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Flies are apable of rapid, oordinated ight through unstrutured environments. This ight is guided by
visual motion information that is extrated from photoreeptors in a robust manner. One feature of the y's
visual proessing that adds to this robustness is the saturation of wide-�eld motion-sensitive neuron responses
with inreasing pattern size. This makes the ell's responses less dependent on the sparseness of the optial ow
�eld while retaining motion information. By implementing a ompartmental neuronal model in silion, we add
this \gain ontrol" to an existing analog VLSI model of y vision. This results in enhaned performane in a
ompat, low-power CMOS motion sensor. Our silion system also demonstrates that modern, biophysially-
detailed models of neural sensory proessing systems an be instantiated in VLSI hardware.

1 Introdution

When building a visual motion sensor for the real
world, one must ope with the sparseness of optial
ow �elds. Many parts of the visual �eld are feature-
less, and produe no motion information. When es-
timating self-rotation, for example, one would like to
extrat information based on wide-�eld motion that
is robust against these gaps.

Flies have developed a remarkably elegant method
for dealing with optial ow sparseness. The opti
lobe in the brain of the y ontains several wide-
�eld motion-sensitive neurons that integrate motion
information from many elementary motion detetors
(EMDs) in large reeptive �elds to produe estima-
tions of self-rotation [4℄. These neurons have been
studied for deades, and muh is known about their
response properties. One property exhibited by some
of these ells is alled gain ontrol, and seems to make
the sensory response robust against gaps in the opti-
al ow �eld.

Gain ontrol desribes the saturating response of
these motion-sensitive ells with inreasing stimulus
size (see Figure 1). As the extent of the stimulat-
ing pattern aross the visual reeptive �eld inreases
linearly, the response of the ell saturates, but it sat-
urates at di�erent levels for di�erent stimulus veloi-
ties. This annot be explained by a simple saturating
output hannel. The wide-�eld motion-sensitive neu-

ron is integrating motion information spatially, but
this integration is nonlinear.

This size-dependent saturation assures that at rea-
sonably high levels of stimulation, the ell is not sen-
sitive to gaps in the opti ow �eld. (Featureless
parts of the visual sene derease the e�etive stim-
ulus size.) The ell now enodes the stimulus velo-
ity, whih in this ase may represent a measure of
self-rotation, largely independent of the visual sparse-
ness of the environment. We investigated the biologi-
al mahinery underlying this sensory proessing, and
translated it to silion in the form of a ompat, low-
power neuromorphi analog VLSI system.

2 Algorithm and Biologial Arhiteture

The neural arhiteture and biophysial mehanisms
underlying gain ontrol in the y are now under-
stood [2℄, [6℄. Simple linear models of spatial inte-
gration result in an output that is linearly dependent
on stimulus size (see Figure 2a). Size-dependent sat-
uration omes about if we use a more aurate model
of the wide-�eld motion-sensitive neuron (see Fig-
ure 2b). In this model, the EMD outputs are not
diretly onveyed to the wide-�eld neuron. Instead,
the EMDs modulate synapses, whih are modeled
as ondutanes between the intraellular potential
and a �xed ion reversal potential. Depending on the
type of ion involved, the reversal potential an be
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Figure 1. Gain Control in a Wide-Field Motion-Sensitive Neu-
ron in the Fly. The ell response saturates with inreasing
pattern size, and saturates at di�erent levels depending on the
stimulus veloity (v1 = 72Æ/se; v2 = 360Æ/se). Stimulus was
a sinusoidal grating with spatial wavelength of 24Æ and 29%
ontrast. Data represent mean � SEM of extraellular reord-
ings from the lobula plate spiking neuron H1 of four di�erent
female blowies (Calliphora erythroephala). Data reprinted
from [6℄.

above or below the resting potential of the ell, re-
ating exitatory or inhibitory synapses. We onnet
preferred-diretion EMDs to exitatory synapses and
null-diretion EMDs to inhibitory synapses. Eah
EMD modulates its orresponding ion hannel on-
dutane, whih ats to pull the ell away from its
resting potential, where it is held by the �xed leakage
ondutane grest.

If we measure all voltages relative the the ell rest-
ing potential Vrest, then the ell potential an be ex-
pressed as:

Vell =
gexVex + ginhVinh

gex + ginh + grest
(1)

Here, Vex and Vinh represent the ion reversal po-
tentials, and gex and ginh represent the ion hannel
ondutanes, whih are ontrolled by the preferred-
diretion and null-diretion EMD outputs. Thus Vell
saturates at Vex for gex � ginh; grest, and saturates
at Vinh for ginh � gex; grest.

To generate gain ontrol, this method of spatial in-
tegration relies on the partiular arhiteture of the
EMD. The Reihardt-type orrelation-based EMD
exhibits only weak diretion seletivity and produes
a signi�ant but weaker response for stimuli in its null
diretion. Strong diretionally seletivity is ahieved
only after the EMD opponent pair signals are sub-
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Figure 2. Models of Wide-Field Motion-Sensitive Neurons in
the Fly. a) Linear spatial integration. An array of Reihardt-
type delay-and-orrelate elementary motion detetor (EMD)
opponent pairs are subtrated loally to ahieve strong dire-
tion seletivity. The spatially distributed outputs are summed.
b) Nonlinear spatial integration. EMD opponent pairs mod-
ulate exitatory and inhibitory synapti ondutanes of the
wide-�eld neuron. EMD ativity an pull the neuron away
from its resting potential Vrest.
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Figure 3. Variable Condutane Ciruits. a) Four-transistor
follower. The output node is driven towards the potential at
Vin. The output ondutane of this iruit is proportional to
the bias urrent Ib. b) Six-transistor follower. Same behavior
as the four-transistor iruit, but soure-degeneration diode-
onneted transistors double the iruit's linear range.

trated [1℄. Importantly, it has been demonstrated
that the degree of diretional seletivity is itself a
funtion of stimulus veloity [2℄. Thus, a partiular
stimulus veloity will generate a harateristi ratio
of preferred-diretion to null-diretion EMD output.
This in turn will lead to a harateristi voltage that
the ell is driven towards. We an rewrite Equation 1
as:

Vell = Vstimulus

�
gstimulus

gstimulus + grest

�
(2)

Where:

Vstimulus =
gexVex + ginhVinh

gex + ginh
(3)

gstimulus = gex + ginh (4)

Sine ondutanes sum in parallel, a larger pat-
tern size will ause more EMD opponent pairs to be
ative, produing a larger gstimulus and driving Vell
away from Vrest and towards the Vstimulus that is
harateristi of the stimulus veloity.

3 Silion Implementation

We have previously developed an analog VLSI ir-
uit that models the Reihardt-type EMD shown in
Figure 2 [3℄. These delay-and-orrelate motion dete-
tors exhibit spatiotemporal and diretional responses
similar to those studied in the y. The EMD ir-
uits produe urrent-mode outputs, whih allowed
us easily to sum the outputs of an EMD array sim-
ply by tying the wires together. But as we have seen,
this linear integration aross a reeptive �eld does not

produe a saturating size response. To produe this
response, we developed a silion implementation of
the biophysial model shown in Figure 2b.

The silion implementation of exitatory and in-
hibitory synapti ondutanes onsumes little silion
area or power. To ahieve a variable ondutane,
we use a di�erential transondutane ampli�er in a
follower on�guration (i.e., the output diretly on-
neted to the negative input) so that the output node
is driven toward the input voltage (see Figure 3a) [5℄.
As long as the follower is operated in the subthreshold
regime (Ib < 100 nA) and in the linear region of oper-
ation (the input and the output voltages di�er by less
than 75 mV) the iruit has an output ondutane
gout, whih is given by:

gout =
�Iout

�Vout
=

q�

2kT
Ib (5)

Where � is the bak-gate oeÆient, a CMOS pro-
ess parameter that typially has a value lose to
0.7. If we assume onstant temperature, the iruit
produes an output ondutane proportional to the
bias urrent Ib, approximately g = (14 V�1)Ib at
room temperature. By adding two additional diode-
onneted transistors in a soure-degeneration on�g-
uration [7℄, we extend the linear range of this iruit
from �75 mV to �150 mV (see Figure 3b).

We use this six-transistor iruit to model a pop-
ulation of ion hannels whose ion reversal potential
is spei�ed by the input voltage. Thus eah om-
partment of our ell has three ion hannel popula-
tions modeled by three follower iruits. One hannel
has a onstant ondutane grest and sets the rest-
ing potential of the ell, Vrest. The other two model
the exitatory and inhibitory inputs from the loal
opponent pair of EMDs. These ondutanes, gex
and ginh, are ontrolled by the preferred- and null-
diretion EMDs and have reversal potentials above
(Vex) and below (Vinh) the resting potential, respe-
tively. The urrent-mode output of eah EMD di-
retly biases a variable ondutane iruit.

4 Experiments

We fabriated a one-dimensional array of 28 ompart-
ments in a standard 1.2-�m CMOS VLSI proess.
Eah ompartment ontained a preferred- and null-
diretion EMD and the orresponding variable on-
dutane iruits desribed above. The hip inluded
integrated photoreeptors, so imaging and omputa-
tion were performed on a single die. We mounted
a standard 4 mm CCTV amera lens over the hip,
whih gave the photoreeptors an angular spaing of



0.73Æ. We presented high-ontrast drifting sinusoidal
stimuli to the hip with a omputer monitor (Sony
Multisan 17seII). We were able to ahieve frame
rates of 70 Hz, and sreen resolution far exeeding
the photoreeptor spaing.

We varied the extent of our stimulus aross the
hip's �eld of view. (All sizes are expressed as the
fration of the photoreeptor array that was stimu-
lated.) First we investigated the behavior of the lin-
ear spatial summation arhiteture, ahieved simply
by tying together the output urrents of all the EMDs
in the array (see Figure 4a). The output inreases
linearly with pattern size. Next we investigated non-
linear spatial integration by direting the EMD out-
put urrents to the variable ondutane iruits.
We measured the voltage of our 28-ompartment ell
model as a funtion of pattern size (see Figure 4b).
The ell response saturates with inreasing pattern
size. We also see that it saturates at di�erent levels
for di�erent veloities.

We an ontrol the nature of this saturation by
inreasing or dereasing grest, the ondutane that
tries to hold the ell at the resting potential. We
investigated pattern size saturation for three di�erent
values of grest (see Figure 5). As grest dereases, it
beomes easier to pull the ell away from Vrest and
only a few EMD opponent pairs need ontribute to
dominate the response. Rapid saturation dereases
pattern size dependene but inreases the sensitivity
of the hip to small-�eld motion that might not be
produed by self-motion.

This method for ahieving gain ontrol is extremely
power eÆient. Sine the exitatory and inhibitory
synapses are powered by the urrent-mode output of
the existing EMD iruitry, the only power ost we in-
ur for adding gain ontrol is the power onsumed by
the leakage ondutane grest, whih is simply VddIb.
For the experiments shown in Figure 5, this power
varied between 14 pW and 5.4 nW per ompartment,
depending on the value of grest. This is negligible
when ompared to the �10 �W onsumed by the
EMD iruitry.

5 Conlusions

We developed and implemented a neuromorphi vi-
sual motion sensor with improved robustness against
the sparseness ommonly found in real-world opti-
al ow �elds. This robustness is exhibited in a re-
sponse whih saturates with inreasing pattern size,
yet retains information on the stimulus veloity. This
gain ontrol is ahieved by adapting to silion a more
biophysially-realisti model of the underlying neu-

Figure 4. Gain Control in the Silion System. a) Linear spa-
tial integration. The outputs from the EMD array are summed;
gain ontrol is not observed. b) Nonlinear spatial integration
with synapti ondutanes. As is the biologial system, the
hip response saturates with inreasing pattern size, and sat-
urates at di�erent levels depending on the stimulus veloity
(v1 = 8:8Æ/se; v2 = 4:4Æ/se). The ion reversal potentials
were Vex = +150 mV; Vinh = �80 mV relative to Vrest.
The asymmetry was neessary to ounterat observed transis-
tor mismath. Stimulus was a sinusoidal grating with spatial
wavelength of 2:9Æ and >99% ontrast. Data represent mean
output during stimulus presentation.
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Figure 5. Varying leakage ondutane. The degree of satura-
tion an be tuned by hanging the leakage ondutane. Data
are normalized for eah value of grest (g1 = (26 G
)�1; g2 =
(1:0 G
)�1; g3 = (0:10 G
)�1).

ral omputation. We built a ompartmental model of
a neuron in hardware, and used the properties this
system to improve our sensory proessing. This rep-
resents a signi�ant advane towards building small,
low-power sensors that extrat useful information
from the real world in a robust manner.

The addition of this iruit to our existing EMD
iruits (see [3℄) advanes our analog VLSI model of
the y's visual system. While analog hardware mod-
els lak the high preision of software simulations,
they are physially instantiated and ompute in real
time. Thus they an be tested and evaluated in real-
world situations. These advantages may prove impor-
tant as neural models of sensorimotor systems grow
more omplex.
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