. We plan to automate the repetition of dependency
information in relevant mappings as part of the generation
of lexpress description files by the GUI.

5.5. Other issues

Device-generated information Some devices may gen
erate information when an update is applied. For example,
when a new extension is added to the messaging platform,
a unique id is created which might be needed in other de
vices. In such situations, the update augmented with the
newly generated information might have to be reapplied to
other devices — and this process must be repeated until a

fixpoint is reached. In MetaComm these cases were sim
ple, because all generated information is only destined for
the LDAP server and not for the other device(s). We use
lexpress features for communicating changes to the origi
nal update and then update the LDAP Server after all other
devices are updated.

Running LTAP as a gateway LTAP can be run either as
a gateway or as a library that is bound into an application.
MetaComm used the gateway approach. We could have
coupled MetaComm and LTAP more closely by using the
library version. While this would have reduced communi
cation costs between LTAP and the UM, it would have had
two disadvantages. First, it would have forced the com
bined LTAP/UM to process read requests. As it is now, they
can run on separate machines and the UM machine does
not need to do any read processing. Since LDAP work
loads are heavily read-oriented, this offers substantial scal
ability advantages. Second, upgrades to LTAP would need
to be coordinated with the UM. Currently, either LTAP or
the UM can be upgraded at any time without affecting the
other. This simplifies system upgrades.

6. R e la ted w o rk

Like data warehouses [12], MetaComm materializes
subsets of the data from the various sources in an inte
grated directory. One important difference, however, is that
the materialized data is also updated and MetaComm must
propagate the updates to the various data sources.

There is a large body of research on data integration and
a number of prototypes have been built [9, 18, 24] that
focus on different aspects of data integration, from semi
automatic wrapper generation to query optimization. How
ever, most of this work focuses on read-only queries. Meta
Comm on the other hand must deal with updates. Nonethe
less, many of the ideas from mediator systems have been
enhanced to address updates in MetaComm. For example,
MetaComm has rules to decide which sources are relevant
for a given update; query rewriting is used to translate up
dates to appropriate formats; and an update execution plan
is generated, determining in which order the updates to the
various data sources should be applied. Section 3 dicusses
the similarities and differences between MetaComm and
other data integration systems in more detail.

Schematic heterogeneity has been extensively studied
and is well documented in the heterogeneous database re
search literature [8]. The schema integration component of
MetaComm uses the lexpress language to define declarative
mappings among disparate schemas from repositories that
may have limited querying capabilities.

More details about the LTAP system can be found in
[19]. Specifics of how LTAP is used in MetaComm (and
changes made to LTAP as a result of our experiences using
it in MetaComm) can be found in [2],

MetaComm updates have to be applied to multiple data
repositories in a way akin to sagas [10]. Our approach dif
fers from previous work on transactions over heterogeneous

sources in that the we have to deal with very weak assump
tions, since some sources integrated in MetaComm only
support atomic updates to single objects.

Integrated Union Types [16] are used to reconcile data
from multiple overlapping sites using virtual views. Meta
Comm also reconciles data across sources; however, it uses
materialized views.

Finally, we should note the growing commercial inter
est in integration of information, which can be evidenced
by products such as Isocor [14] and Zoomit [28]. The main
differences between MetaComm and these products are that
MetaComm handles real-time updates and declarative spec
ification of mappers, whereas they support only batch up
dates and procedural specifications.

7. Conclusions

Even though data integration is a well-studied problem,
and there are commercial products that promise to simplify
the integration process — it is unlikely that a one-size-fits-
all solution to the problem will ever be possible. In this
paper, we describe our experiences in integrating data from
legacy telecom devices and MetaComm, the system we built
to achieve this integration. MetaComm is a full-fledged and
extensible mediator system. Its architecture has a modular
design, and its various components can be used indepen
dently and/or added to other systems.

The first prototype of MetaComm integrates data from
PBXs and messaging platforms into an LDAP directory
server, and guarantees data consistency while allowing up
dates to the various independent data repositories. New data
sources can be easily added. The extensibility of Meta
Comm is due mostly to its lexpress component, which han
dles data conversion, schema integration and data inter
dependencies in a very elegant and declarative manner.

By providing a simpler and unified interface to data
stored in telecom devices, MetaComm greatly simplifies ac
cess to this data. As a result, new services and applications,
such as hoteling and integrated administration, can be pro
vided with little effort.

Preliminary experiments indicate that MetaComm has
acceptable performance for our initial configuration. We
are currently investigating its scalability by adding new data
sources. Also, the current system uses a very simple secu
rity mechanism (based on the security model of LTAP). As
future work, we would like to investigate more sophisticated
security models.

MetaComm was included in a demo at InterOp [20]. Lu
cent has announced a product that will use the MetaComm
technology (called Directory Synchronization Technology
in the press release) to control Definity© PBXs through an
LDAP directory. The technology is currently being transi
tioned and hardened for commercial use.
Acknowledgments:

Thanks to Ravi Sethi and Narain Gehani for management
support. Thanks also to Bob Klein and Terry Jennings for
helping us understand the details of devices that we inte
grated. Thanks also to the anonymous reviewer.

[1] S. Adali, K. Candan, Y. Papakonstantinou, and V.S.
Subrahmanian. Query caching and optimization in
distributed mediator systems. In Proceedings o f SIG
M OD, pages 137-148,1996.

[2] R. Arlein, J. Freire, N. Gehani, D. Lieuwen, and J. Or-
dille. Making LDAP active with the LTAP gateway:
Case study in providing telecom integration and en
hanced services. In Proc. Workshop on Databases in
Telecommunication, September 1999.

[3] D. W. Chadwick. Understanding x.500 - the di
rectory, 1994. http://www.salford.ac.uk/its024/Version.
Web/Contents, htm.

[4] S. Cluet, Olga Kapitskaia, and D. Srivastava. Using
LDAP directory caches. In Proceedings o f PODS,
1999.

[5] A. Demers, D. Greene, A. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database mainte
nance. In Proc. ACM Symp. on the Principles ofDistr.
Computing, pages 1-12, August 1987.

[6] Directory Enabled Networking Ad Hoc Working
Group, http://murchiso.com/den/.

[7] Customer requirements gathered at the DEN work
shop, November 1997. http://murchiso.com/den/gen-
e ral/cu stom e r- req u i re ments. htm I.

[8] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth, edi
tors. Management o f Heterogeneous and Autonomous
Database Systems. Morgan Kaufmann, 1998.

[9] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. D. Ullman, V. Vassalos,
and J. Widom. The TSIMMIS approach to mediation:
Data models and languages. Journal o f Intelligent In
formation Systems, 8(2): 117-132,1997.

[10] H. Garcia-Molina and K. Salem. Sagas. In Proceed
ings o f SIGMOD, 1987. "

[11] T. Howes and M. Smith. LDAP: Programming
Directory-enabled Applications with Lightweight D i
rectory Access Protocol. Macmillan Technical Pub
lishing, 1997.

[12] W. Inmon. Building the Data Warehouse. John Wiley
and Sons, 1992.

[13] Innosoft. Innosoft’s LDAP world implementation sur
vey. http://www.critical-angle.com/dir/lisurvey.html.

[14] ISOCOR. Metaconnect: Meta-directory solu
tions for large corporations and service providers.
http://www.meta-connect.com.

References [15] H. Jagadish, L. Lakshmanan, T. Milo, D. Srivastava,
and D. Vista. Querying network directories. In Pro
ceedings o f SIGMOD, 1999.

[16] V. Josifovski and T. Risch. Integrating heterogeneous
overlapping databases through object-oriented trans
formations. In Proceedings o f VLDB, pages 435-446,
1999. ' ^

[17] A. Keller. Updating Relational Databases through
Views. PhD thesis, Stanford University, 1995.

[18] A. Y. Levy, A. Rajaraman, and J.J. Ordille. Querying
heterogeneous information sources using source de
scriptions. In Proceedings o f VLDB, pages 251-262,
1996.

[19] D. Lieuwen, R. Arlein, and N. Gehani. The LTAP
trigger gateway for LDAP directories. Software—
Practice and Experience. To appear.

[20] Lucent Press Release, http://www.lucent.com/press/
0599/990503. nsc. htm I.

[21] R. Miller. Using Schematically Heterogeneous Struc
tures. In Proceedings o f SIGMOD, 1998.

[22] Oracle Internet Directory, http://www.oracle.com/data-
base/oid.

[23] J. Ordille. Mapping updates for heterogeneous data
repositories. Technical report, Bell Laboratories - Lu
cent Technologies, 1999.

[24] M.T. Roth, M. Arya, L.M. Haas, M.J. Carey, W.F.
Cody, R. Fagin, P.M. Schwarz, J. Thomas II, and E.L.
Wimmers. The Garlic Project. In Proceedings o f SIG
M OD, page 557, 1996.

[25] L. Seligman and L. Kerschberg. A mediator for ap
proximate consistency: Supporting “good enough”
materialized views. Journal o f Intelligent Information
Systems, 8:203-225,1997. ' '

[26] M. Wahl, T. Howes, and S. Kille. Lightweight
Directory Access Protocol (v3), December 1997.
http://www3.innosoft.com/ldapworld/rfc2251 .txt.

[27] G. Wiederhold. Mediators in the Architecture of Fu
ture Information Systems. IEEE Computer, pages 38
49, March 1992. "

[28] Zoomit meta-directory, http://www.zoomit.com.

http://www.salford.ac.uk/its024/Version
http://murchiso.com/den/
http://murchiso.com/den/gen-
http://www.critical-angle.com/dir/lisurvey.html
http://www.meta-connect.com
http://www.lucent.com/press/
http://www.oracle.com/data-
http://www3.innosoft.com/ldapworld/rfc2251
http://www.zoomit.com

