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ABSTRACT 

 

There are many applications in MRI where it is desirable to have 

high spatial and high temporal resolution. This can be achieved by 

undersampling of k-space and requires special techniques for 

reconstruction. Even if undersampling artifacts are removed, 

sharpness of the edges can be a problem. We propose a new 

technique that uses the gradient from a reference image to improve 

the quality of the edges in the reconstructed image along with a 

spatio-temporal constraint to reduce aliasing artifacts and noise.  

The reference is created from undersampled dynamic data by 

combining several adjacent frames. The method was tested on 

undersampled radial DCE MRI data with little respiratory motion. 

The proposed method was compared to reconstruction using the 

spatio-temporal constrained reconstruction. Sharper edges and an 

increase in the contrast was observed by using the proposed 

method. 

Index Terms— DCE MRI, reconstruction, regularization, 

PDE. 

 

1. INTRODUCTION 

 

Dynamic Contrast Enhanced (DCE) MRI is used to track changes 

in an organ or area of interest over time. A contrast agent is 

injected and a series of k-space data is acquired over time. Spatio-

temporal resolution is limited since relatively rapid tracking of the 

contrast agent is necessary. Improved resolution is possible from 

undersampled k-space data, although this results in artifacts in 

accordance with Shannon/Nyquist sampling theorem. When some 

prior information about the image is available and appropriately 

incorporated into the reconstruction, accurate reconstruction may 

still be possible even when the sampling theorem is violated.  

Methods such as keyhole imaging [1,2] and reduced–encoding 

MRI imaging with generalized-series reconstruction (RIGR) [3-4] 

assume that in a dynamic sequence of images the high frequency 

data remains static while only the low frequency data changes. 

Hence only low frequency data is acquired rapidly once a 

completely sampled k-space frame has been acquired. However, in 

most cases, the assumption about static high frequency content is 

not accurate. Other methods like highly constrained back 

projection reconstruction (HYPR) [5] use a composite image to 

improve the sharpness of the edges in the reconstructed image. 

Recently a Temporally Constrained Reconstruction (TCR) [6] and 

subsequently a Spatio-Temporal Constrained Reconstruction 

(STCR) [7,8] was proposed to reconstruct sparse myocardial 

perfusion data with some respiratory motion. We propose to extend 

the STCR method [7,8] to achieve sharper edges by incorporating 

an edge enhancement function based on a reference image. The 

new method is termed Edge Enhanced Spatio-Temporal 

Constrained Reconstruction (EESTCR). We demonstrate the 

method on simulated and acquired radial k-space data.   

 

2. METHODS   

 

2.1 Theory 

 

Artifacts that occur due to reconstruction from sparse k-space data 

can be removed by using a priori information about the fully  

sampled data incorporated as constraints into a regularization 

framework as defined in [6,7,8]. Here the cost function is extended 

to handle the spatial regularization by minimizing the cost function 

C given by 

 

                           (1) 

 
where  represents the estimated complex image data,  is the 

fidelity to the acquired sparse data, T the temporal constraint and S 

and E represent the spatial gradient constraint and the proposed 

edge constraint, respectively. The fidelity term is given by 

 where ||.||2  represents the L2 norm, F is the Fourier 

transform operator, W is the binary sparsifying pattern used to 

obtain the sparse data from full data, and  is the acquired sparse 

k-space data. The temporal regularization term is a total variation 

in time penalty [8] given by where  is the temporal 

gradient operator and N is the total number of pixels in each time 

frame and mi  represents the time curve of pixel i. The spatial 

regularization term S is a spatial total variation (TV) penalty [7,8] 

given by  where ||.||1 represents the L1 

norm, M the total number of time frames, �x and �y represent the 

spatial gradients along x and y direction respectively and ✁ is a 

small positive constant on the order of machine precision [7,8]. To 

improve the sharpness of the edges we propose to add the edge 

constraint given by  where Ir is the reference 

image, �xy is the spatial gradient, and ✂ is a spatially varying 

weight defined as , ✄ is a constant. ☎1,☎2 

and ☎3 are weights that control the amount of spatial TV 

regularization, temporal regularization and the gradient matching 

term respectively.  

The term  is used to match the gradients of the 

reconstructed image and the gradients of the reference image that 

correspond to edges. The function ✂ is used to form a map of the 

strength of the edges in the reference image. The term (1-✂) is 

used to control the influence of the TV minimization at areas 

where the gradient of the reference image is very large. At such 

points, the value of ✂ is close to 1 and hence (1-✂) is almost zero. 

This prevents the influence of TV minimization at sharp edges 
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where only the edge matching function would take effect, avoiding 

smoothing of edges due to spatial regularization. This leads to 

improvement of the sharpness of the edges by the edge constraint 

and at the same time the streaking and noise are removed by the 

spatial and temporal regularization terms. Reconstruction is 

performed by minimizing the cost function, C, given by 

 
    

                           (2) 

        

Here the reference frame Ir is created from the undersampled 

dynamic data. Several adjacent frames are combined as described 

below to obtain a fully sampled image with enough edge 

information to be utilized by the edge enhancement function. 

 

2.2. Myocardial perfusion data 

 

The method was first tested on radial data simulated from full k-

space Cartesian data. Only the spatial term, fidelity term and edge 

enhancement term (without temporal constraint) were used in order 

to study the effects of the edge enhancement function. This 

simulation helped in understanding the edge enhancement function 

better. The method was also tested on acquired undersampled 

radial data with all four constraints (fidelity, spatial, temporal and 

edge constraint). Both Cartesian and radial data perfusion data 

were obtained from a Siemens Trio 3T scanner with a phased array 

cardiac coil. For both Cartesian and radial data, a saturation 

recovery turbo flash sequence with TR/TE~(2.5/1.4) msec, with a 

12 degree flip angle, and 8 mm slice thickness was used.   

To simulate the undersampled radial acquisition from the Cartesian 

data, 24 equiangular rays were created from the Cartesian samples. 

Edge enhanced spatially constrained reconstruction (EESCR) was 

performed on the simulated radial data by setting �1 to zero and 

choosing �2 and �3 empirically to give good image quality. The 

choice of ✁ was based on the edge map from the reference image 

itself i.e. by looking at ✂ as shown in Figure 1. A  ✁ value that 

appeared to give the sharpest edges was used. Full k-space data for 

the reference image was created by using 96 equi-angular radial 

lines from the Cartesian data using a binary mask. 96 lines were 

chosen because the IFT closely matched that of the full k-space 

data [7]. The binary mask used to simulate undersampled radial 

data was rotated by a random angle for different time frames. 

For the acquired 24 ray radial data case, fully sampled data for the 

reference frame was created from the last 4 time frames. The 

acquisition used a start angle offset of 180/96° that repeated every 

four frames, so that a combination of four frames gave 96 unique 

equiangular rays. The parameters for EESTCR were chosen based 

on the results from a training dataset. The regularization weights 

were chosen as �1=0.05, �2=0.005, and �3=0.05. The step size for 

the gradient descent was fixed at 0.05 and 150 iterations were 

performed to minimize the cost function C. For the edge function 

✂, the value of ✁ was chosen as ✁=0.02. As discussed in [7,8] the 

regularization weights were robust to slight perturbations. We 

found that for a given type of acquisition and undersampling the 

values of �1, �2, �3 and ✁ did not change significantly.  

 

 

 

 

 

 

 

3. RESULTS 

 

3.1. Edge Enhanced Spatially Constrained Reconstruction 

(EESCR) using simulated radial data  

 

The reference image, the IFT of the simulated under-sampled 

radial data, the edge function ✂, and the reconstructed image using 

EESCR are shown in Fig 2. As seen in the IFT, because the higher 

frequencies have been undersampled the most, the edges appear 

smooth. The edge enhancement function seeks to improve the 

quality of these smooth edges by making them sharper using the 

edge function and the edge map. A comparison between the IFT 

and the EESCR image shows that the EESCR image has much 

sharper edges. Since EESCR uses no temporal constraint, each 

reconstructed frame is independent of the others and has low 

computational cost relative to reconstructing all of the frames 

simultaneously. 

 

3.2. Edge enhanced spatio-temporal constrained reconstruction 

(EESTCR) using acquired radial data  

 

When reconstructing undersampled radial data, including a 

temporal constraint was considered necessary as a temporal 

constraint performs much than a spatial constraint for 

undersampled data [7,8]. Reconstructed images using IFT, STCR 

and EESTCR are shown in figure 3. Improvement in the sharpness 

of edges was seen in the reconstructed images by using EESTCR. 

Only edges that were present in the edge map were enhanced using 

the proposed edge function. EESTCR was more robust to motion 

than EESCR.  Even when there was respiratory motion, 

improvement in the sharpness of edges was still seen as shown in 

Figure 3d and Figure 3e. The difference image (Figure 3d) 

between EESTCR and STCR shows that the edges were enhanced 

using EESTCR as compared to STCR. Edges in the vessels in the 

lungs, myocardium and papillary muscles were also more clear. 

The line profiles of IFT, STCR and EESTCR were shown in figure 

3e and figure 3f. The peaks in the line profile of EESTCR are 

higher and the valleys are lower in comparison with STCR. In 

some reconstruction a faint edge was seen in a couple of initial 

frames before there was any contrast in the LV. This was not 

considered a problem as we are only interested in frames after the 

onset of contrast in the LV, and after the onset of contrast in the 

LV no such false edges are seen.   

The mean intensity curves of STCR and EESTCR are shown in 

figure 4 and are similar. In some cases when the reference image 

formed by combining the last 4 frames did not contain much edge 

information, only slight improvement over STCR was seen. This 

shows that a good reference image with sufficient edge 

information is necessary for the edge enhancement function to 

function properly. However, a poor reference image did not 

degrade the image quality beyond that of STCR. To address the 

problem of sub-optimal reference images, we also tried combining 

4 frames from the middle of the sequence where there was better 

contrast in the LV to get the reference frame. Using this reference 

frame, an improvement in the sharpness of the edges was seen 

when compared with using the reference frame towards the end of 

the dynamic series. The results are shown in figure 5. The line 

profiles in figure 5d show that EESTCR with reference frame 

constructed by combining 4 frames from the centre of the dynamic 

sequence could make some more improvement in the sharpness of 

edges. As the contrast was better in images from centre of the 

dynamic sequence, a reference frame formed by combining them 

had better edge information and hence edge map ✂ and the 



gradients matching term were able to map and reconstruct the edge 

information better.  

 

 

4. DISCUSSION 

 

We presented a gradient matching term based edge enhancement 

function in conjunction with STCR. Although the method was 

tested with dynamic cardiac perfusion data, it is equally applicable 

to other DCE MRI studies such as breast or brain tumors with 

undersampled data. Since there are less motion problems in brain 

and breast studies, the edge enhancement function would likely 

perform better as there will be little or no edge mismatch between 

the reconstructed and reference images. This would in turn allow 

for much higher undersampling factors. With a fully sampled 

reference frame and no edge mismatch between the undersampled 

frames, reconstructing with EESTCR would produce 

reconstructions with sharper edges while high temporal resolution 

would also be achieved due to higher sparsification factors.  

Dynamic myocardial perfusion images are often used to estimate 

the kinetic parameters using the change in intensity curves to fit a 

pharmacokinetic model. Registration and segmentation are two key 

areas that using EESTCR would be useful. Any improvement in 

the sharpness of edges would improve manual or automatic 

segmentation of the endocardial and epicardial borders of the LV 

and also could aid in the registration process. Providing even 

slightly sharper edges in the reconstructed images would help 

reduce intra-user variability in image registration and 

segmentation. 

The method was tested using a single reference frame. A fully 

sampled reference image was created by combining multiple 

interleaved frames. This is a limitation of this study as the fully 

sampled reference frame was not actually acquired. But this 

limitation is not significant as towards the end of the acquisition 

the contrast varies slowly and images formed by combining 

multiple undersampled frames would be similar to a single fully 

sampled frame. Using a multiple reference image EESTCR method 

would be more tolerant to motion. 

Although not shown here, it was also seen that an edge 

mismatch between the reference image and the reconstructed 

images due to Cartesian respiratory motion lead to a faint false 

edge being created in the reconstructed frame. To overcome this 

problem in EESCR, the reference frame was updated after each 

frame was reconstructed. The last frame ‘n’ was reconstructed first 

and this reconstructed frame was used as reference frame to 

reconstruct frame ‘n-1’ and so on. Hence each reconstructed frame 

was used as reference frame for the previous frame. This made the 

reconstructions more tolerant to motion in this case, though was 

not employed in the acquired radial data shown here. Using a 

multiple reference image EESTCR method might be more tolerant 

to motion. 

 

 

5. CONCLUSIONS 

 

The results from EESTCR show that it is a promising method for 

reconstructing images from undersampled data without the loss of 

sharpness of edges that one would expect due to the undersampling 

of high frequencies in the acquired data. Images reconstructed 

from 24 rays of k-space were shown to be improved using 

EESTCR in comparison to current state of the art [8]. EESTCR can 

be used to improve the sharpness of edges of undersampled data 

even in the presence of some respiratory motion. 
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6.FIGURES

 

  
(a) (b) 

Figure 1.  (a) The reference formed by taking the IFT for fully sampled k-space data simulated from Cartesian acquisition. (b) The edge 

function � for ✁=0.1. The value of � is close to 1 for sharp edges and close to 0 over smooth regions. 

 

   
(a) (b) (c) 

 

Figure 2. Result of reconstruction from simulated radial acquisition from a single coil using EESCR, 24 radial lines. (a) Reference image 

formed by taking the inverse Fourier transform of fully sampled k-space data. (b) Inverse Fourier transform of under-sampled radial data for a 

single time frame. (c) Reconstructed image using EESCR. The edges in the reconstructed image are sharper due to the use of the edge 

enhancement function. 

 



 
 

(a)           (b)     (c)     (d)     (e) 

    

Figure 3. Results of reconstruction from actual radial acquisition (24 rays). One time frame is shown. All 

reconstructions were done separately on each coil and combined with the square-root-of-sum-of-squares 

method. (a) Reconstructed without constraints. (b) Reconstructed using STCR. (c) Reconstructed using 

EESTCR. (d) Difference image formed by taking the difference between reconstruction using EESTCR (c) 

and STCR (b). The scale shows the percent change. (e) Line profile of no constraints, STCR and EESTCR 

reconstructed images across the red horizontal line shown faintly in (a). (f) Line profile of no constraints, 

STCR and EESTCR reconstructed images across the blue vertical line shown faintly in (a). The edges for the 

image reconstructed using EESTCR were sharper than with STCR and increase in contrast was also seen. 

 

Figure 4. Comparison of mean signal intensity time curves for a small region in the blood pool for images 

reconstructed using STCR and EESTCR.The curves match well.    

 

 

 

 

 

 

 

 

   

 
(a) (b) (c) (d) 

 Figure 5. Comparison of reconstructions of another acquired radial dataset (24 rays) with STCR and EESTCR, using two different reference 

frames. (a) STCR. (b) EESTCR using a reference frame constructed by combining the last 4 frames in the dynamic series. (c) EESTCR using a 

reference frame constructed by combining 4 frames from the centre of the dynamic series in which there was better contrast. (d) Line profile 

across the horizontal line shown in (a) for STCR and EESTCR with the two different reference images. Reconstruction using EESTCR with a 

reference frame constructed by combining 4 frames from the centre of the dynamic sequence provided slightly sharper edges. 
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