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TABLE 1 
COMPARISON OF THE CC OF THE PROPOSED ALGORITHM WITH 

THOSE REQUIRED BY SOME WELL-KNOWN ALGORITHMS 

Algorithm N mult/sample add/sample 

Rader-Brenner algorithm 2048 9.50 38.75 
(FFT) 

Agarwal-Cooley nesting 2520 11.58 95.90 
algorithm 

Split-nesting algorithm 2520 11.58 75.46 
Proposed algorithm 2048 3.91 71.72 

(b = 4) 

be one of these. polynomial products. It can be computed in 
two steps as follows. 

Yi1 (z) Hj(z) Xj(z) 

Yj(z) Yi1 (z) 

b+2 
mod (z2 1) 

b+l 
mod (Z2 + 1). 

(20) 

(21) 

The first step is a convolution of length 2 b+2 , which is car
ried out by the FNT. The second one is a reduction requiring 
2 b + 1 additions. 

Computational Cost of the Proposed Algorithm: The CC as
sociated with the algorithm concerns with the convolutions of 
length 2 D+ 2 and the additions necessary for the various op
erations of reduction and reconstruction. The convolutions 
to be computed are those regarding the polynomial products 
(Remark 5) and those directly appearing in (2). Their number 
is 2 t- b - 3 and they can be computed by the FNT. We re
member that an FNT of length M requires M log2 11{ additions. 
Conse~uently, each convolution requires 2 b+3 (b + 2) additions 
and 2 +2 multiplications. The overall CC due to the convolu
tions is 

2 b + 2 (2 t - o 3) multiplications 

(b + 2) 2 b +3 (2 t - b - 3) additions. (22) 

All the other operations (CRT, reduction, etc.) only imply 
additions; their number has been considered in detail in 
the previous remarks, i.e., 

CRT (Remark 2): 2 t+2 - 20 +4 

Reductions (Remark 4): 2t(4t 4b 9)+2 b + 2 

Reductions (Remark 5): 2t+l - 2 b + 3 • 

Therefore, the totalCC amounts to 

2 b+2(2 t- b 3) multiplications 

2t(4t + 4b + 13) 2 b + 2 (6b + 17) additions 

which corresponds to 

(4-3)2 0 + 2 t mult/sample 

(23) 

4t+4b+13 2 0 + 2 - t (6b+17) add/sample. (24) 

This CC is much lower than that required by the methods 
already available in the technical literature, as can be seen 
from Table l. 

It is interesting to note that the method holds up to a length 
N ~ I- 2b + 3. With the usual values of b, N may be very large, 
and consequently it is not necessary to take into consideration 
the extension of the algorithm to longer convolutions. 

ApPENDIX 
DERiVATION OF FORMULAS (13) AND (14) 

For the sake of brevity, let us limit the derivation to the case 
Nl N 2 • The circular convolution (11) is obtained by a poly-

nomial transform of length N 1, root zr and mod (z ~ 1 + 1) 

1 N1- 1 
y(c)(z ) = - " jj(c\z ) j(c)(z ) z - 2K1l 

11 1 N L... K 1 K 1 1 
1 K=O 

N 
mod(Z11+1);11 0,1,"',N1-l (25) 

where 

Nl-l 
-(e)" 2Km 1 
Xk (zl)= L... Xm1(Zl)Zl . (26) 

ml=O 

The aperiodic convolution (10) is obtained by a polynomial 
transform of length 2N 1, root Z 1 and mod (It 1 + 1) 

1 2Nl-l 
y(a)(z ) = _ " ij(a)(z) X(a)(z ) z -Kit 

11 1 2N L... K 1 K 1 I 
1 K=O 

mod (zf"l + 1),11 0,1,"', 2Nl 1 (27) 

where 

N1-l 
-(a)" Knl 

HK (zl) = L... Hnl (zl) zl 
nl=O 

(a) ~1 Kml 
X K (zl)= L... X m /Z 1)ZI (28) 

ml=O 

By inserting (25) and (27) into formula (9), we have (13) and 
(14). 
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Spectral Leakage Suppression Properties of Linear and 
Quadratic Windowing 
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Abstract-It is shown that the leakage suppression properties of seg
ment averaging speetrum estimation methods using linear windows and 
equivalent quadratic windows are asymptotically the same, under the 
assumption that segments relatively far apart are uneorrelated. Thus, 
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for large data lengths, one can effectively replace linear windowing by 
its equivalent quadratic windowing and hope to get similar leakage 
suppression at a substantially reduced computational cost. A simula
tion example that supports this conclusion is presented. 

INTRODUCTION 

The usefulness of linear windowing to reduce spectral leak
age is documented in literature [1 J -[ 4 J. In spite of these 
efforts, linear windowing has been criticized in the past mainly 
because it is computationally expensive. The critics of linear 
windowing advoc!lte quadratic modification of the estimated 
spectrum [5 J -[ 7] (i.e., using a rectangular linear window and 
then convolving the estimated spectrum with a suitably se
lected smoothing function). Analytical expressions for the 
estimation mean, variance, and spectral resolution have been 
derived in [9 J when combined linear and quadratic window
ing are used in segment averaging methods of spectrum estima
tion. However, there have been conflicting opinions about 
the usefulness of quadratic windowing for leakage suppression 
[21, [6], [8]. It was shown in [9] that by choosing the qua
dratic windows properly, one can compensate for the bad side
lobe behavior of the linear window used. However, [2J points 
out that for periodograms, the leakage suppression brought 
about by the improved sidelobe structure is masked byesti
mation noise. In this paper, we will consider the effects of 
quadratic windowing on spectral leakage, when segment aver
aging methods of spectrum estimation are used. Under the 
reasonable constraint that segments relatively far apart are un
correlated, we will show that one can avoid linear windowing 
(1. e., use only a rectangular linear window function) and ob
tain good leakage suppression, provided that the quadratic 
window used compensates for the bad sidelobe structure of 
the rectangular linear window function and the number of 
averaged segments is large enough. In the next section we will 
develop some theoretical aspects and back them up with a 
simulation example in Section III. 

II. SOME THEORETICAL ASPECTS 

Let x(k); k = 0, 1, ... , p -1, be a stationary time series. The 
2M-point estimate of G;x:(f) , the spectrum of x(k), using the 
weighted, overlapped, segment averaging (WQSA) algorithm 
[101, [111, is computed as 

1 N-l 
GJI> (f) := N . L: G;x:,t(/) (1) 

i=O 

where 

Gx .(f) =..!.. . 1 . JF (x(iR + n)wl(n)}12 (2) 
,I r 2M 

is the spectrum of the lth weighted segment of x(k), F{'} 
denotes the 2M-point discrete Fourier transform of {.}, R is 
the number of samples between adjacent segments, N is the 
total number of segments, wl(n) is a linear window of length 
L,L~M,and 

Now, convolving the estimate in (1) with the quadratic win
dow function Wq(f) yields a smoothed spectrum estimate, 
GJq) (f). That is, 

G£q} (f) = fj~f)(f)@ Wq (!) (6) 

where ® denotes complex convolution. We will restrict our 
attention to those Wq{f) such that the effective window func
tion We (f) = Gl(f) ® W q(!);;;" 0 for all f. This will ensure 
that the expected value of G~q) (f) is nonnegative. 

It is easy to show that 

E{GJ1} (f)} := Gx(f) ®G,(f) (7) 

and 

E{Glq)(f)} = Gx(f) ®G,(f) ® Wq(f) = G;x:(f) ® Wee!) 

(8) 

where E { . } denotes the statistical expectation of { . }. Let 

G;x:, i{f) = E {G£f) (f)} + Qt(f) == Gx(f) ® Gz(f) + Qt(f) 

(9) 

where Qt(f) denotes the estimation }ITor for the spectrum 
estimate of the ith segment. Then, G~f) (f) may be written 
as 

G~f) (f) = G;x:(f) ® Gz(f) + Q(f) (10) 

where 

1 N-l 
Q(f) = N i~ Qi(f)· (I 1) 

We will assume that the ith and jthsegments are uncorrelated 
if Ii -; I > S where S is smaller than N. Assuming stationary 
Gaussian time series, one can show [2], [9] that, for i = 0, 
1,"',N-l, 

2M-l 2M-l 

eo L: L 
IJ.=O v=-o 

where'" denotes complex conjugates and 

W1(Jj = F {wl(n)}. 

Let 

V(fl,!? .. r) = E {Qi(fdQi-7(f2)} 

and 

v) 

(12) 

(13) 

(14a) 

1 L-l 
r:= - L: wren). 

2M n=O 

(3) P(fl, 12, r) = V(h,[2, r)/V(fl, f2' 0). (I4b) 

Let 

(4) 

be the spectrum of wl(n) and let Wq(f) be a quadratic window 
such that 

1 2M-I. 

2M' L: Wq(f) = 1. 
/=0 

(5) 

Then, direct computation will yield 

8 (N-Irl) 
== I: p(fl,h, r) (15a) 

N 7=-8 N 

8 
eo L: P(fl ,[2, r) (I5b) 

N 7=-8 
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if S «N. Since both VUl, h, 0) and PUI, 12, 7) are not 
functions of Nand S =l=N, we have that, for fixed S, E {QUI) 
Q(2)} is inversely proportional to N, the total num ber of seg
ments used. 

One can now easily show that [2], [9] the variance of the 
spectrum estimate 8~q)U) is given by 

A 1 2M-l 2M-l 
var{G(q)(f)} = -- '\' '\' 

X (2M)2 ~o ~ 

'E{Q(/-l)Q(v)}WqU- /-l)W~U- v). (16) 

From (I5a)-(16) we can see that var {G~q) U)} is also in
versely proportional to N, when S is kept constant. The esti
mation noise, whose mean squared value is given by (16), is 
also correlated (2). 

Let Wq U) be such that WeU) = GzU) ® Wq U) when con
volved with Gx ( f) produces smaller spectral leakage than when 
GzU) is convolved with GxU) [i.e., WeU) hasa better sidelobe 
structure than GzU»). Then from (6), (8), and (10), 

ciq) U) = GxU) ® WeU) + QU) ® WqU). (17) 

The first term of the right-hand side of (17) shows smaller 
spectral leakage than GxU) ® GzU). However, this reduction 
in spectral leakage is masked by the second term, Q (f) @ 

WqU) which has an rms.value of the order ofvar 1/2 {Ciq)U)} 

and, as discussed before, is inversely proportional to N l
/

2
. 

The above discussion implies that for a fixed S, as the num
ber of segments increases, the masking of the leakage suppres
sion effect by the correlated estimation noise decreases, 
thereby making it possible for one to apply only a proper 
quadratic window and obtain good leakage suppression prop
erties wlten the observation time is very large. 

Remark: The discussions in this section imply that a linear 
window with spectrum Gz(f) and a quadratic window Wq U) 
such that 

(18) 

where GR (f) is the spectrum of the rectangular window, have 
asymptotically equivalent leakage suppression properties, 
under the condition that segments more than S apart are un
correlated. However, it should be understood that by increas
ing the overlap between adjacent segments, we cannot obtain 
the same result. There is a definite limit to the variance reduc
tion possible with increased overlap (12). 

III. A SIMULATION EXAMPLE 

The true spectrum of the signal used in this example, in 
decibels, is plotted as curve 1 in all the figures. The signal was 
obtained using three independent zero-mean, white, Gaussian 
sequences of variances 1, 0.001, and 0.0001, respectively, sam
pled at 2000 Hz. The first two sequences were processed 
through lOth-order Butterworth bandpass filte:s with pass
bands 200-400 Hz and 600-800 Hz, respectively, and were 
added together along with the third sequence. Signals similar 
to this have been used in [2]. 

In this example, we will compare spectrum estimates of this 
signal, obtained using 1) the WOSA algorithm using a 64 point 
Hamming window, 128 point fast Fourier transforms (FFT), 
and 50 percent overlap and 2) quadratic modification of the 
WOSA estimate using a 64 point rectangular window, 128 
point FFT's, and 50 percent overlap. The quadratic window 
Wq(f) was such that the corresponding effective window was 
the same as the spectrum of the Hamming window used in 
the WOSA method. 

Figs. lea), (b) and 2(a), (b) display the spectrum estimates 
obtained using 500 and 20 000 data points, respectively. In 
Figs. lea) and 2(a), curves marked 2 are the estimates in deci-

G,(f) (dB) 
0.0 r---=.....,.......,-------~ 

0.0 0.5 
NORMALIZED FREQUENCY 

(a) 

Gdf) (dB) 
0.0 _-~ __ ------~ 

-50.0 
0.0 0.5 

NORMALIZED FREQUENCY 

(b) 

Fig. 1. Spectrum estimates using 500 data points. (a) 1) True spec
trum and 2) using a linear Hamming window. (b) 1) True spectrum, 
2) using a linear rectangular window, and 3) after quadratic windowing. 

G,(f) (dB) 
0.0 ----=--~------~ 

- 50.0 '-L-'--'----'--'----'---L-L-'--'----'--'--~L..L-.J 

0.0 
NORMALIZED FREQUENCY 

Gx(f) (dB) 

0.0 ~],r 
. ! 
~ 

(a) 

0.5 

_ 5 0.0 ---L--"---'----'--'----'---L-L-'--'----'--'----'---L-L...l 

0.0 0.5 
NORMALIZED FREQUENCY 

(b) 

Fig. 2. Spectrum estimates using 20 000 data points. (a) 1) True spec
trum and 2) using a linear Hamming window. (b) 1) True spectrum, 
2) using a linear rectangular window, and 3) after quadratic windowing. 

bels obtained using the linear Hamming window. In Figs. l(b) 
and 2(b), we have plotted the results obtained using the rect
angular window (curves marked 2) and using quadratic modi
fication of these estimates (curves marked 3). 

We can observe from Figs. 1 and 2 that as the observation 
time increases (thereby increasing the number of segments), 
the estimates using the quadratic window became more and 
more comparable to those obtained using linear window only. 
In fact, plot 2 in Fig. 2(a) and plot 3 in Fig. 2(b) are virtually 
identical. 

Remarks: 
1) As discussed before, one of the major advantages of 

quadratic windowing is the reduced number of multiplications 
involved in the computations. It has been shown in [9] that 
for the same effective window function, one can use larger 
nonoverlapped segments and no linear windowing (thereby 
reducing the number of segments and computations) without 
sacrificing the stability of the estimates. Table I demonstrates 
the approximate savings in the number of multiplications for 
different segment lengths and overlaps. In Table I, we have 
neglected the computations for quadratic windowing opera
tions. Also, the percentage savings is approximately indepen
dent of the data length. 
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TABLE I 
ApPROXIMATE PERCENTAGE REDUCTION IN MULTIPLICATIONS OVER 

64 POINT LINEAR WINDOWING WITH 50 PERCENT OVERLAP FOR DIFFERENT 
INITIAL SEGMENT LENGTHS AND OVERLAP WHEN ONLY QUADRATIC 

WINDOWING Is USED 

Segment Percent Percent Savings 
Case Length Overlap in Multiplications 

1 64 50 10 
2 64 0 55 
3 128 0 50 
4 256 0 45 

To obtain all the leakage suppression capability of the side
lobe structure of the effective window function using only 
quadratic winqowing, the number of averaged segments N 
should be such that the estimation noise in (17) is of the order 
of the sidelobe levels of the effective window. However, 
a smaller number of segments will work if the lowest level of the 
spectrum being estimated is much larger than that of the side
lobe levels. To decide whether one can use quadratic window
ing alone and obtain good leakage suppression, one should 
first make a decision on an acceptable estimation noise level 
based on prior knowledge of the dynamic range of the spectra 
and see if the data length available is long enough to yield 
smaller estimation variances than this level. Exact expressions 
for estimation variance may be found in [9]. 

IV. CONCLUSIONS 

We have shown that linear windowing and 'its equivalent 
quadratic windowing have asymptotically similar leakage 
suppression properties, under the assumption that data seg
ments relatively far apart are uncorrelated. Thus, when the 
total number of segments tends to be large, one can effect
ively replace linear windowing with equivalent quadratic win
dowing and hope to get almost the same leakage suppression 
at substantially reduced computational costs. However, when 
the number of segments tends to be small, one stilI needs 
linear windowing for effective leakage suppression and this 
supports the conclusions of [2]. The example presented 
supports the above conclusions. 
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Pole-Zero Analysis of Voiced Speech Using 
Group Delay Characteristics 

NAOKI MIKAMI AND RYOn OHBA 

Abstract-The group delay characteristics of the vocal tract are de
rived from the approximate spectral envelope defined by peaks at the 
harmonics of the pitch frequency. Formant and anti-formant fre
quencies are extracted from the group delay by a simple peak-picking 
method. ' 

I. INTRODUCTION 

Considerable studies have been reported to extend linear pre
diction to a speech production system which contains both 
poles and zeros. One of them, which was proposed by Yegna
narayana [11, is based on the fact that a spectrum can be de
composed into an AR (all-pole) part and an MA (all-zero) part 
by using the negative derivative of the phase spectrum (NDPS), 
that is, the group delay characteristics. In his method, the 
group delay characteristics of the vocal tract are calculated 
from the cepstrum, eliminating effects of the glottal source by 
a short-pass lifter (filter in the quefrency domain). However, 
there are two defeCts in this method. First, the analysis is very 
sensitive to the lifter length [1). Second, as in the case of 
general cepstrum analysis, the reSUlting estimate is seriously 
affected by the low-level part in the spectral fine structure 
[21. 

In this correspondence, the authors propose an improved 
pole-zero analysis method which reduces these defects by us
ing an approximate spectral envelope of the voiced speech 
instead of the spectrum itself to calculate the cepstrum. 

II. PROPERTY OF GROUP DELAY 

Suppose that the vocal tract may be represented by a cascade 
of M resonators and N anti-resonators; its frequency response 
is 

N 

n (b n - jw) (b~ - jw) 
n=l 

H(w) = K 
M 

(1) 

n (am - jw) (a~ - jw) 
m=l 
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