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Chapter 4

ANALYSIS OF THE SURFACE POTENTIAL DEVELOPED
BY NON-REACTIVE IONIC SOLIDS

J. D. Miller and J. V. Calara

University of Utah
Salt Lake City, Utah

ABSTRACT

The sign of the surface potential for complex non-reactive ionic
solids cannot be predicted solely from consideration of the hydration
energy of gaseous ions which constitute the ionic lattice. Accurate
analysis of these systems must involve the hydration energy of surface
ions, which requires knowledge of the crystal structure, the identifi-
cation of cleavage planes, and the calculation of binding energies of
surface ions. Surface binding energies for ionic solids can be deter-
mined if the Surface Madelung Constant is known.

A computational technique was developed for the calculation of Mad-
elung Constants for infinite lattices which gives excellent agreement
with the values calculated by other more complicated methods reported
in the literature. Extension of this technique permits the calcula-
tion of Surface Madelung Constants and binding energies of surface
ions, AUS, for semi-infinite solids. The hydration free energy of
gaseous ions, AF™, together with the calculated binding energy of sur-
face ions, AUS, allows calculation of the hydration energy of surface
ions, AGjj, as for the case of the ionic solid, MX

SURFACE POTENTIAL— NON-REACTIVE IONIC SOLIDS 67

From the relative magnitudes of the ionic surface hydration energies,
AGh, the sign of the surface potential can be predicted for complex
ionic solids. The analysis accounts for the fact that fluorite exhi-
bits a positive surface potential in the absence of specific chemical
interactions. Further, it is demonstrated why the sign of the surface
potential for simple ionic solids can be predicted from the hydration
energy of gaseous ions.

Ultimately, the analysis of the surface potential of non-reactive’
ionic solids in terms of ionic surface hydration, energies may allow
calculation of the point of zero charge for these solids. Preliminary
calculations of the PZC are in error by orders of magnitude and from
a quantitative standpoint the analysis needs further refinement.

INTRODUCTION '
Interfacial Potential and Surface Charge

Potential difference across an interface develops from separation
of charges. Although this is a fundamental fact, the detailed process
by which charge separation is accomplished differs from system to sys-
tem and even for a particular system there could be several mechanisms
operative.

The potential across a liquid-liquid interface, called the distri-
bution potential, was explained by Nernst (1) in 1892 to be the result
of the difference in solubilities of the oppositely charged ions in
the two phases. This is essentially the reasoning used by Beutner (2)
to explain the electromotive force generated between a salicylic al-
dehyde solution in salicylic acid, and an aqueous KCI| solution.
Nernstls theory is the accepted explanation for the interfacial poten-
tial between two immiscible electrolytes. Any potential that is trace-
able to adsorbed monolayers at the interface is quickly cancelled by
migration of ions across the interface.

The situation is generally more complicated for a solid-liquid sys-
tem. Here the redistribution of ions by Interfacial migration is gen-
erally kinetically hindered and in many cases only the liquid phase
is electrolytic.

Quantitative description of the charge distribution in the liquid
electrolyte is given by the well known double layer theory. However
complete details regarding the origin of potential at the solid sur-
face are lacking. Many mechanisms for the development.of potential at
the solid surface in aqueous systems have been proposed and can be
classified as belonging to one of three categories; specific chemical
interaction, lattice substitution, and hydration of lattice atoms.

Specific Chemical Interaction. Specific chemical interactions include
reactions with the aqueous phase which lead to the formation of dIf-
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ferent surface compounds or surface species. One of the most common
mechanisms of charge generation, operative in many systems including
oxides, silicates, and semisoluble salts, is the formation and subse-
quent dissociation of surface acid groups. In the case of quartz,
Si02> many investigators (3,4,5) have explained its electrokinetic be-
havior in terms of this model. The surface silicic acid, or silanol
group, dissociates to release hydrogen ions to the solution, leaving
the surface with a negatively charged silicate group. The hydrogen
ion is said to be potential determining because the surface charge den-
sity and surface potential are determined by the bulk phase concentra-
tion of hydrogen ion.

In systems involving the pure solid, and in the absence of foreign,
polyvalent cations in solution, this mechanism is difficult to distin-
guish from that proposed by Parks and de Bruyn (6) where the surface
charge is attributed to the adsorption of hydroxy complexes. However,
in systems containing foreign, polyvalent cations at critical pH val-
ues, surface potential modulation is related to the adsorption of hy-
droxy complexes (7) and/or the nucleation and growth of colloidal hy-
droxide on the solid surface (8).

Although hydrogen ion adsorption is cited as one of the common ex-
amples of specific chemical interactions, chemisorption reactions or
surface oxidation-reduction reactions would be included in this cate-
gory. 'fln most of these systems the surface charge density will be
determined by the reactant's concentration, the solid's surface ac-
tivity, and the extent of the chemisorption reaction.

Lattice Substitution. The second mechanism whereby the solid surface
may acquire a potential is the situation in which a charge imbalance
arises from lattice substitutions which result in the solid acquir-

ing a fixed surface charge density. The classic example for this me-
chanism is the clay-type minerals (9,10). The constant surface charge
density developed is compensated by interlayer ionic charges (exchange-
able cations) which are released when in contact with water to form the
counterions (11). Unlike the first mechanism, specific chemical in-
teraction, the surface charge on the interlayer surfaces is not deter-
mined by the concentration of exchangeable cations, but is constant.

Hydration of Lattice lons. In the absence of specific chemical inter-
actions and charge deficiency due to lattice substitution, the poten-
tial a surface develops will be determined simply by preferential hy-
dration of surface atoms. |In the case of an ionic solid, the ionic

constituents migrate to establish thermodynamic equilibrium between

the two phases (11). Grimley (12) notes that ionic migration must oc-
cur if the chemical potential for a given ion differs across the inter-
face. He verified the dynamic exchange of ions in the case of an AgBr-
aqueous solution by using radioactive Ag and Br as tracers. Further-
more, in 1943 Langer (13) indicated that the exchange is not confined
to the surface layers of the solid and that slow diffusion into the
bulk solid occurs, creating a space charge distribution in the solid
phase.
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Non-Reactive lonic Solids

Non-reactive ionic solids may acquire their surface charge density
and surface potential by hydration of lattice ions. This mechanism
was first suggested and analyzed by deBruyn and Agar (14) and later by
Roman, Fuerstenau, and Seidel (15). Basically, the argument is that
for simple uni-univalent ionic solids, which must have equal surface
distribution of cation and anion on the cleavage plane, the sign of the
surface potential developed in a saturated solution can be explained
by the relative magnitudes of gaseous hydration free energies, AF”®, of
the ions which constitute the crystal lattice. This concept is demon-
strated for the silver halides as shown in Table 1. The free energies
of hydration of gaseous ions are from Hunt (16).

Table 1. Sign of the Surface Charge for
Silver Halides Predicted by Consideration
of the Hydration Free Energy of Gaseous lons.

pzC -AFh~ -AFh+ Sign of Surface Potential
Salt sp pAg (kcal/mole) (kcal/mole) Predicted Experimental
AgCl 1.6100 4.0 83.0 105.4 Negative  Negative
AgBr T~ ><t'|'§’l—“13 5.4 76.0 105.4 Negative Negative
Agl 1.5x10-M 5.5 66.7 105.4 Negative Negative

Roman, Fuerstenau, and Seidel (15) extended this concept with good
success to explain the surface charge of highly soluble alkali halides.
Of course, with such attendant high ionic strengths in these systems,
direct confirmation of surface potentials was not possible; rather the
sign was inferred from particle-particle interactions and the flotation
response with both anionic and cationic collectors. The inferred signs
of the surface potential compared well with what would be predicted
solely from consideration of the hydration energies of the respective
gaseous ions which constitute the crystal lattice as shown by selected
examples presented in Table 2.

In spite of the good success of this correlation, clearly the ana-
lysis is limited and does not give a realistic representation of the

.-physical system. |If hydration of lattice ions is the only mechanism

of charge generation operative, the physical process of charge genera-
tion may be represented more accurately by considering the relative
energies of the following reactions for a uni-univalent ionic solid,
MX:
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Mrg M AU_ (M) (1)
M+ Mfaq AF, (M+) )
M+ I\/H—aq AG_ (M) (3)

AUsSCM*) and AFh (M+) are the surface binding energy and the gaseous hy-
dration free energy of the cation, M+ AGh(M+) is the hydration free
energy of the surface ion,

AGh M+) = AUS M+) + AFn (M) (4)

Similarly, for the anion X-,

AGh (X-) AUS X_) + AFn (X~) (5)
Depending on whether AGNCM*) or AGft(X ) is more negative, the corres-
ponding ion will hydrate to a greater extent and the surface will ac-
quire the charge of the other ion. It is evident that, if the surface
binding energies, AUS, for cation and anion are equivalent, the dif-
ference in the hydration energies of the respective surface ions is
accounted for by the difference in hydration energies of the gaseous
ions.

Nowj for ionic solids, the surface binding energy, AUS is principal-
ly electrostatic and can be calculated from the coulombic forces of the

Table 2. Sign of the Surface Charge for
Selected Alkali Halides Predicted by Consideration
of the Hydration Free Energies of Gaseous lons.

-AFN -aFh+ Sign °f Surface Charge Inferred
Salt (kcal/mole) (kCal/mole) from Flotation Experiments (15)
NaF 110.0 88.7 Positive
CsF 110.0 58.4 Positive
KCI 83.0 71.3 Positive
LiCl 83.0 112.5 Negative
NaBr 76.0 88.7 Negative
Nal 66.7 88.7 Negative
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crystal lattice which act on the surface ions; provided the lattice
geometry is known and a cleavage plane is identified. The expression
for the lattice energy can be determined from Coulomb's law applied to
the crystal;

AU = -332.57 j z+Z_ kcal/mole (6)

0
where A is the Madelung Constant, rQ is a characteristic dimension of
the unit cell in angstrom units to which A is referred, and Z+, Z_ are

the cationic and anionic valences, respectively. For uni-univalent
ionic solids, the Madelung Constant A is the same for the cation and
the anion, either deep within the crystal or on the natural cleavage
plane. This accounts for the good success in predicting the sign of
the surface potential from hydration free energies of gaseous ions
for simple uni-univalent ionic solids.

Evaluation of the Madelung Constant is not always an easy chore,
especially for semi-infinite lattices. Therefore, before analysis of
non-reactive ionic solids in detail, consider some of the general as-
pects regarding the Madelung Constant and computational techniques
which have been proposed for its evaluation.

Madelung Constant. The potential energy of an ion with charge Z”e in
the field of another ion with charge Zje is given by Coulomb’'s law as;

vV -
where r~j is the separation of the two ions. Consider a linear lat-

tice of alternating positive and negative monovalent ions, infinite
in extent, with nearest neighbor distance r.

The total electrostatic potential energy of an ion at point p in the
field of all the other ions is
2 2 2 2 2 2

U=2(-f-+§z-f§|r:+§F--. ) 7
2e?2 o101
m*+ 3" 4

The term in parentheses can be recognized to converge to loge2

2
- . 2loge2 (8)
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The purely numerical factor 2loge2 is referred to as the Madelung Con-
stant, after the investigator who first evaluated it (17).

At first glance it would seem that the direct summation over the in-
dividual charges could easily be carried out in two or three dimensions
As it turns out such a summation is quite sensitive to the growth geo-
metry imposed by the summation, i.e., the summation series may or may
not converge. Even if the potential sum converges it w ill converge to
a value dependent on the shape of the mathematical crystal when the
summation is stopped. This is attributed to the conditionally con-
vergent nature of the series representing the Madelung Constant. There
are many ways of circumventing this difficulty. Some methods (18, 19,
20,21,22) substitute a continuous distribution of charge for the ions
and employ mathematical manipulations to achieve quick convergence.
Other techniques (23,24) directly sum over neutral groups in the ionic
lattice. Although most of these are ingenious methods, they are dif-
ficult to apply to surfaces (semi-infinite lattice); especially when
the surface is monoionic (consisting of ions of the same charge).

THEORY AND DISCUSSION

A computational technique is described which allows the straight-
forward calculation of Madelung Constants for both infinite and semi-
infinite lattices. The Surface Madelung Constant thus determined may
be used to predict the sign of the surface potential for non-reactive
ionic solids. The silver chloride and calcium fluoride systems are
analyzed taking into consideration the surface binding energies. Even-
tually the analysis may be refined to enable the calculation of points
of zero charge for non-reactive ionic solids.

Computational Technique

Similar to the approach of Evjen (23) and Frank (24), the main object-
ive is to divide the ionic lattice into identical, neutral groups. The
critical feature of the computational technique to be described is
that the selection of neutral groups must be such that the potential
due to each group, or array, at large distances from the reference
point, diminishes faster than can be compensated for by the increasing
number of such groups as the crystal "grows.”" Since the number of
groups Increases with the cube of a linear dimension of the lattice,
it is evident that the potential due to each group must fall off with
the fourth or higher power of its distance from the point at which the
potential is being evaluated in order to assure that the lattice po-
tential sum w ill converge.

To illustrate the potential-distance dependency, consider the
charge array of two members shown on the top of the next page:

SURFACE POTENTIAL— NON-REACTIVE IONIC SOLIDS 73

If £] is the potential at p due to the positive charge at z = s, then
using the cosine law;

; 9
Bl ry Erz + 52 -2 scosO):I'/2 )

If rO>>s, the radical may be expanded in Taylor's series;

r

=& M 4S_cosO + =) 3 cos 0-1_
rOE]' o o Z

3
s ,3 5cos 0-3cosO ,

SO e S (10)

(0]
Similarly, the potential E2 at p due to the negative charge at z = -s
is;

sg = - & [1-S-cosOs (5)° -3c08 0

0 0 0

fs \3 5cos 3Q 3cos8

i~ 2 ’ (11)

Hence the potential at p due to this pair of charges (a dipole) is just

E=FEl+ e2
3

22| cose + — m(5c0s30 - 3co0s9) + (13)
"o "o

terms of even
powers of r

For rQ>>s, only the first term is significant and is called the dipole
potential, and the pair of charges is said to possess a dipole moment.
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It is seen that the potential sum over dipoles would not necessarily
converge because of the slower decay of potential (r—~2) than is re-
quired.

If the array consists of two opposing dipoles on the z axis, the

potential at p is

e = es2 (3c0520—1) + higher order terms (14)

The dipole term vanishes and the array is then said to possess only a
quadrupole moment (a tensor), provided rQ>>s. Again, the potential
sum over quadrupoles would not necessarily converge because the poten-
tial decay is with r~3.

By choosing appropriate numbers of, and charges for the lattice
positions of an array, the monopole, dipole, and quadrupole potential
contribution can be eliminated and the lattice sum of potential will
decay with r~ and become absolutely convergent. The calculations
are much simpler when the charge arrays are linear and symmetric. For
obvious reasons, these arrays shall be referred to as repeating units,
which must be overlapped to reproduce the lattice at macroscopically
interior points.

Infinite Lattice. Now consider the ionic crystals sodium chloride
(fee), cesium chloride (bcc), and calcium fluoride (fee with respect
to calcium and simple cubic with respect to fluoride). The crystal
structures and interatomic spacings are presented in Figure 1, to-
gether with selected repeating units and their direction. The poten-
tial sum over these units is absolutely convergent as dictated by pre-
vious arguments and for a given repeating unit the limit of the sum
is independent of the geometry of growth imposed by the summation pro-
cedure.

The following calculation, for the NaCl repeating unit, illustrates
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how the monopole, dipole, and quadrupole potential contributions are
eliminated and that the lattice sum of potential will converge for
the selected repeating unit.

Expressing all distances (except the interionic spacing s) in terms
of rQ, and using the cosine law and Taylor's expansion as before, the
potential at point p due to each charge is evaluated;

Zoe (15)
o r
zle . s . _ s X2 3cos9-1 , ,s ,3 5c0s38 3osb
ElL=r G+ (r)Xo0+ (7 3} ——2—+(73%} —— 2
(16)
zle . 2s. .. ,2s, 3cos0-1 , ,2s, 5cos 6 3cosb6
E, = [L+ (7-) cos6 + (7-) - ~ + 2
2 ro (0] (0] o
2s J* 35c0s7™8-30c0s28+3 + j (17)
o 8
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e =h? 11 _ (S)cosO + (L)2 3cos28~1 s 3 5cosV3cose
3 . o 0 r 2 r o 2

+ (§ :’\ SScos"e-30cos"O+S

[ ]
0 ° . (18)

_ Z4e [1 _ (?—S)coso’ + (?_5)2 3cos%0—1 (_,_Z)sr,3 5003305058
0 0

, _,'_28,’\ 35c08"0-30c0s20+3 | 1
) g + .
ro

N (19)

The total potential at p is, with z~ =z~ 72 = 7z

m
1l

EO + E1 + E2 + €3 + e4 ~20)

70 <0+ zi +22+ 23+ 246 + 70 [(221+822)(f0)2

CS2--1)] +~ [(2Zr3222) () (3525 -9-30c0s_8+3)]+>> (21)
0 0

Substituting the numerical values for the charges, the first two terms

vanish and for r0>>s;

3e 4 5cos O 30co£s1 0+3 2
e==j- g ) (22)

"o
The potential is seen to be proportional to rO ™ which means that the
potential sum of the selected repeating unit will be absolutely con-
vergent. However, as noted by Harris (25), although the lim it of the
potential sum is unique for a given repeating unit, it is not necessar-
ily the correct Madelung sum.

Any finite sample assembled from repeating units has a surface
possessing a dipole moment per unit area, although the repeat units
themselves have no such moment (no internal dipole contribution to
the lattice sum). The magnitude and sign of the surface dipole mo-
ment is characteristic of the repeating unit. Now, the potential, e,
due to the dipolar surface,“pproaches a limit as the sample grows
indefinitely because the r potential decay from a unit surface di-
pole area is just compensated by the r~ dependence of the surface
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area. For a sufficiently large sample such that the summation has
sufficiently converged, the difference between the direct sum V*
(around the cation, say) and the surface contribution £ must then be
the potential due to an infinite lattice, infinite in the sense of
having no surface. This difference, A, is presumed to be the Made-
lung Constant. Figure 2 and Equation (23) illustrate the point.

V+ = A+ g (23)

Using sodium chloride as an example, V is the direct sum around
the sodium site, A is the Madelung Constant, B is the surface con**
tribution. For the sodium chloride lattice, the Madelung Constant is
the same whether evaluated around a Na+ or Cl- site, whereas the
surface contribution, £, must be equal, but opposite in sign for the
two reference sites. Hence, if V is the direct sum around the CI

site, then

V' = A-? (24)
Adding Equations (23) and (24),

A =j(V+ + V~) (25)

Noting that calcium is divalent and fluoride is monovalent, simi-
lar arguments for calcium fluoride give

A =|-(V+ + 2V_) (26>

In general, for a binary ionic lattice

A = -kmV+ + nV~) (27)
++ o m
o e — |+
+1— — |+
+{— — |+
+| - —1{+
+ +(= -+
+|— — |+
+ |- -+
+ — - van - - —
AH— + 44~
potential due to a potential due to an potential due to a

large assembly of Infinite lattice dipolar surface

repeating units

Figure 2. The converged potential sum for a lattice array of charges
consists of a potential contribution due to an infinite
lattice and a potential contribution due to a dipolar
surface.
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provided m and n have no common factor. Thus, the Madelung Constant

is just half the total of potential sums around each constituent of
an ionic "molecule.”

To test this contention, the repeating units presented in Figure
1 were arranged with respect to selected reference ions in concentric
cubical shells for NaCl and CsCl and rhombohedral shells for CaF2-
The choice of growth shape is Immaterial. A computer was used to
obtain the direct sums, V*- and V-, and the Madelung Constants were
evaluated according to Equation (27). After nine shells, the computed
constant for NaCl was 1.747560™ which compares well with the
accepted value of 1.747564_. For CaF2» *fie computed constant was
2.90914jS_, accurate to six figures. Sometimes the convergence was

quite rapid. Four shell summation for CsCl gave 1.7625., accurate
to four figures.

Semi-Infinite Lattice. Most importantly this computational technique
can be extended to include the determination of the Surface Madelung
Constant for semi-infinite lattices. Consider the simple case of
NaCl. After obtaining the direct sums V+ and V”, the dipolar sur-
face contribution £ is calculated from Equations (23) and (24):

E=y(V+ - VY (28)

Now, let a <100> plane pass through the sodium reference ion. Pro-
ceeding as before, a sum of potentials, Va+, around this surface
sodium ion which excludes the contributions from all points lying

on one side of the plane can be determined. When sufficient conver-
gence is attained, this procedure will exclude exactly half of the
dipolar surface contribution, £. Subtracting hK from Vs+ yields the

Madelung Constant As for a <100> surface sodium ion on a semi-infinite
lattice:

Note that does not include dipole contribution, if any, from the
<100> surface itself. Such a contribution is part of the Surface
Madelung Constant. For NaCl, Equation (29) gives As = 1.66, close to
the value of 1.67 calculated by Levine and Mark (26) with a method
which is applicable only to electroneutral planes such as the NaCl

<100>.

For non-electroneutral surface planes, the method of calculation
of Levine and Mark (26) fails. However, our computational techni-
que involving judicious selection of repeating units should accurate-
ly describe all types of surface planes. Consider the <111> plane of
CaF2 which consists entirely of fluoride ions as shown by the sec-
tioned perspective in Figure 3. Equation (29) easily computes the
Surface Madelung Constants for this surface and gives 1.26 for the
surface fluoride ions and 3.01 for the subsurface calcium ions. No
published values are known for the purpose of comparison.
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Non-Reactive lonic Solids

On the basis of the foregoing computational technique for the deter-
mination of Surface Madelung Constantsj the surface binding energy,
AUS, for both anion and cation can be evaluated from Equation (6)

A .

AU, = - 33257 — ZJ, kcal/mole (6
o

using the appropriate Surface Madelung Constant. The overall energies
for the hydration of surface ions can then be determined according to
Egqs. (4), (5), using appropriate values for the hydration energies A
of gaseous ions as given in the literature (16);

AGh = AFh + AUS (30)
Sign of Surface Potential. Silver chloride in its saturated solution
exhibits a negative surface potential. As mentioned previously, this

has been explained by the more negative hydration free energy of gas-
eous silver ions than that of gaseous chloride ions. This correlation
works fairly well and values for a series of silver halides are pre-
sented in Table 1. If we extend this argument to fluorite, CaF2, the
hydration free energy of gaseous Ca++ (-362 kcal/mole) is more nega-

Figure.3. Perspective of the <111> cleavage surface of fluorite. Top-
most layer is fluoride ions, followed next by a (subsurface)
calcium layer.
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tive than that of F (-110 kcal/mole) [all gaseous hydration free ener-
gies are from ref. 16], which would suggest that in the absence of
specific chemical interactions fluorite should exhibit a negatively
charged surface. However, it has been shown by Miller and Hiskey (27)
that fluorite exhibits a rather large positive surface potential

(C = +60 mv) in the absence of specific chemical interactions (e.g.
surface carbonation).

Consequently, as discussed previously, this simple correlation of
the sign of surface potential with hydration free energies of gaseous
ions is not adequate to explain even on a qualitative basis the ex-
perimental results for a more complex non-reactive ionic solid. Using
the computational technique developed, the Surface Madelung Constants
for the <111> plane of fluorite are 3.01 for Ca'tf and 1.26 for F~ both
referred to the 1.36 angstrom unit distance, which represents one four-
th of the unit cube dimension. From Equation (6) these represent sur-
face binding energies of 1462 kcal/mole for Ca'H* and 615 kcal/mole for
F-. From Equation (30):

AGn (Ca"H") = AF,n (Ca++) + AUS (Ca++)
= -362 + 1462 = 1100 kcal/mole (31)
AG (F~) = AF_(F~) + AU (F
((Fo) = AR (F=) + AU (F.)

-110 + 615 = 505 kcal/mole (32)

the free energy of hydration of the surface fluoride is..more negative
(less positive) than,the free.energy__of_hydration _of. surfac”.calcium.
The fluoride ion should preferentially hydrate and leave a positively
charged CaF2 surface, which.is what has been observed experimentally
(27). On a gqualitative basis it appears that this analysis may be
well suited for understanding the mechanism whereby non-reactive ionic
solids develop a surface potential, provided that hydration of lat-
tice ions is the only charge generation mechanism operative.

Point of Zero Charge. Consideration of surface energy terms should
not only allow the prediction of the sign of the surface potentials
for complex, non-reactive ionic solids in their saturated solution,
but conceivably should allow for the estimation of the PZC by the
use of the following fundamental relationships illustrated for a
uni-univalent ionic solid, MX at its PZC.

M+]a~[X ] = Ksp, solubility product (33)
+ + o .

™M ](K[/[M ]S = KI- equilibrium constant for Equation 2 (34)

[X 1 /[X]a =K_, equilbrium constant for Equation 3 (35)
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[X"] = Qw3g ?zc condition (36)

From these expressions it can be shown for a uni-univalent ionic solid
that the PZC should be, in terms of the cation concentration:

, K K 1/2

For+a case study of a wuni-univalent ionic solid, consider AgClI.
The Ag and Cl~ have identical Madelung Constants on the <111> sur-
face, 1.67 referred to 2.81 Angstrom unit cell side. Thus we have,
in conjunction with hydration free energy data for gaseous ions (16):

AG, (Ag+) = AF_ (Ag+) + AU_ (Ag)

-105.4 + 198.5

93.1 kcal/mole (38)

AG(CI") = -82.9 + 1985 (39)

115.6 kcal/mole

From the relationships:

K+ = e_AGh (As = 7.98 x 1Q-69 (40)

K_ = e"Ach”Cl ~RT = 3.02 x 10"8& (41)

and K = 1.56 x 10_1° (42)
sp

The PZC can be calculated from Equation 37:

in fiQl/2
[Ag+] _ (156x10Z _°_x LiSxIO.:)) . 203QM (43)

aq 3.02x10 ~

which is obviously high by,many orders of magnitude in that the re-
ported PZC for AQCl is (Ag )aq = 10-4M. The PZC calculation is quite
sensitive to the gaseous hydration free energies because of the ex-
ponential relationship. |If the gaseous hydration free energy of sil-
ver ion reported by Roman, et. al. (15), AFjj(Ag+) = -87 kcal/mole, is
used to determine K+ in Equation 40, then:

K+ = 1.57 x 10"64 (44)

and
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[Ag+],, = 398 x 10"4M (45)

which is much closer to the observed PZC.

For CaF2, a MX, non-reactive solid, a parallel calculation for the
PZC in terms of the fluoride ion concentration gives an extremely high
fluoride ion concentration that exceeds physical limits. However, the
unreasonable PZC value does support the experimental observations that
the surface potential of CaF2 is not sensitive to the fluoride ion
concentration even at concentrations of 0.1m.

These calculations indicate that the quantitative analysis of the
surface charge generated by non-reactive ionic solids needs further
refinement. One possible effect which has been neglected in the ana-
lysis is the effect of lattice substitution and defect structure
which appears to be important in the AgCl system (28) but seems to
have no significance in the CaF2 system (29). The analysis presented
in this paper is based on a relatively simple, hard sphere model of
the lattice. Further refinement of the surface binding energy, AUg,
is possible by taking into consideration van der Waals dispersion
forces, repulsion forces, surface relaxation, and ionic deformations.

The more rigorous expression for the interaction of charged spheres
is the extended Born-Mayer equation;

Uy =z~.e”™ .-1 - aRy"6 - bR "8+ ¢ expf-R™/p] (46)

of which only the first term has been considered. The next two terms
are the van der Waals dispersion terms. The last term is the repul-
sive term with adjustable parameters ¢ and p. Al terms, except the
first, converge rapidly and it is necessary to sum only over the
nearest neighbors through the fifth.

Further refinement of the calculation by considering these effects
may allow for the quantitative analysis of non-reactive ionic solids.
Implicit In the PZC calculation is the fact that the ionic surface
state is referred to a vacuum, which is not an accurate representa-
tion. In essence, this means that the Surface Madelung Constant
calculation probably should be modified to take into consideration
the surface hydration force field. Qualitatively, a partially hy-
drated surface ion can result in an increase in the surface bind-
ing energy which corresponds to a decrease in the PZC. Research on
the magnitude of this effect is in progress.

SUMMARY AND CONCLUSIONS

The necessity of considering the binding energy of surface ions
in the analysis of surface charge generation by complex, non-reactive
ionic solids has been demonstrated. The determination of surface
binding energies was made possible by the calculation of Surface
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Madelung Constants with a new, relatively straightforward computational
technique involving direct summation of critically selected neutral
charge arrays. The criterion for the structure of the neutral charge
array is that the charge array has no quadrupole or lower moment po-
tential contribution to the lattice sum of potential. This condition
is sufficient to assure absolute convergence of the lattice sum of po-
tential and the direct determination of Surface Madelung Constants.
Further refinement of the analysis appears to be required in order to
quantitatively determine the point of zero charge for non-reactive
ionic solids.
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