
Average-Case Optimized Technology Mapping of One-Hot Domino
Circuits*

W ei-chun Chou'*' P eter A . Beerel'*' R an Ginosar*** R akefet Kol+
Chris J. Myers^ Shai R otem ^ K en neth Stevens^ K en neth Y . Yunll

^E E -System s, U n iversity o f Southern California, Los A n geles, C A , U SA .
♦VLSI S ystem R esearch C enter, E E and CS D ep ts ., T he T echnion, H aifa, Israel.

§EE D ep artm en t, U n iversity o f U tah , Salt Lake C ity, U T , U SA .
% itel C orp., H illsboro, O R , U SA .

llECE D ep t., U n iversity o f C alifornia, San D iego , C A , U SA .
** on sab batica l leave at Intel C orp., H illsboro, OR.

A bstract

This paper presents a technology mapping tech­
nique for optimizing the average-case delay of asyn­
chronous combinational circuits implemented using
domino logic and one-hot encoded outputs. The tech­
nique minimizes the critical path for common input
patterns at the possible expense of making less com­
mon critical paths longer. To demonstrate the appli­
cation of this technique, we present a case study of a
combinational length decoding block, an integral com­
ponent of an Asynchronous Instruction Length De­
coder (AILD) which can be used in Pentium® pro­
cessors. The experimental results demonstrate that
the average-case delay of our mapped circuits can be
dramatically lower than the worst-case delay of the cir­
cuits obtained using conventional worst-case mapping
techniques.

1 Introduction
Asynchronous circuits are attractive alternatives to
synchronous circuits because they have the poten­
tial advantages of higher average-case performance
[12, 13, 6], lower power consumption, and freedom
from clock-skew problems. Recent emerging asyn­
chronous designs have shown impressive results for dig­
ital signal processing [9, 23, 19] and microprocessors
[7, 10, 4], but the lack of CAD support is still limiting
their advances in some areas. This paper focuses on a
CAD tool for a specific type of design, combinational
circuits that convert data signals into control signals.

*This research is funded in part by a gift from Intel Corpo­
ration and a NSF CAREER G rant MIP-9502386.

These circuits typically perform instruction decoding
of some type and, due to their complexity, are often
the bottleneck in both synchronous and asynchronous
microprocessors. We focus on a new design style and
an accompanying CAD tool which can remove this bot­
tleneck, offering in some cases dramatic improvements
in average-case delay.

Traditionally, combinational circuits that convert
data into control signals are implemented using single­
rail bundled-data techniques. This method unfortu­
nately implies that the delay of the circuit is deter­
mined by the most complex data needed to be de­
coded (rather than the most common data). Dual-rail
techniques, in which each signal is encoded with two
bits, can also be used to design these circuits and fa­
cilitate the optimization for average-case performance.
Traditional dual-rail designs, however, are typically
larger, consume more power, and are slower (due to
the complex completion sensing structures required)
than single-rail designs.

In this paper, we consider a different design style for
these decoders which applies a combination of domino
logic, dual-rail signaling, and one-hot encoded outputs.
Chris Myers initially conceived of this design [11] and
Benes et al. independently developed a similar tech­
nique that they used in a decompression circuit for
embedded processors [4]. Domino logic is used for its
well-known speed advantage over static logic and be­
cause it guarantees that the outputs are hazard-free.
However, a single stage of domino logic can only real­
ize functions that are monotonic. Thus, to implement
all functions, some dual-rail inputs and some dual-rail
internal signals are sometimes needed. Moreover, the

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

design style uses one-hot encoded outputs to reduce
the overhead of completion detection of the evaluation
phase of the domino logic. The completion detection
of the precharge phase is simply removed with a timing
assumption on the precharge signal. The key advan­
tage of this design style is that the domino logic can be
optimized to prioritize the computation of instructions
depending upon the instruction frequency, potentially
leading to dramatic improvements in average-case de­
lays. The circuits, however, can be large and complex,
and thus could benefit substantially from supporting
CAD tools.

In this paper, we focus on the technology m ap­
ping problem for this class of circuits. The circuits
are specified with a set of incompletely-specified input
patterns, each associated with a probability that re­
flects the input pattern ’s relative frequency of occur­
rence. In practice, these probabilities can be derived
from architectural simulation of the design on typi­
cal data. In addition, we assume that the degree of
sharing between cones of logic has been determined
by technology-independent optimization. More specif­
ically, we assume that the unmapped circuit structure
is given in the form of a NAND-decomposed graph.

The key obstacle to technology mapping of these cir­
cuits is that the delay of a circuit for an incompletely-
specified pattern cannot be precisely determined be­
cause the critical path is unknown when a primary
input is specified to be an “X” . Fortunately, one-hot
domino circuits have a special property that allows us
to easily bound the delay for an incompletely-specified
pattern. In particular, for each incompletely-specified
pattern c, we identify two representative, completely-
specified patterns, c; and cu , that yield lower and up­
per bounds of the delay for pattern c.

Based on this theory, we propose to reduce the tech­
nology mapping problem of one-hot domino circuits to
the completely-specified input-pattern dependent ap­
proach proposed in [2, 3], which is modified slightly
to handle domino logic. Specifically, we replace each
incompletely-specified pattern by one of its two rep­
resentative patterns. Then, we call the mapping rou­
tines described in [2, 3] to minimize the average-case
delay. Finally, we use the representative patterns to
derive bounds of the average-case delay of the mapped
circuit.

We demonstrate our approach with a case study
of an asynchronous instruction length decoder (AILD)
for Pentium® processors. In particular, we describe
two combinational blocks for length decoding which
are key components of a fast asynchronous length de­
coder. Our experiments support three im portant re­
sults:

• The range of average-case circuit delays that we

derived by our representative patterns is narrow
(within 11%), thereby illustrating the precision of
our bounds.

• The average-case delays of both our circuits are
significantly smaller than the average-case de­
lays of the comparable circuits derived using syn­
chronous techniques, thereby illustrating the po­
tential power of our new technology mapper.

• The average-case delays of both our circuits are
dramatically smaller than the worst-case delay
of the comparable synchronous circuits, demon­
strating the potential performance benefit of asyn­
chronous circuits.

The remainder of the paper is organized as fol­
lows. Section 2 provides the necessary background
on technology mapping. Section 3 describes the fea­
tures of one-hot domino logic. Section 4 describes the
extensions to existing technology mapping techniques
to handle incompletely-specified patterns and domino
logic. Section 5 presents the case study in which this
technique is applied to the design of an asynchronous
instruction length decoder. Finally, Section 6 gives our
conclusions.

2 Technology mapping back­
ground

For synchronous circuits, technology mapping is of­
ten reduced to directed acyclic graph (DAG) covering
which can be efficiently approximated by a sequence of
optimal tree coverings [14]. The optimized equations
(obtained from the technology-independent optimiza­
tion) are decomposed into a DAG where each node
is a base function. Particularly, the DAG is called a
N AN D -decom posed graph if the set of base functions
consists of only a NAND2 and an INVERTER [5]. The
technology mapping problem is to find a minimum cost
covering of the decomposed graph using available li­
brary gates. For area optimization, the cost of a cover
is defined as the sum of the gate areas. For delay op­
timization, the cost of a cover is defined as the worst-
case delay of the circuit. Both Chaudhary and Pe-
dram [5], and Touati [17] extend these works to solve
the minimum area problem under delay constraints.
However, they consider only synchronous static cir­
cuits and employ pessimistic static timing analysis to
determine the worst-case critical paths.

For fundamental mode designs, such as burst-mode
circuits, Siegel and De Micheli show that with only
small modifications, synchronous technology mapping
technique can be applied to asynchronous circuits [16].
They use Unger’s result [18] to perform hazard-free

2

decomposition and present an algorithm to identify li­
brary gates which might be hazardous for mapping.
Their results demonstrate that most library gates can
be used safely except some complex gates. The key
shortcoming of this technique is that the underlying
synchronous technology mappers are limited to opti­
mizing worst-case performance, not average-case per­
formance.

In [2, 3], Beerel et al. extended these works to
perform decomposition and covering that optimized
the average-case delay of the burst.-mode asynchronous
control circuit. The possible inputs to these circuits
are given by a set of completely-specified patterns each
of which is associated with a frequency of occurrence.
Then, an input-pat.tern-dependent, approach is used
to minimize the weighted sum of the delay incurred
by each input, pattern, thereby minimizing average-
case delay. The techniques used include rotating the
NAND-decomposed network to push more frequent,
primary inputs closer to the input, and a dyna.mic-
progra.mming-ba.sed technique to explore mappings of
the optimized decomposed network that, are deemed
likely to minimize average-case delay.

Here, we further extend this work to combinational
circuits implemented using domino circuits and one-
hot. outputs. Unlike burst.-mode circuits, the possi­
ble inputs to these circuits are specified with a set. of
incompletely-specified patterns each of which is associ­
ated with a frequency of occurrence which complicates
the technology mapping problem.

3 One-hot domino logic
The basic block diagram of a one-hot. domino com­
binational logic block in an environment, is shown in
Figure 1. This section describes the structure and op­
eration of the logic as well as its advantages over other
currently known approaches.

3.1 T he dom ino core

Domino logic is widely used in high-speed circuits be­
cause of its inherent, performance advantages. It. has
smaller parasitic capacitance [20] and separates the
pull-up and pull-down events to avoid the fight, be­
tween the precharge and discharge current. [21], often
yielding circuits that, are faster than circuits obtain­
able with static CMOS.

Domino logic consists of two types of gates: static
CMOS and dynamic precharged gates, both of which
must, be inverting. As illustrated in Figure 2, the type
of gates alternates along any path from inputs to out­
puts. This is sometimes referred to as the domino
constraint. Notice that, we allow the static gate t.o be

Dual-rail inputs Single-rail inputs
x1 x1 x2 x2 yiy2y3

Figure 1: A block diagram of the one-hot dom ino logic
design style for combinational circuits.

precharge

dynamic static dynamic static

Figure 2: An illustration of domino logic.

any inverting CMOS gate [21], whereas, traditionally,
the static gate is restricted t.o be an inverter [20].

Notice that, all dynamic (static) gates precharge
(discharge) simultaneously during the precharge
phase. Thus, the precharge time is fast., and essen­
tially dat.a.-independent. Consequently, we need only
optimize the evaluation delay of the circuit..

The gates closest, t.o the primary inputs, referred
to as P I gates, should be dynamic rather than static.
This is because the primary inputs can be assumed
to be stable but. it. is not. known whether they will
be stable 1 or stable 0 at, the start, of evaluation or
precharge. Consequently, if the PI gate is static, a
stable 0 at, the primary input, may cause a value of 1
to appear at, the input, to the subsequent, dynamic gate
at, the start, of evaluation, possibly causing accidental
discharge.

Although we restrict, our mapped circuits to the
style of domino logic depicted in Figure 2, we note
that, it, may be desirable to further optimize the cir­
cuits after technology mapping. For example, in some
cases, the pull-down transistor driven by the precharge

3

line (shaded in Figure 2) can be removed creating w hat
is som etim es called semi-control led dom ino logic. This
can lead to faster evaluation tim es because it reduces
the stack size, bu t m ay lead to significant short-circuit
current during precharge [21]. The short-circuit cur­
rent som etim es creates reliability problem s, which can
be avoided by staggering the precharge signal [23].

In addition, we note th a t charge-sharing problem s
are always crucial to dom ino circuits [20]. We assume
th a t either the problem s are m inim ized by precharg­
ing each transistor of the pull-down network of each
dynam ic gate or th a t further charge-sharing analysis
is applied to the m apped circuits.

A key feature of dom ino logic is th a t, when designed
properly, it can have only m onotonic transitions [20].
Consequently, by its very nature, it is hazard-free. It
can therefore be easily used in asynchronous circuits by
controlling the precharge signal via an asynchronous
controller ra ther th an a global clock [8, 23, 22]. Fur­
ther descriptions of the expected operation of this con­
troller will be given below.

One com plication of dom ino logic is th a t one stage
of dom ino logic can im plem ent only those functions
which are m onotonic in their inputs. In particular,
b inate functions cannot be im plem ented. Fortunately,
this is not a serious lim itation because by introducing
some dual-rail prim ary inputs, any function can be
im plem ented [20].

3.2 C om p letion sensing

A naive m eans of detecting com pletion of a one-hot
encoded com binational logic block is to explicitly de­
rive a done signal from the logical OR of all one-hot
encoded outputs. W hen the done signal rises, the sub­
sequent operation can then be in itiated . This means
th a t the s ta rt of the next operation is delayed by at
least the delay associated w ith a possibly wide OR
gate. Fortunately, there are m any instances in which
a much b etter approach can be used.

Consider, for example, the case in which each ou t­
pu t Oi should in itia te a different operation i, as de­
picted in Figure 1. To im plem ent this, a different
controller associated w ith each operation can be used.
W hen the i-th controller senses signal Oi rising, it can
trigger the s ta rt of the next operation (by rising Got)
sim ultaneously w ith acknowledging the com pletion of
the one-hot logic (by rising A ck i) . The logical OR of
all acknowledgments, Ack i , can trigger the precharge
phase. Thus, the com pletion sensing delay of the eval­
uation phase can be com pletely hidden. We note th a t
this approach was recently used by Benes et al. in the
im plem entation of a high-speed decompression circuit
for em bedded processors [4].

3.3 Precharge phase

In a purely speed-independent im plem entation the
precharging of the logic block m ust also have some type
of com pletion detection. In this design style, however,
tim ing assum ptions can be used to remove the need for
an explicit com pletion detection m echanism . Specifi­
cally, all dynam ic gates are sim ultaneously precharged
m aking the precharge tim e essentially fixed and data-
independent. Consequently, control circuitry can eas­
ily be used to guarantee th a t the precharge signal
does not become de-asserted until after all gates have
been precharged. If some gates are semi-controlled,
however, a delay line m ay be necessary to model the
precharge delay [4]. An efficient technique to combine
the delay line w ith the precharge logic for an asyn­
chronous adder is described in [23].

3.4 C om parison to oth er approaches

We first contrast one-hot dom ino logic w ith trad itional
single-rail, bundled-data approaches in which the ou t­
pu t control signals are all latched and the ou tpu t of
the latches, which are guaranteed to be hazard-free,
are used to drive controllers. Using one-hot hazard-
free ou tpu ts com pletely avoids the latch overhead, in­
cluding the latch propagation delay and the set-up and
hold-tim es. Moreover, single-rail techniques m ust m in­
imize the worst-case delay am ong all ou tpu ts for all in­
pu t com binations. Using one-hot techniques, each ou t­
pu t can be independently m inim ized to prioritize the
m ost frequently occurring input com binations which
make it fire. Our experim ental results suggest th a t
this flexibility can lead to significant speed advan­
tages. The disadvantage of this technique com pared
w ith single-rail approaches is th a t one-hot logic m ay be
larger, dom ino logic typically consumes more power,
and dom ino logic often requires careful a tten tion to
layout to ensure correct operation.

We note th a t it is also possible to build these combi­
national circuits using the speculative com pletion sig­
naling approaches proposed by Nowick et al. [12, 13].
In this approach, the core logic can be optim ized for
the com m on case and side logic can be created to
identify when com m on input d a ta arrives and trig ­
ger the done signal to designate th a t the result is ob­
tained. This approach can lead to some reduction in
the average-case delay, bu t it is unclear how easy it
would be to generate the side logic for general func­
tions. The advantage of speculative com pletion ap­
proaches is th a t they can be applied to sta tic logic,
which is sim pler to design.

We also note th a t the concept of using dom ino cir­
cuits in asynchronous designs is not new. For example,
W illiam s dem onstrated the power of dom ino circuits

4

very convincingly in his landm ark asynchronous di­
vider [22]. In addition, Yun et al. used it effectively in
asynchronous adder and m ultiplier designs [23].

4 Technology mapping
We now describe how we can extend the technology
m apping techniques in [2, 3] to accom m odate one-hot
dom ino logic. In particular, we show how we perform
technology m apping in the presence of incompletely-
specified input pa tterns and the dom ino constraint.

4.1 In com p lete ly -specified pattern s
An incompletely-specified p a tte rn is a function from
prim ary input variables to the set {0, I, X } . The prob­
lem is th a t the delay of the circuit for an incompletely-
specified p a tte rn cannot be precisely defined because
the exact set of gates th a t will evaluate is unknown in
the presence of a prim ary input w ith the value “X” .
Moreover, since the exact set of evaluating gates is un­
known, it is unclear which paths the technology m ap­
per should optimize.

To address these problem s, we interpret an
incompletely-specified p a tte rn as a collection of
m interm s over the input variables, where each m interm
corresponds to a compatible completely-specified pat­
tern. Formally, a completely-specified p a tte rn is a
function from prim ary inputs variables to the set
{0, 1}. A completely-specified p a tte rn i is com patible
w ith an incompletely-specified p a tte rn c if the assign­
m ents agree on all input variables not assigned to “X”
in c.

It is clear th a t the circuit delay for a completely-
specified p a tte rn is well defined and can be established
through sim ulation. Consequently, we can define a
range of delays for an incompletely-specified p a tte rn
c as follows. The m inim um (m axim um) of the range
is the sm allest (largest) circuit delay incurred by any
com patible pa ttern . Note th a t the num ber of com pat­
ible pa tterns can be exponential in the num ber of cir­
cuit variables. Thus, exhaustively sim ulating all com­
patib le pa tterns is com putationally very expensive.

Fortunately, the special nature of dom ino logic can
be used to simplify this analysis. Specifically, this sec­
tion proves th a t two easily identifiable com patible p a t­
terns, referred to as representative patterns, yield the
lower and upper bounds of the p a tte rn delay for an
incompletely-specified pattern . The section then de­
scribes how we can use these representative patterns
in technology m apping.

4 .1 .1 B o u n d in g th e d e la y o f in c o m p le te ly -
s p e c if ie d p a t t e r n s : in tu i t io n

The in tu ition behind our theory m ay be described w ith
an analogy to the game called dom inos (which is the

origin of the nam e ’’dom ino logic”). In this game, rect­
angular tiles are often arranged in a linear fashion (or
som etim es in more complex networks) such th a t the
first tile falling causes a chain reaction of falling tiles.
The delay of the chain reaction is the tim e in between
the first and last tile falling. Notice th a t more than
one tile can fall sim ultaneously to s ta rt the chain re­
action and th a t some tiles m ay rem ain standing after
the chain reaction completes.

Consider further the case where the set of tiles th a t
s ta rt the reaction is not fully specified. In particu ­
lar, consider the case where certain com binations of
tiles can be chosen to s ta rt the chain reaction bu t the
choice of which com bination is unknown. In this case,
the chain reaction delay cannot be determ ined. How­
ever, a lower bound on the chain reaction delay can
be obtained by tipping over any tile which is tipped
over in any com bination. Similarly, an upper bound
on the chain reaction delay can be obtained by tip ­
ping over only those tiles which are tipped over in all
com binations.

The analogy is th a t a dom ino gate is like a tile.
We say a dynam ic (static) gate evaluates if its ou t­
pu t falls (rises). G ates th a t evaluate are like tiles th a t
fall; they cannot re tu rn to their original value until the
precharge phase. W hen one gate evaluates it can cause
other gates to evaluate in w hat is like a chain reaction.
Moreover, the evaluation delay is analogous to the de­
lay of the chain reaction. Finally, an incompletely-
specified input p a tte rn is analogous to the situation
where the set of tiles th a t s ta rts the chain reaction is
not fully specified.

Thus, to find a lower bound of the delay for an
incompletely-specified pattern , we force any PI gate
th a t evaluates under any com patible p a tte rn to eval­
uate. Similarly, to find the upper bound of the delay
we force only those PI gates th a t evaluates under all
com patible pa tterns to evaluate.

In our application, the PI gates are restricted to
be dynam ic (see Section 3.1). Thus, to find the lower
bound we set all unknown inputs to one. Similarly,
to find the upper bound we set all unknown inputs to
zero.

More formally, we define two representative patterns
for an incompletely-specified p a tte rn c. The lower pat­
tern ci is obtained by switching all X 's in c to 1 and
yields a lower bound of c’s p a tte rn delay. Similarly, the
upper pattern cu is obtained by switching all X 's in c
to 0 and yields an upper bound of c’s p a tte rn delay.

It is im portan t to note th a t the bound is loose in the
presence of dual-rail inputs aT and aF since in reality
bo th aT and aF cannot be set to the same value.

5

4 .1 .2 B o u n d in g th e d e la y o f in c o m p le te ly -
s p e c if ie d p a t t e r n s : th e o r y

This section formalizes our in tu ition . F irst, we in tro­
duce some additional terminology.

D e f in it io n 4 .1 (C o n tro l l in g in p u t) A n input f o f
a gate g is a controlling input o f g i f f f has a value or
a transi t ion which independently forces g to evaluate.
A n input which is not controlling is referred to as non­
controlling.

Given a p a tte rn i, let FC'(i , g) denote the set of con­
trolling inputs to g. Similarly, F N C ' (i , g) denotes the
set of g's non-controlling inputs. Let g j denote a gate
which connects g to its input / . Let d (g , f , i) denote
a pin-to-pin delay of g for input / . If g evaluates and
has a controlling input, the pat tern arrival t ime of g
for p a tte rn i, denoted pa t (i , g) , is defined as follows:

p a t (i , g) = m in \pat(i, gf) + d (g , f , i)\ (1)
f£ F C (i,g)

If g evaluates bu t has only non-controlling inputs,
pa t (i , g) is defined as follows:

p a t (i , g) = m ax \pat(i, gf) + d(g, / , i)] (2)
f£ F N C (i,g)

Each g a te ’s p a tte rn arrival tim e can be com puted
by recursively applying E quation 1 and 2 in postorder
of gates in the circuit. Note th a t since the circuit is
one-hot encoded, any input p a tte rn can make only one
PO gate (any gate th a t drives a prim ary ou tpu t) eval­
uate. Let po(i) denote a function which returns the
evaluating PO when p a tte rn i is applied. The pat tern
delay of the circuit for p a tte rn i, denoted pjdelayi , is
equal to pat (i ,po (i)) .

In addition, let Fi denote the set of all P is whose
value is 1 when p a tte rn i is applied. Moreover, let
F I (g) denote the set of all inputs of gate g and let
E (i , k) denote the set of all evaluating gates in level k
of the circuit when p a tte rn i is applied.

The following two lem m as prove our in tu ition th a t
the representative patterns c; (cu) yields the lower (up­
per) bound of the delay for an incompletely-specified
p a tte rn c. Inform ally speaking, the first lem m a proves
th a t the more P is set to one the more gates will evalu­
ate and the second lem m a proves th a t the more gates
th a t evaluate the sm aller the resulting p a tte rn delay.
Their proofs are given in the appendix.

L e m m a 4.1 I f all P I gates are dynamic and Fi C Fj,
then E (i , l) C E (j , l) f o r every level I.

L e m m a 4 .2 I f all P I gates are dynamic and Fi C Fj,
then, f o r every level I and all g £ E(i , l) , we have that
p a t { j ,g) < pat(i , g).

The following corollary follows directly from the ap­
plication of Lem m a 4.2 on the prim ary ou tpu ts from
which it is easy to conclude our argum ent.

C o ro lla ry 4 .1 I f all P I gates are dynamic, Fi C Fj
then p .delay j < p-delayi .

T h e o re m 1 Let ci and cu be the lower and upper pa t­
tern o f an incompletely-specif ied input pat tern c, re­
spectively. A s s u m in g all P I gates are dynamic, then
f o r all c, p jd e layCl (p-delayCu) is a lower (upper) bound
o f all pat te rn delays f o r all completely-specified pat ­
terns that are compatible with c.

P ro o f : Consider a completely-specified p a tte rn i th a t
is com patible w ith c. Since p a tte rn c; (cu) is generated
by switching all X 's in p a tte rn c to 1 (0), FCu C Fi C
FCl. Therefore, according to Corollary 4.1, p_delayCl <
P-delayi < p_delayCu. □

4 .1 .3 O p tim iz in g fo r r e p r e s e n ta t iv e p a t t e r n s
As m entioned earlier, the technology m apping algo­
rithm s presented in [2, 3] cannot handle input com­
binations described using incompletely-specified p a t­
terns. One m eans of working w ith incompletely-
specified patterns is to optim ize w ith respect to all
com patible patterns. However, this has two prob­
lems. F irst, it is unknown how the probability of an
incompletely-specified p a tte rn is d istribu ted over all
of its com patible patterns. Thus, only approxim ate
measures of overall p a tte rn delay could be com puted.
Second, since the num ber of com patible pa tterns could
be quite large, analyzing all com patible pa tterns inde­
pendently can be com putationally in tractable.

In this paper, we propose to optim ize the circuit
for one representative p a tte rn for each incompletely-
specified pattern . The choice of representative p a t­
terns is very im portan t and different input representa­
tive patterns can lead to very different results.

In this paper, we tested two sets of represen­
tative patterns to optim ize for. For a set of
incompletely-specified input pa tterns C, we define
L = {c;| for all c £ C'} as the l ower set of C, and
U = {cu \ for all c £ C'} as the upper set of C. We
run the optim ization procedure twice, once optim izing
the benchm ark for the lower set and once optim izing
the benchm ark for the upper set. Since the average-
case delay is the weighted sum of all p a tte rn delays for
all incompletely-specified patterns [2, 3], we can easily
conclude th a t the average-case delay for the lower (up­
per) set is the lower (upper) bound of the average-case
delay for the original incompletely-specified patterns.

6

Therefore, for each of the two optimization results, we
use the upper and lower sets again to obtain a range
of average-case delay. Then, we let the user select the
better result.

4.2 H andling th e dom ino constraint
Recall that the input to the covering is a NAND-
decomposed DAG, referred to as a subject graph. Our
goal is to cover the subject graph with a set of library
gates which are all inverting and either static or dy­
namic. Let (N, E) be a subject graph where N is a set
of nodes and, E is a set of edges (E C N x N) .

Recall also, that one stage of domino logic can im­
plement only monotonic logic. This limitation is m an­
ifested in technology mapping by the fact that not all
decomposed networks can be mapped using domino
logic. Consider the decomposed network in which
there are two reconvergent fanout paths from u to
v, where u is a gate driven by a primary input. Let
the first be u, rii, n%, . . .,r i /, v and let the second be
u, n[, n'2, . . ., n \,, v. If I and I1 are both odd (both even)
then the domino constraint demands that v is imple­
mented with a dynamic (static) gate. If I is even and
I1 is odd (or vice-versa) then no mapping exists. For­
tunately, this situation can be resolved by duplicating
portions of the NAND-decomposed network and intro­
ducing dual-rail inputs [20]. The result is an altered
NAND-decomposed graph which is domino-feasible, as
defined below.

D e f in it io n 4 .2 (D o m in o -fe a s ib le D A G) A
domino-feasible D A G is a triple (N , E , X), where N
is a set o f nodes and, E is a set of edges (E C N x N)
and A is a labeling function N l —>■ {Dynamic , Static}
that satisfies A(u) = D y n a m ic for all u £ I and
A(u) ^ A(i>) i f (u, v) £ E where u, v £ N l .

Then, to extend the technology mapping technique
in [2, 3] to domino circuits we simply restrict the
matching of static (dynamic) nodes to only static (dy­
namic) gates. The remaining parts of the algorithm
need not be changed and we refer the reader to [2, 3]
for more details.

5 A case study
We now describe the key combinational block of an
asynchronous instruction length decoder (AILD). The
overall architecture of the instruction decoder and the
associated control circuits are outside of the scope of
this paper and will hopefully be reported in separate
papers.

5.1 Instru ction form at
Figure 3 shows the general instruction format for the
Pentium® processor [1]. Instructions consist of 4 op­
tional instruction prefixes, opcode bytes, an optional

Instruction Address- Operand- Segment
prefix size prefix size prefix override

0 or 1 Bytes 0 or 1 Bytes 0 or 1 Bytes 0 or 1 Bytes

Opcode ModR/M SIB Displacement Immediate

1 or 2 Bytes 0 or 1 Bytes 0 or 1 Bytes tesytB4or,20, 0,1,2 or 4 Bytes

Figure 3: The Pentium® instruction format.

6 5 32
ModR/M:

SIB:

MOD REG/Opcode R/M

7 65 4 3 2 1 0

SS Index Base

Figure 4: The M odR/M and SIB fields.

address specifier consisting of the M odR/M byte and
the SIB (Scale Index Base) byte, and optional displace­
ment and immediate fields.

Each prefix is one byte long. Only the operand-size
prefix and the address-size prefix affect the instruction
length. Because these are very rare, we choose to trap
and handle them using slower exception logic which
will not be discussed here. The opcode represents the
operation of the instruction. It identifies the size of
the operation, the displacement, and the immediate.
It is either one byte long or two bytes long where the
first byte is always OF. The M odR/M byte identifies
a special addressing form for instructions that refer to
an operand in memory. The M odR/M byte always fol­
lows the opcode. Some M odR/M bytes are followed by
the SIB byte, a second addressing byte. M odR/M and
SIB also determine the existence and size of the dis­
placement and immediate. The displacement follows
the opcode, or M odR/M , or SIB (which ever is last).
The immediate, if present, is always the last field of
an instruction. Both the displacement and immediate
fields can be one, two, or four bytes long. The max­
imum valid instruction length is 15 bytes. Figure 4
shows the M odR/M and SIB byte format. The details
of each field can be found in [1].

5.2 Instru ction len gth frequencies
The motivation of the asynchronous design stems from
an analysis of several benchmark programs in which
instruction lengths are monitored. This analysis led to
the frequency histogram presented in Figure 5. This
chart clearly shows that instructions of lengths two
and three are very frequent, whereas others are much
less frequent. Instructions of length greater than seven
are extremely rare. This motivates our design to be
optimized for instructions of length 7 or less. Longer

7 1 04

7

Freq.

Instruction length

Figure 5: The frequency of instruction lengths.

Precharge

Figure 6: The block diagram of the asynchronous in­
struction length decoder.

instructions are handled separately using slower logic
that is not discussed here.

5.3 O ne-hot dom ino logic blocks
One-hot. domino logic forms the combinational block
that inputs an instruction and yields the one-hot.
encoded instruction length for the instructions with
lengths less than 7. Specifically, as shown in Figure 6,
this block is decomposed into 6 one-hot. domino logic
blocks: Opcode 1, Opcode2, M eml, Mem2, and two
length merging blocks, Merge 1 and Merge2. The Op­
code 1 and Opcode2 blocks compute the length con­
tributed by the first, and second opcode byte, respec­
tively. The M eml and Mem2 blocks compute the
length contributed by the M odR/M byte for one-byt.e
and two-byte opcodes, respectively. The two merging
blocks add these contributions to form the final length
outputs.

The Opcodel block generates the following 11
one-hot. encoded outputs: O plO lNoM , OplOc2M l,
0p l02N oM , O plOc3M l, 0p l03N oM , OplOc4M l,

0p l04N oM , 0p l05N oM , OplOcGMl, 0p l07N oM ,
and isOF. OplOc2M l, for example, denotes that the
first, byte of the instruction is the only opcode byte
and it. contributes two bytes for the total length and
the M odR/M byte is present.. 0p l02N oM denotes
the same information as O plO c2M l except, that, no
M odR/M byte is present.. The other outputs have sim­
ilar interpretations. Note that OplOGNoM, for exam­
ple, is not. possible. The isOF output, is asserted when
the opcode consists of two byt.es (in which case the
first, byte must, be OF).

The Opcode2 block generates 6 one-hot. encoded
outputs defined similarly. 0p20c3M 2, for example,
denotes that, the second opcode byte contributes three
byt.es (including the first, opcode byte OF) and the
M odR/M byte is present..

The M eml (Mem2) block checks the M odR/M byte
for the one-byt.e (t.wo-byt.e) opcode t.o generate 5 one-
hot. encoded outputs: M10, M il, M12, M14, and M15
(M20, M21, M22, M24, and M25). These represent,
that the M odR/M byte contributes 0, 1, 2, 4, and 5
byt.es for the total length, respectively.

The Merge 1 block combines the Opcode2’s outputs
(except. 0p206NoM) and the Mem2’s outputs to ob­
tain the length for the instructions having a t.wo-byt.e
opcode (see Table 1). The Merge2 block then combines
the outputs of the Opcodel, M eml, and Mergel (along
with the 0p206N oM from the Opcode2) to obtain the
final one-hot. length outputs, as defined in Table 2.
This configuration means that, the instructions having
a t.wo-byt.e opcode will have longer length computation
time than the instructions having a one-byt.e opcode
except, the one represented by the 0p206N oM . This
improves the average-case delay of the length compu­
tation because most, one-byt.e-opcode instructions are
more frequent, than the two-byt.e-opcode instructions.
The 0p206NoM is chosen to be fed directly to the
Merge2 since it. is also frequent, and it. need not. be
ANDed with any Mem2’s output..

L Out. Equation
3 L3_0F Op20c3M2*M20 + 0p203N oM
4 L4_0F 0p20c3M2*M21 + Op20c4M2*M20

+ 0p204NoM
5 L5_0F 0p20c3M 2*M 22 + 0p20c4M2*M21
6 L6_0F 0p20c4M2*M22
7 L7_0F 0p20c3M 2*M 24
8 L8_0F 0p20c3M 2*M 25 + 0p20c4M2*M24
9 L9_0F 0p20c4M2*M25

Table 1: The length equations implemented in the
Mergel block.

8

L Out Equation
1 LI OplOlNoM
2 L2 OplOc2Ml*M10 + 0p l02N oM
3 L3 O plO c2M l*M ll + OplOc3Ml*M10 +

0p l03N oM + is0F*L3_0F
4 L4 OplOc2Ml*M12 + O plO c3M l*M ll +

OplOc4Ml*M10 + 0p l04N oM +
is0F*L4_0F

5 L5 OplOc3Ml*M12 + O plO c4M l*M ll +
0p l05N oM + is0F*L5_0F

6 L6 OplOc2Ml*M 14 + OplOc4Ml*M12 +
OplOc6Ml*M10 + is0F*Op2O6NoM +
is0F*L6_0F

7 L7 OplOc2Ml*M15 + OplOc3Ml*M 14 +
O plO c6M l*M ll + 0p l07N oM +
is0F*L7_0F

8 L8 OplOc3Ml*M15 + OplOc4Ml*M 14 +
OplOc6Ml*M12 + is0F*L8_0F

9 L9 OplOc4Ml*M15 + is0F*L9_0F
10 L10 OplOc6Ml*M14
11 L ll OplOc6Ml*M15

freq. (%)

Table 2: The length equations implemented in the
Merge2 block.

5.4 P rod u ct term frequencies
For each combinational logic block, a two-level
minimizer is used to obtain an optimized set of
product terms. Then, architectural simulations is
used to obtain frequency statistics of each product
term. We then associate with each product term
an incompletely-specified pattern and use the normal­
ized product-term frequencies as an estimate of the
frequency of the incompletely-specified pattern. The
resulting frequency distributions of the incompletely-
specified patterns for the O plO lN oM and 0 p l0 c 2 M l
outputs are given in Figure 7.

The distributions of all patterns for all outputs of
both the Opcode 1 and 0pcode2 blocks, along with the
ou tpu t’s optimized NAND-decomposed network, are
then input to our technology mapping program.

5.5 E xp erim en ta l results
This section reports the technology mapping results
for both the Opcode 1 and 0pcode2 blocks which are
the shaded blocks in Figure 6. A summary of the
complexity of each output logic is given in Table 3.
Notice that the fourth column reports the number of
incompletely-specified input patterns which cause the
output to evaluate to 1. The fifth column reports the
number of nodes in the NAND-decomposed DAG. The
sixth column reports the relative frequency of each
output evaluating to a 1.

— Op1O1NoM
— Op1Oc2M1

s 0.8 0.3 . 1.0 1.0
* pt.

\ \ » .

Figure 7: The frequency distribution of product terms
of O plOlNoM and O plO c2M l. The first opcode byte
and the M odR/M byte are inputs of the product terms.
For O plOlN oM , the inputs from the M odR/M byte
are don’t-cares (not shown for simplicity).

Note that all mappings are performed using the Ub2
gate library (that is available in the tool SIS [15])
which is modified in two ways. First, we remove all
non-inverting gates because such gates cannot be used
in domino logic. Second, for each inverting static gate,
we add a corresponding dynamic gate with the same
area and delay characteristics. This made it possible
for us to compare our results with those obtained using
worst-case mapping techniques that do not ensure the
domino constraint [5]. All experiments were performed
on a 120-MHz Pentium® Processor with manageable
CPU times.

Table 4 reports the average-case delays obtained by
optimizing the logic for both the lower set (the 2nd
and 3rd columns) and the upper set (the 4th and 5th
columns). Not surprisingly, the results indicate that
when we optimize for the lower pattern set, the lower
bound is typically smaller than when we optimize for
the upper pattern set. Similarly, optimizing for the up­
per pattern set leads to smaller upper bounds. When
comparing circuits, we always try to be conservative
and thus report the upper bound of our circuits. Con­
sequently, it appears that optimizing the upper bound
of our circuits generally leads to more favorable con­
servative comparisons.

Interestingly, the ranges in average-case delay ob­
tained by optimizing for the upper pattern set are al­
ways smaller than those obtained by optimizing for
the lower pattern set. This may be because the crit­
ical path for an upper pattern with high frequency is
typically very short because it has been highly opti­
mized. Consequently, when the corresponding lower
pattern is applied, the path is still critical. On the
other hand, when we optimize for the lower pattern
set, we may optimize for a critical path that is differ-

9

Description of each combinational logic output

Circuit
#

Pis
#

POs
#

Patts.
#

Nodes Freq.
OplOlNoM 16 1 20 574 0.202
OplOc2M l 16 1 10 321 0.473
0pl02N oM 16 1 9 322 0.114
OplOc3M l 18 1 6 280 0.065
0pl03N oM 18 1 7 307 0.018
OplOc4M l 18 1 4 231 0.004
0pl04N oM 8 1 1 56 0.001
0pl05N oM 19 1 8 361 0.056
OplOc6M l 18 1 4 227 0.015
0pl07N oM 12 1 2 112 0.000
0p202NoM 16 1 16 427 0.001
0p20c3M 2 16 1 15 379 0.025
0p203NoM 6 1 1 42 0.000
0p20c4M 2 11 1 2 95 0.001
0p204NoM 11 1 2 74 0.003
0p206NoM 5 1 1 33 0.022

Table 3: Summary of complexity of each combina­
tional logic output.

ent from the one that is critical for the upper pattern,
thereby yielding a large range.

Table 4 also presents data derived from circuits ob­
tained using the worst-case mapping techniques de­
scribed in [5] (columns 7-10). Using this data we can
make two m ajor comparisons.

First, we compare the average-case delay of our best
circuits (optimized for the upper pattern set) with the
average-case delay of circuits obtained with worst-case
mapping techniques. This is of interest because it
establishes the potential benefit of explicitly optimiz­
ing average-case delay during technology mapping. To
be conservative, we compare the upper bound of our
mapped circuits with the lower bound of the circuits
derived using worst-case mapping techniques. The re­
sults demonstrate that our circuits are at least 31%
faster on average than that of worst-case mapped cir­
cuits.

Second, we can compare the average-case delay of
our circuits with the worst-case delay of the compara­
ble synchronous circuit. This comparison can give us
an estimate of the potential benefit of asynchronous
circuits. It is im portant to note, however, that this es­
tim ate assumes that the synchronous circuit adopts
the same decomposition of blocks that is described
here. Specifically, we cannot account for the possi­
bility that a different decomposition might be better
suited for optimizing for worst-case delay. W ith this
caveat stated, the results indicate that our circuits are
on average at least 54% faster than the comparable

6 Conclusions
The paper focuses on the design of asynchronous com­
binational circuits that incorporate domino logic and
one-hot logic with timing assumptions that are eas­
ily met. In particular, we discuss a novel technology
mapping technique for this design that leverage off of
existing work. We apply this technique to two combi­
national logic blocks that are an integral part of a fast
asynchronous instruction length decoder.

We compare our circuits with those obtained us­
ing a more conventional synchronous technology m ap­
per (that optimizes for worst-case delay). Our ex­
perimental results suggest that our mapped circuit
is at least 31% faster than the average-case delay
of the conventionally-mapped circuit, illustrating the
utility of our new technique. Moreover, the average-
case delay of our circuit is more than 50% smaller
than the (worst-case) delay of the conventionally-
mapped circuit, demonstrating the potential advan­
tage of asynchronous one-hot domino circuits over
both synchronous implementations and conventional
bundled-data implementations.

Appendix: Proof of lemmas
L e m m a 4.1 I f all P I gates are dynamic and F(C Fj,
then E (i , l) C E (j , l) for every level I.

P ro o f : (By induction)
Base: Let 1 = 1 . Fi C Fj. Since all PI gates are
dynamic, E(i, 1) C E (j , 1).
Inductive hypothesis: For I = k, E(i , k) C E (j , k).
Inductive step: Let I = k + 1. Let gu+i £ E(i, k + 1).
First consider the case where gu+i has a controlling
input fk £ FI(gk+1) which is driven by a gate g& that
evaluates when i is applied. Since E(i, k) C E (j , k), g&
must evaluate in pattern j . Since the controlling na­
ture of an input is pattern-independent (because an
evaluating gate always drives its output to a value
that is independent of the pattern applied), /& must
also be a controlling input of gu+i when j is applied.
Therefore, gu+i must evaluate when j is applied, i.e.,
gk+i £ E (j , k + 1). Thus, E(i, k + 1) C E (j , k + 1).

Now consider the case where gu+i evaluates and all
fk £ EI(gk+i) are non-controlling inputs to gu+i in
pattern i. Since E(i, k) C E (j , k), all g^ s must evalu­
ate and all corresponding /&’s must be non-controlling
inputs of gk+i when j is applied. Thus, gu+i must
evaluate when j is applied, i.e., gu+i £ E (j , k + 1).
Therefore, E(i, k + 1) C E(j , k + 1). □

L e m m a 4 .2 I f all P I gates are dynamic and F(C Fj,
then, for every level I and all g £ E(i , l) , we have that
pat{j ,g) < pat(i ,g) .

synch ronous c irc u its .

10

Average-case Mapping vs. Worst-case Mapping
Circuit Average-case (AC) Worst-case (WC) Improve

A C D ® ' 1 A C D i ' 1 A C D ^ U A C D f ’u Area6'’11 A C D » A C D f WCD Area™ AA AW
OplOlNoM 3.672 1.570 2.965 2.229 114144 3.802 3.279 5.130 97904 10% 42%
OplOc2M l 2.404 2.131 2.186 2.018 55680 3.510 3.459 4.070 55216 37% 46%
0pl02N oM 1.775 1.698 1.811 1.800 54752 4.012 4.002 4.440 51040 55% 59%
OplOc3M l 2.201 2.047 2.170 2.070 43616 3.206 3.151 4.010 46400 31% 46%
0pl03N oM 2.821 2.821 2.821 2.821 50576 3.542 3.542 4.200 49648 20% 33%
OplOc4M l 2.761 2.761 2.761 2.761 33872 3.104 3.104 3.370 39440 11% 18%
0pl04N oM 1.587 1.587 1.587 1.587 6032 1.587 1.587 1.590 6032 0% 0%
0pl05N oM 2.800 2.800 2.800 2.800 61248 3.516 3.516 4.200 61248 20% 33%
OplOc6M l 2.647 2.647 2.647 2.647 37584 3.181 3.181 3.370 39440 17% 21%
0pl07N oM 2.400 2.400 2.400 2.400 14384 2.400 2.400 2.750 14384 0% 13%
Ave.(Opl) 2.620 2.017 2.364 2.114 471888 3.604 3.462 5.130 460752 32% 54%

0p202NoM 4.391 1.810 2.150 2.043 77024 4.270 4.181 4.790 70528 49% 55%
0p20c3M 2 3.206 1.507 2.567 2.224 74704 3.624 3.137 4.680 65424 18% 45%
0p203NoM 1.400 1.400 1.400 1.400 5104 1.400 1.400 1.440 5104 0% 3%
0p20c4M 2 1.675 1.675 1.675 1.675 12064 2.403 2.403 2.410 12064 30% 30%
0p204NoM 1.537 1.537 1.537 1.537 10208 1.627 1.627 2.070 9280 6% 26%
0p206NoM 1.335 1.335 1.335 1.335 4640 1.335 1.335 1.330 4640 0% 0%
Ave.(Op2) 2.311 1.445 1.962 1.794 183744 2.530 2.293 4.790 167040 14% 59%

Ave.(Opl+2) 2.604 1.987 2.343 2.098 655632 3.548 3.401 5.130 627792 31% 54%

Table 4: Delay and area of average-case mapping vs. delay and area of worst-case mapping. ACD denotes
the average-case delay while WCD denotes the worst-case delay. Subscripts and superscripts on ACD and Area
denote the type of optimization performed and the bound of the average-case delay reported. Specifically, the
superscript a denotes the use of our average-case mapper while w denotes the use of the worst-case mapper. The
superscripts u and I denote the optimization is performed for the upper set and the lower set, respectively. In
contrast, the subscripts u and I denote the numbers reported are the upper and lower bound of the average-
case delay, respectively. For the percentage improvements, the numbers in column AA are computed using
(1-A C D®'u / A C D f) * 100%, and the numbers in column AW are computed using (l-ylC D “’tI/WCD)*100%.

P ro o f : (By induction)
Base: Let 1 = 1. Since Fi C Fj, according to Lemma
4.1, E(i, 1) C E (j , 1). For g £ E(i, 1), two conditions
that F C (i , g) C F C (j , g) and F N C (i , g) = F N C (j , g)
must hold. Thus, pat (j ,g) < pat(i ,g) .
Inductive hypothesis: For I = k, and for all gk £
E (i , k) , pa t(j ,g) < pat (i ,g) .
Inductive step: Let I = k + 1. Consider gk+i £ E(i, k +
!)•

Case 1: gk+i has a controlling input. According to
Equation 1 , pat (i ,gk+1) = min f k e F C (i , g k +1) pat{i ,gk)
+ d(i ,gk+1, f k), and p a t (j , g k+1) = minf k€FC(j,gk+1)
p a t (j , g k) + d (j , g k+i, f k). According to Lemma 4.1,
since gk evaluates when i is applied, gk must evalu­
ate when j is applied. Since f k is a controlling in­
put for gk+1 in i, we know that it must be a con­
trolling input for gk + 1 in j . Thus, FC'(i ,gk+i) C
F C (j , g k-|_i). By the inductive hypothesis we also
know that p a t (j , g k) < pat (i ,gk).

Moreover, we know that the pin-to-pin delay
of an evaluating gate is pattern independent, i.e.,
d(i,gk+1 , f k) = d(j ,gk+1, f k). Therefore, we conclude
that p a t (j , g k+1) < pat (i ,gk+1).

Case 2: gk+i has only non-controlling inputs. From
Equation 2, pat(i ,gk+1) = m a* f k e F N C (i,g k+1) pat{i ,gk)
+ d(i,gk+1, f k), and pat(j ,gk+1) = m aX fk e F N C (j,gk+1)
p a t (j , g k) + d(j ,gk+i, f k). According to Lem m a4.1, all
gk s that evaluate in i must evaluate in j . Since all f k ’s
are non-controlling in i they must be non-controlling
in j . Therefore, F N C (i , g k+1) = F N C (j , g k+1) must
hold. Also, by the inductive hypothesis we know
that pat(j , gk)<pat(i , gk). Moreover, we know that
d(i,gk+1, f k) = d(j ,gk+1, f k). Thus, we conclude that
pat{ j , gk+i) < pat (i ,gk+i). □

Acknowledgments
We would like to acknowledge Peter Yeh, You-Pyo
Hong, and Aiguo Xie of the University of Southern
California for help comments on this paper.

11

References

[1] Intel architecture software developer’s manual,
volume 2: Instruction set reference manual,
http: / /developer.intel.com/design.

[2] P. A. Beerel, K. Y. Yun, and W. -C. Chou. A heuris­
tic covering technique for optimizing average-case de­
lay in the technology mapping of asynchronous burst­
mode circuits. In Proc. European Design Automation
Conference (EURO-DAC), September 1996.

[3] P. A. Beerel, K. Y. Yun, and W. -C. Chou. Opti­
mizing average-case delay in technology mapping of
burst-mode circuits. In Proc. International Sympo­
sium on Advanced Research in Asynchronous Circuits
and Systems, April 1996.

[4] M. Benes, A. Wolfe, and S.M. Nowick. A high­
speed asynchronous decompression circuit for embed­
ded processors. In Proceedings of the 17th Conference
on Advanced Research in VLSI, Los Alamitos, CA,
September 1997. IEEE Computer Society Press.

[5] K. Chaudhary and M. Pedram. Computing the area
versus delay trade-off curves in technology mapping.
IEEE Transactions on Computer-Aided Design, pages
1480-1489, December 1995.

[6] A. Davis and S. M. Nowick. Asynchronous cir­
cuit design: Motivation, background, and methods.
In Graham Birtwistle and Al Davis, editors, A syn ­
chronous Digital Circuit Design, Workshops in Com­
puting, pages 1-49. Springer-Verlag, 1995.

[7] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day,
and N.C. Paver. AMULET2e: An asynchronous em­
bedded controller. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, April 1997.

[8] S. B. Furber and J. Liu. Dynamic logic in four-phase
micropipelines. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Sys­
tems. IEEE Computer Society Press, March 1996.

[9] J. Kessels and P. Marston. Designing asynchronous
standby circuits for a low-power pager. In Proc. Inter­
national Symposium on Advanced Research in A syn ­
chronous Circuits and Systems. IEEE Computer So­
ciety Press, April 1997.

[10] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic,
and P. J. Hazewindus. The design of an asynchronous
microprocessor. In Charles L. Seitz, editor, Advanced
Research in VLSI: Proceedings of the Decennial Cal­
tech Conference on VLSI, pages 351-373. MIT Press,
1989.

[11] C. J. Myers. Private communication, July 1995. C.
J. Myers is an assistant professor at the University of
Utah.

[12] S. M. Nowick. Design of a low-latency asynchronous
adder using speculative completion. IEE Proceed­
ings, Part E, Computers and Digital Techniques,
143(5):301-307, September 1996.

[13] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E.
Dooply. Speculative completion for the design of high-
performance asynchronous dynamic adders. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems. IEEE Computer
Society Press, April 1997.

[14] R. Rudell. Logic Synthesis for VLSI Design. PhD
thesis, U. C. Berkeley, April 1989. Memorandum
UCB/ERL M89/49.

[15] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS:
A system for sequential circuit synthesis. Technical
Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[16] P. Siegel, G. De Micheli, and D. Dill. Automatic tech­
nology mapping for generalized fundamental-mode
asynchronous designs. In Proc. A C M /IE E E Design
Automation Conference, pages 61-67, June 1993.

[17] H. J. Touati, C. W. Moon, R. K. Brayton, and
A. Wang. Performance-oriented technology mapping.
In W. J. Dailey, editor, 6th M IT Conference on Ad­
vanced VLSI Conference, pages 79-97, 1995.

[18] S. H. Unger. Asynchronous Sequential Switching Cir­
cuits. Wiley-Interscience, John Wiley & Sons, Inc.,
New York, 1969.

[19] K. van Berkel, R. Burgess, J. Kessels, M. Roncken,
F. Saeijs, and A. Peeters. Asynchronous circuits for
low power: A DCC error corrector. IEEE Design &
Test of Computers, pages 22-32, Summer 1994.

[20] N. H. E. Weste and K. Eshraghian. Principles of
CMOS VLSI Design. Addison-Wesley, 2nd edition,
1993.

[21] T. E. Williams. Dynamic logic: Clocked and asyn­
chronous, 1996. ISSCC Tutorial.

[22] T. E. Williams and M. A. Horowitz. A zero-overhead
self-timed 160ns 54b CMOS divider. IEEE Journal
of Solid-State Circuits, 26(11):1651-1661, November
1991.

[23] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply,
and J. Arceo. The design and verification of a high-
performance low-control-overhead asynchronous dif­
ferential equation solver. In Proc. International Sym ­
posium on Advanced Research in Asynchronous Cir­
cuits and Systems. IEEE Computer Society Press,
April 1997.

12

