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We examine ordered, periodic, Ising models on a sq lattice at varying levels x of frustration. The thermo-

dynamic singularity of the fully frustrated model (x✺1) is at T✺0 while those of partially frustrated lattices

(0✱x❁1) occur at finite Tc . The critical indices in the partially frustrated lattices that we consider—including

the logarithmic specific heat—are all identical to those in the ferromagnet (x✺0.) We display exact values of

Tc and of ground-state energy and entropy Eo and So , at x✺1, 2/3, 1/2 , 2/5 ,...,0.
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INTRODUCTION

This work discusses the phenomenon of partial
‘‘frustration.’’ 1 Interest in systems with ‘‘frozen-in’’ random-
ness, commonly denoted ‘‘spin glasses,’’ has continued un-
abated since the 1970s.2 The only statistical systems with
any chance of being solved in closed form are Ising-model
spin glasses. These come in at least two varieties: site-
centered random gauge glasses that can be analyzed com-
pletely and sometimes even solved exactly,3 and those with
competing ✻J interactions that are both random and frus-
trated and generally cannot be solved at all. Toulouse iden-
tified frustration as the result of competing interactions.4 The
unit of frustration is a plaquette in which the product of J’s
around the perimeter has a negative sign.5 Frustration in-
creases both the ground-state energy and the ground-state
entropy over their values in the ferromagnet. Ramirez6,7

identified ‘‘geometrical frustration’’ as the disorder inherent
in the correlation functions of what are frustrated but other-
wise structurally perfectly ordered materials. �The prototype
is the Ising antiferromagnet on a regular, triangular lattice,
about which more will be said later. Other well-known ex-
amples include ice at 0 °C and the pyrochlores.5,6✁ Still, in
the words of Ramirez,6 ‘‘... there is comparatively little
known about ❅such★ materials,’’ although, at first blush, geo-
metrically frustrated materials seem to share many properties
with structurally random glassy materials having random
bonds and/or fields at every site.

The present work sets out to distinguish between the two.
It is introductory and admittedly incomplete, but because our
results are exact they may serve as markers in a field that is
not fully understood. We show that under certain circum-
stances a sharp distinction can be drawn between partially

frustrated systems �the usual case✁ and the disordered sys-
tems they superficially resemble. We display exact values of
ground-state entropy So , ground-state energy Eo , critical
temperature Tc , and quasiparticle dispersion calculated at
some discrete values of x �where x is the fraction of frus-
trated plaquettes✁. We also indicate possible directions for
future investigations.

As a brief example of how much disordered and frustrated
systems can resemble one another, consider the apparently
random Edwards-Anderson-Ising spin ladder in Fig. 1,
containing nearest-neighbor bonds J i , j✂✻J in
H✂✄❙ (i , j)J i , jS iS j . By gauge transformations S☎✄S on

just 2 sites �1 and 2✁, it transforms into a regular array in

which the antiferromagnetic �AF✁ bonds are all on the left

vertical riser and all other bonds are ferromagnetic. Among

the many ground states8 of this configuration one finds two

ferromagnetic states �all spins up or all down✁ and a ground-

state energy E0✂✄4✉J✉. Except in its response to an exter-

nal field, this model is an example of perfect geometrical

frustration �i.e., x✂1) and not of disorder! Later we shall see

that merely specifying the extent of frustration x in the range

0✆x✆1 is also generally insufficient to determine whether

this model or material can support an ordered phase.

In trying to understand and systematize the distinction

between random and geometrically frustrated systems, we

propose a classification scheme. Type A is representative of

pure geometrical frustration, such as the nearest-neighbor

Ising model on a triangular lattice with all equal antiferro-

magnetic �AF✁ bonds in which all plaquettes are frustrated

(x✂1.) The thermodynamic properties of this model are

known:9 it has no ordered phase at T✳0. Geometrically frus-

trated systems such as this can only sustain disordered

phases at finite T while others �frustrated chessboard or frus-
trated hexagonal lattices✁ maintain a finite correlation length
even at T✂0 and thus possess no critical exponents
whatever.9

Type B: the Edwards-Anderson (E-A) model1 on the two-
dimensional sq lattice is a prime example of a magnetically
amorphous material in which spin-glass behavior is caused

by the randomness. In it, Ising spins S i✂✻1 are subject to
randomly frozen-in nearest-neighbor �NN✁ bonds J i , j✂✻J .
The prototype E-A model consists of a sq lattice with a
fraction p✂

1
2 of antiferromagnetic (J✆0) bonds located at

random. This causes half the plaquettes, on average, to be-
come frustrated, i.e., x✂ 1

2 . The location of the frustrated
plaquettes is random. In two dimensions this model does not
exhibit a phase transition at any finite T �although it may in
higher dimensions.✁

The Hamiltonian in the E-A model is H

✂✄❙ (i j)J i , jS iS j , the sum being over NN’s. Its partition
function is Z✂Tr✩exp✄❜H✪. But it is the free energy,
F✂✄kBT ln Z and not Z that needs be averaged over the
random variables. In addition to the temperature T✂1/kB❜
one needs consider at least one supplementary material
parameter.10 This extra parameter is frequently taken to be p ,
the fraction of AF �–✁ bonds.11
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The fully frustrated Ising model ⑦FFIM✦, illustrated in Fig.
2⑦a✦,11 has p✺

1
4 and x✺1. Any additional, or any fewer,

antiferromagnetic bonds necessarily decrease the fraction x

of frustrated plaquettes. As illustrated, this model does not
exhibit any structural randomness. Taking the unit cell to
consist of two neighboring columns, this model exhibits
translational periodicity—no less so than does the triangular
lattice with all antiferromagnetic bonds. It is therefore of
type A. By trivial gauge transformations it can be made to
look perfectly random and seemingly impossible to solve by
the ordinary methods of statistical mechanics! Yet it has been
known11 to be solvable since 1977.

The FFIM has already been the subject of several inves-
tigations, including a mapping onto eight-vertex models,
renormalization-group ⑦RG✦ studies, etc.,12,13 that revealed a
sort of ‘‘phase transition’’ at Tc✺0 with a power-law corre-
lation function ⑥1/r❤, exponent �✺ 1

2 . The divergent T✺0
paramagnetic susceptibility calculated by Kandel, Ben-Av,
and Domany,12 ①⑥L2✷❤, with �✺0.507✻0.009, confirms
this unusual value of � that is shared with the triangular AF
lattice,the prototype of species A.13 Both have Tc✺0 and
comparable ground-state entropies per site. Additional sym-
metries, including some form of duality, have been uncov-

ered in other fully frustrated models and may exist here
also.14,1

Type C: Regular, homogeneous, systems with partial
frozen-in frustration. The Ising versions have finite values of
Tc , hence an ordered low-temperature phase ⑦and �✺ 1

4 in
two dimensions✦. This is the category denoted ‘‘partially
frustrated,’’ that is studied below.

DISTINCTION BETWEEN TYPES

Type-C systems exhibit some geometrical frustration and
their ground states are typically degenerate. But unlike type
A, they support an ordered phase and unlike type B they are
not random ⑦although the unit cell may be large✦. By an
obvious gauge symmetry of the sq lattice, or of bipartite
lattices in general, F(1✁p)✺F(p) in the absence of finite
external fields. Hence we can ⑦and shall✦ limit our studies to
0✱p❁

1
2 .

At the upper limit of p✺
1
2 one uncovers a fundamental

difference between types C and B in two dimensions. Con-
sider the following type-C model on a sq lattice: all vertical
bonds are antiferromagnetic ⑦✁✦ and all horizontal bonds are
ferromagnetic ⑦✶✦. Not a single plaquette is frustrated and
there is a phase transition from disorder to an ordered phase
as one lowers T below a critical temperature. This is to be
contrasted with the E-A model at p✺ 1

2 on the same lattice,
which is of type B. As we have already noted, in the latter
case half the plaquettes are frustrated on average and Tc

✺0. So just specifying the fraction p of antiferromagnetic
bonds does not tell us what thermodynamic phase diagram
can be expected.

But then, neither is the fraction x of frustrated plaquettes
indicative of the thermodynamic properties that are to be
expected! For example, the thermodynamic behavior of the
above-mentioned two-dimensional E-A model (x✺ 1

2 ) dif-
fers completely from that of the n✺4 model of type C in-
vestigated below ⑦in which x✺

1
2 also✦. Unlike the former,

the latter has a second-order phase transition and supports an
ordered low-temperature phase.

THIS WORK

We investigate the range p✺1/(2n)✺ 1
4 ,

1
6 ,

1
8 , . . . , all

❁
1
4 , where n (n❃2) is the number of columns in the unit

cell.15 In the regular example illustrated in Fig. 2⑦b✦, each
unit cell of n columns contains one AF vertical and two
ferromagnetic vertical lines and corresponds to x✺

2
3 . ⑦All

horizontal bonds are ferromagnetic.✦ In general, for n✁1
ferromagnetic vertical lines the fraction of frustrated
plaquettes is x✺2/n✺4p✺1, 2

3 ,
1
2 ,... . Geometrical regular-

ity, such as it is, allows us to calculate the free energy using
an ⑦exact✦ transfer-matrix approach. Unfortunately this
method does not easily extend to higher p where the system
is also partially frustrated. Clearly the range 1

4❁p✱
1
2 is

complementary to what we cover on the present work and
represents an important area of investigation for the future,
whether studied by exact methods, numerical methods or
RG.

In the present work, we find that—with the singular ex-

FIG. 1. Random, or ‘‘ordered but geometrically frustrated?’’

Heavy lines are AF bonds, light lines are ferrmagnetic. The appar-

ently disordered ladder on the left turns into an ordered ✂but equally

frustrated!✄ ladder after two spins are ‘‘flipped’’ by a gauge trans-

formation: S1☎✆S1 and S2☎✆S2 .

FIG. 2. The frustrated 2D Ising model on a sq lattice. ✂a✄ FFIM:

special case of n (number of columns in a unit cell)✝2. Spins S✝

✞1 live at each vertex, with nearest neighbors connected by ferro-

magnetic ✂light lines✄ or antiferromagnetic bonds ✂heavy lines.✄ A

unit cell consists of 2 vertical lines ✂one of antiferromagnetic bonds

and one of ferromagnetic bonds.✄ Horizontal lines contain only fer-

romagnetic bonds. ✂b✄ Illustrating the periodic, partly (x✝2/3) frus-

trated, 2D Ising model for n✝3.
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ception of n✺2 ⑦for which x✺1, the FFIM which is actually
of type A✦—the columnar models of type C for n✳2 all have
an order-disorder phase transition at finite Tc(n) and share
all critical exponents at Tc with those in the limit n✺❵ , i.e.,
with the ferromagnetic two-dimensional ⑦2D✦ Ising model.

The precise value of Tc increases with n . This is shown in
Fig. 3 at the discrete values of n✺2,3,4,5,..., i.e., for x✺1,
2
3 , 1

2 ,
2
5 ,... . For n❅1, we obtain the asymptotic dependence

of Tc(n) on n ,

sinh 2J/kTc✺1✶
1.2465

n
✶o�1/n ✁. ⑦1✦

This formula agrees with the classic result in lim n✂❵ .
Our solution is obtained by transforming the transfer matrix
into an exponential form in free fermions, following Onsag-
er’s procedure ⑦cf. the detailed review✦.16 The dispersion of
the free fermions exhibits a mass gap at all T except pre-
cisely at Tc . At all values of n✳2 the appearance of the
mass gap, both above and below Tc , and its disappearance at
Tc , parallels the behavior in the two-dimensional Ising fer-
romagnet. Minor discrepancies manifest themselves only at
the Brillouin-zone boundaries.

DETAILS

Here we outline details of the calculations. The partition
function is given by the largest value of the transfer matrix,
evaluated along the horizontal direction, in which all the
bonds are ferromagnetic ⑦in order to avoid imaginary terms
that occur in the exponent of the vertical transfer matrix✦. In
its Hermitean representation, our transfer matrix consists of
three factors for each unit cell. These have to be combined
and Fourier transformed, following the Jordan-Wigner trans-
formation to fermion operators labeled by q . The largest ei-

genvalue of this transfer operator then takes the form Z

✺✮q✄0Zq , where

Zq✺☎A
2
�T ✁★ne➠q(T), ⑦2✦

in which A2(T)✺2 sinh 2J/kT and ✆q(T), defined in terms of
q , f q , and qq , describe the quasiparticle dispersion. It is the
largest real solution of the following set of equations:17

cosh ✆q�T ✁❬cosh n f q cosh 4J/kT

✷sinh n f q sinh 4J/kT sinqq , ⑦3a✦

cosh f q�T ✁❬
cosh2 2J/kT

sinh 2J/kT
✷cos q , ⑦3b✦

and

sinh f q�T ✁sinhqq�T ✁❬cosh 2J/kT✷coth 2J/kT cos q .
⑦3c✦

Thanks to some additional symmetries, the result for n

✺2 can be simplified and agrees with that given explicitly by
Villain.11,18 It is the only instance in which Tc✺0.

Generally, Eqs. ⑦3✦ have to be solved numerically, as we
have done at various values of n . Choosing a typical value,
n✺3, in Fig. 4, we display the calculated dispersion in the
free fermion spectrum ✆(q) at three different temperatures: T
lower than, equal toand higher than Tc(n), this last being the
temperature at which the gap disappears. Based on the
premise that all critical thermodynamic quantities are func-

FIG. 3. Calculated ground-state energy ✝times ✞1): ✞Eo(n)

✝▲✟, ground-state entropy S0(n) ✝❤✟, and critical temperature of

the order-disorder phase Tc(n) ✝s✟, as functions of n , for n✠2

✝i.e., FFIM✟ and n✠3, 4,... . ✝Lines connecting points are just a

visual aid.✟ Note: x✠2/n , the fraction of frustrated squares, ranges

from 1 to 0.

FIG. 4. ✡(q) vs q below, at, and above Tc . This figure illus-

trates the quasiparticle spectrum of the transfer matrix at three tem-

peratures. In this example calculated at n✠3, they are Tc ✝given by

sinh 2J/kTc✠2) and T substantially below or above Tc ✝as given

by sinh 2J/kT✠5 or 1.✟ One notes the appearance and disappearance

of the mass gap and the apearance ✝albeit irrelevant to the critical-

point thermodynamics✟ of novel structure near the Brillouin-zone

boundaries at q✠☛♣ .
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tionals of the dispersion relations at small q ⑦long wave-
lengths✦ we are now able to conclude that all systems of type
C (n✳2) belong to the same universality class as the ferro-
magnet (n�❵ .)

The ground-state energy is found by inspection,19 but the
ground-state entropy So requires more study. For n✺2 is it
easily computed by differentiating the free energy at T✺0;
this yields:20 So /kB✺0.2916... . At larger n a similar proce-
dure could be used, although the formulas are enormously
more complicated.

It is more practical to calculate So as follows: starting
from the fully ferromagnetic state, one counts the degenerate
configurations created by flipping any number of spins on
any AF column, subject to the rule: no two flipped spins are

nearest neighbors. For all n❃3, neighboring AF columns
constitute domain walls that are statistically independent in
the ground state. A one-dimensional calculation yields the
exact ground-state degeneracy and ground-state entropy per

spin.21 After some algebra we obtain So in terms of the
golden mean. It vanishes as 1/n , i.e., as ⑥x in lim x�0:

1

n
ln
1✶❆5

2
✬

0.4812

n
✺So /kB ✁n❃3✂. ⑦4✦

CONCLUSION

Frustration promotes violation of Nernst’s ‘‘third law’’
⑦the presumption that the ground-state entropy per particle
vanishes✦. In the presence of finite ground-state entropy the
critical temperature for the order-disorder phase transition is
lower than it might otherwise be. We have determined for a
class of partly frustrated, geometrically ordered models, that
once the amount of frustration is insufficient to suppress a
phase transition at finite T the critical indices at Tc revert to
those of the pure ferromagnet. These are exact results in our
model, yet they do not speak to models of type B in which
‘‘percolation’’ and disorder may be playing an additional
role. To finally close this chapter it will be necessary to find
a convenient way to introduce a controlled amount of disor-
der and to extend the analysis into a region 1

4❁p❁
1
2 that

remains inaccessible by present means.
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