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Flies are 
apable of rapid, 
oordinated 
ight through unstru
tured environments. This 
ight is guided by
visual motion information that is extra
ted from photore
eptors in a robust manner. One feature of the 
y's
visual pro
essing that adds to this robustness is the saturation of wide-�eld motion-sensitive neuron responses
with in
reasing pattern size. This makes the 
ell's responses less dependent on the sparseness of the opti
al 
ow
�eld while retaining motion information. By implementing a 
ompartmental neuronal model in sili
on, we add
this \gain 
ontrol" to an existing analog VLSI model of 
y vision. This results in enhan
ed performan
e in a

ompa
t, low-power CMOS motion sensor. Our sili
on system also demonstrates that modern, biophysi
ally-
detailed models of neural sensory pro
essing systems 
an be instantiated in VLSI hardware.

1 Introdu
tion

When building a visual motion sensor for the real
world, one must 
ope with the sparseness of opti
al

ow �elds. Many parts of the visual �eld are feature-
less, and produ
e no motion information. When es-
timating self-rotation, for example, one would like to
extra
t information based on wide-�eld motion that
is robust against these gaps.

Flies have developed a remarkably elegant method
for dealing with opti
al 
ow sparseness. The opti

lobe in the brain of the 
y 
ontains several wide-
�eld motion-sensitive neurons that integrate motion
information from many elementary motion dete
tors
(EMDs) in large re
eptive �elds to produ
e estima-
tions of self-rotation [4℄. These neurons have been
studied for de
ades, and mu
h is known about their
response properties. One property exhibited by some
of these 
ells is 
alled gain 
ontrol, and seems to make
the sensory response robust against gaps in the opti-

al 
ow �eld.

Gain 
ontrol des
ribes the saturating response of
these motion-sensitive 
ells with in
reasing stimulus
size (see Figure 1). As the extent of the stimulat-
ing pattern a
ross the visual re
eptive �eld in
reases
linearly, the response of the 
ell saturates, but it sat-
urates at di�erent levels for di�erent stimulus velo
i-
ties. This 
annot be explained by a simple saturating
output 
hannel. The wide-�eld motion-sensitive neu-

ron is integrating motion information spatially, but
this integration is nonlinear.

This size-dependent saturation assures that at rea-
sonably high levels of stimulation, the 
ell is not sen-
sitive to gaps in the opti
 
ow �eld. (Featureless
parts of the visual s
ene de
rease the e�e
tive stim-
ulus size.) The 
ell now en
odes the stimulus velo
-
ity, whi
h in this 
ase may represent a measure of
self-rotation, largely independent of the visual sparse-
ness of the environment. We investigated the biologi-

al ma
hinery underlying this sensory pro
essing, and
translated it to sili
on in the form of a 
ompa
t, low-
power neuromorphi
 analog VLSI system.

2 Algorithm and Biologi
al Ar
hite
ture

The neural ar
hite
ture and biophysi
al me
hanisms
underlying gain 
ontrol in the 
y are now under-
stood [2℄, [6℄. Simple linear models of spatial inte-
gration result in an output that is linearly dependent
on stimulus size (see Figure 2a). Size-dependent sat-
uration 
omes about if we use a more a

urate model
of the wide-�eld motion-sensitive neuron (see Fig-
ure 2b). In this model, the EMD outputs are not
dire
tly 
onveyed to the wide-�eld neuron. Instead,
the EMDs modulate synapses, whi
h are modeled
as 
ondu
tan
es between the intra
ellular potential
and a �xed ion reversal potential. Depending on the
type of ion involved, the reversal potential 
an be
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Figure 1. Gain Control in a Wide-Field Motion-Sensitive Neu-
ron in the Fly. The 
ell response saturates with in
reasing
pattern size, and saturates at di�erent levels depending on the
stimulus velo
ity (v1 = 72Æ/se
; v2 = 360Æ/se
). Stimulus was
a sinusoidal grating with spatial wavelength of 24Æ and 29%

ontrast. Data represent mean � SEM of extra
ellular re
ord-
ings from the lobula plate spiking neuron H1 of four di�erent
female blow
ies (Calliphora erythro
ephala). Data reprinted
from [6℄.

above or below the resting potential of the 
ell, 
re-
ating ex
itatory or inhibitory synapses. We 
onne
t
preferred-dire
tion EMDs to ex
itatory synapses and
null-dire
tion EMDs to inhibitory synapses. Ea
h
EMD modulates its 
orresponding ion 
hannel 
on-
du
tan
e, whi
h a
ts to pull the 
ell away from its
resting potential, where it is held by the �xed leakage

ondu
tan
e grest.

If we measure all voltages relative the the 
ell rest-
ing potential Vrest, then the 
ell potential 
an be ex-
pressed as:

V
ell =
gex
Vex
 + ginhVinh

gex
 + ginh + grest
(1)

Here, Vex
 and Vinh represent the ion reversal po-
tentials, and gex
 and ginh represent the ion 
hannel

ondu
tan
es, whi
h are 
ontrolled by the preferred-
dire
tion and null-dire
tion EMD outputs. Thus V
ell
saturates at Vex
 for gex
 � ginh; grest, and saturates
at Vinh for ginh � gex
; grest.

To generate gain 
ontrol, this method of spatial in-
tegration relies on the parti
ular ar
hite
ture of the
EMD. The Rei
hardt-type 
orrelation-based EMD
exhibits only weak dire
tion sele
tivity and produ
es
a signi�
ant but weaker response for stimuli in its null
dire
tion. Strong dire
tionally sele
tivity is a
hieved
only after the EMD opponent pair signals are sub-
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Figure 2. Models of Wide-Field Motion-Sensitive Neurons in
the Fly. a) Linear spatial integration. An array of Rei
hardt-
type delay-and-
orrelate elementary motion dete
tor (EMD)
opponent pairs are subtra
ted lo
ally to a
hieve strong dire
-
tion sele
tivity. The spatially distributed outputs are summed.
b) Nonlinear spatial integration. EMD opponent pairs mod-
ulate ex
itatory and inhibitory synapti
 
ondu
tan
es of the
wide-�eld neuron. EMD a
tivity 
an pull the neuron away
from its resting potential Vrest.
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Figure 3. Variable Condu
tan
e Cir
uits. a) Four-transistor
follower. The output node is driven towards the potential at
Vin. The output 
ondu
tan
e of this 
ir
uit is proportional to
the bias 
urrent Ib. b) Six-transistor follower. Same behavior
as the four-transistor 
ir
uit, but sour
e-degeneration diode-

onne
ted transistors double the 
ir
uit's linear range.

tra
ted [1℄. Importantly, it has been demonstrated
that the degree of dire
tional sele
tivity is itself a
fun
tion of stimulus velo
ity [2℄. Thus, a parti
ular
stimulus velo
ity will generate a 
hara
teristi
 ratio
of preferred-dire
tion to null-dire
tion EMD output.
This in turn will lead to a 
hara
teristi
 voltage that
the 
ell is driven towards. We 
an rewrite Equation 1
as:

V
ell = Vstimulus

�
gstimulus

gstimulus + grest

�
(2)

Where:

Vstimulus =
gex
Vex
 + ginhVinh

gex
 + ginh
(3)

gstimulus = gex
 + ginh (4)

Sin
e 
ondu
tan
es sum in parallel, a larger pat-
tern size will 
ause more EMD opponent pairs to be
a
tive, produ
ing a larger gstimulus and driving V
ell
away from Vrest and towards the Vstimulus that is

hara
teristi
 of the stimulus velo
ity.

3 Sili
on Implementation

We have previously developed an analog VLSI 
ir-

uit that models the Rei
hardt-type EMD shown in
Figure 2 [3℄. These delay-and-
orrelate motion dete
-
tors exhibit spatiotemporal and dire
tional responses
similar to those studied in the 
y. The EMD 
ir-

uits produ
e 
urrent-mode outputs, whi
h allowed
us easily to sum the outputs of an EMD array sim-
ply by tying the wires together. But as we have seen,
this linear integration a
ross a re
eptive �eld does not

produ
e a saturating size response. To produ
e this
response, we developed a sili
on implementation of
the biophysi
al model shown in Figure 2b.

The sili
on implementation of ex
itatory and in-
hibitory synapti
 
ondu
tan
es 
onsumes little sili
on
area or power. To a
hieve a variable 
ondu
tan
e,
we use a di�erential trans
ondu
tan
e ampli�er in a
follower 
on�guration (i.e., the output dire
tly 
on-
ne
ted to the negative input) so that the output node
is driven toward the input voltage (see Figure 3a) [5℄.
As long as the follower is operated in the subthreshold
regime (Ib < 100 nA) and in the linear region of oper-
ation (the input and the output voltages di�er by less
than 75 mV) the 
ir
uit has an output 
ondu
tan
e
gout, whi
h is given by:

gout =
�Iout

�Vout
=

q�

2kT
Ib (5)

Where � is the ba
k-gate 
oeÆ
ient, a CMOS pro-

ess parameter that typi
ally has a value 
lose to
0.7. If we assume 
onstant temperature, the 
ir
uit
produ
es an output 
ondu
tan
e proportional to the
bias 
urrent Ib, approximately g = (14 V�1)Ib at
room temperature. By adding two additional diode-

onne
ted transistors in a sour
e-degeneration 
on�g-
uration [7℄, we extend the linear range of this 
ir
uit
from �75 mV to �150 mV (see Figure 3b).

We use this six-transistor 
ir
uit to model a pop-
ulation of ion 
hannels whose ion reversal potential
is spe
i�ed by the input voltage. Thus ea
h 
om-
partment of our 
ell has three ion 
hannel popula-
tions modeled by three follower 
ir
uits. One 
hannel
has a 
onstant 
ondu
tan
e grest and sets the rest-
ing potential of the 
ell, Vrest. The other two model
the ex
itatory and inhibitory inputs from the lo
al
opponent pair of EMDs. These 
ondu
tan
es, gex

and ginh, are 
ontrolled by the preferred- and null-
dire
tion EMDs and have reversal potentials above
(Vex
) and below (Vinh) the resting potential, respe
-
tively. The 
urrent-mode output of ea
h EMD di-
re
tly biases a variable 
ondu
tan
e 
ir
uit.

4 Experiments

We fabri
ated a one-dimensional array of 28 
ompart-
ments in a standard 1.2-�m CMOS VLSI pro
ess.
Ea
h 
ompartment 
ontained a preferred- and null-
dire
tion EMD and the 
orresponding variable 
on-
du
tan
e 
ir
uits des
ribed above. The 
hip in
luded
integrated photore
eptors, so imaging and 
omputa-
tion were performed on a single die. We mounted
a standard 4 mm CCTV 
amera lens over the 
hip,
whi
h gave the photore
eptors an angular spa
ing of



0.73Æ. We presented high-
ontrast drifting sinusoidal
stimuli to the 
hip with a 
omputer monitor (Sony
Multis
an 17seII). We were able to a
hieve frame
rates of 70 Hz, and s
reen resolution far ex
eeding
the photore
eptor spa
ing.

We varied the extent of our stimulus a
ross the

hip's �eld of view. (All sizes are expressed as the
fra
tion of the photore
eptor array that was stimu-
lated.) First we investigated the behavior of the lin-
ear spatial summation ar
hite
ture, a
hieved simply
by tying together the output 
urrents of all the EMDs
in the array (see Figure 4a). The output in
reases
linearly with pattern size. Next we investigated non-
linear spatial integration by dire
ting the EMD out-
put 
urrents to the variable 
ondu
tan
e 
ir
uits.
We measured the voltage of our 28-
ompartment 
ell
model as a fun
tion of pattern size (see Figure 4b).
The 
ell response saturates with in
reasing pattern
size. We also see that it saturates at di�erent levels
for di�erent velo
ities.

We 
an 
ontrol the nature of this saturation by
in
reasing or de
reasing grest, the 
ondu
tan
e that
tries to hold the 
ell at the resting potential. We
investigated pattern size saturation for three di�erent
values of grest (see Figure 5). As grest de
reases, it
be
omes easier to pull the 
ell away from Vrest and
only a few EMD opponent pairs need 
ontribute to
dominate the response. Rapid saturation de
reases
pattern size dependen
e but in
reases the sensitivity
of the 
hip to small-�eld motion that might not be
produ
ed by self-motion.

This method for a
hieving gain 
ontrol is extremely
power eÆ
ient. Sin
e the ex
itatory and inhibitory
synapses are powered by the 
urrent-mode output of
the existing EMD 
ir
uitry, the only power 
ost we in-

ur for adding gain 
ontrol is the power 
onsumed by
the leakage 
ondu
tan
e grest, whi
h is simply VddIb.
For the experiments shown in Figure 5, this power
varied between 14 pW and 5.4 nW per 
ompartment,
depending on the value of grest. This is negligible
when 
ompared to the �10 �W 
onsumed by the
EMD 
ir
uitry.

5 Con
lusions

We developed and implemented a neuromorphi
 vi-
sual motion sensor with improved robustness against
the sparseness 
ommonly found in real-world opti-

al 
ow �elds. This robustness is exhibited in a re-
sponse whi
h saturates with in
reasing pattern size,
yet retains information on the stimulus velo
ity. This
gain 
ontrol is a
hieved by adapting to sili
on a more
biophysi
ally-realisti
 model of the underlying neu-

Figure 4. Gain Control in the Sili
on System. a) Linear spa-
tial integration. The outputs from the EMD array are summed;
gain 
ontrol is not observed. b) Nonlinear spatial integration
with synapti
 
ondu
tan
es. As is the biologi
al system, the

hip response saturates with in
reasing pattern size, and sat-
urates at di�erent levels depending on the stimulus velo
ity
(v1 = 8:8Æ/se
; v2 = 4:4Æ/se
). The ion reversal potentials
were Vex
 = +150 mV; Vinh = �80 mV relative to Vrest.
The asymmetry was ne
essary to 
ountera
t observed transis-
tor mismat
h. Stimulus was a sinusoidal grating with spatial
wavelength of 2:9Æ and >99% 
ontrast. Data represent mean
output during stimulus presentation.
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Figure 5. Varying leakage 
ondu
tan
e. The degree of satura-
tion 
an be tuned by 
hanging the leakage 
ondu
tan
e. Data
are normalized for ea
h value of grest (g1 = (26 G
)�1; g2 =
(1:0 G
)�1; g3 = (0:10 G
)�1).

ral 
omputation. We built a 
ompartmental model of
a neuron in hardware, and used the properties this
system to improve our sensory pro
essing. This rep-
resents a signi�
ant advan
e towards building small,
low-power sensors that extra
t useful information
from the real world in a robust manner.

The addition of this 
ir
uit to our existing EMD

ir
uits (see [3℄) advan
es our analog VLSI model of
the 
y's visual system. While analog hardware mod-
els la
k the high pre
ision of software simulations,
they are physi
ally instantiated and 
ompute in real
time. Thus they 
an be tested and evaluated in real-
world situations. These advantages may prove impor-
tant as neural models of sensorimotor systems grow
more 
omplex.
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