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Atomistic simulations were used to calculate the isothermal elastic properties for /?-, a-, and 
<5Loctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX- The room-temperature isotherm for each 
polymorph was computed in the pressure interval 0*£p«s 10.6 GPa and was used to extract the 
initial isothermal bulk modulus K o and its pressure derivative using equations of state employed 
previously in experimental studies of the -HMXisotherm. The complete elastic tensor for each 
polymorph was calculated at room temperature and atmospheric pressure. For the case of -HMX, 
the calculated elastic tensor is compared to one based on a fit to sound speed data yielding 
reasonably good agreement. The bulk modulus o ^-H M X  obtained from equation-of-state fits to the 
room-temperature isotherm agrees well with that determined from the complete elastic tensor and 
from volume fluctuations at atmospheric pressure. However, the value of K o obtained from the 
isotherm is sensitive to choice of equation of state fitting form and to the weighting scheme 
employed in the fit. Based upon simulation results and reanalysis of experimental data, the 
commonly accepted value of the initial isothermal bulk modulus for /?-HMX should be revised from 
a value of ~  12.4-13.5 GPa to —15-16 GPa. The present report provides the first accurate 
determination of the elastic tensors and isotropic moduli for a- and &HMX. Predicted values of the 
shear moduli for a- and &HMX are more than a factor of 2 smaller than for /?-HMX. © 2003 
American Institute of  Physics. [DOI: 10.1063/1.1599273]

I. INTRODUCTION

A. Motivation

The high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7- 
tetrazocine HMX, Fig. 1 is the energetic material in a num­
ber of high performance military explosive and propellant 
formulations. 1 HMX exhibits three pure crystal polymorphs 
at ambient pressure denoted - , 2 , 3  - , 4  and -HMX5  and 
listed in terms of stability with increasing temperature. The 
elastic response of HMX is a key ingredient in the formula­
tion of a complete HMX equation of state (EOS. Two gen­
eral experimental approaches have been applied to obtain the 
single crystal elastic properties of HMX: measurements of 
the specific volume as a function of pressure along an 
isotherm6 , 7  and determinations of isentropic sound speeds 
from impulsive stimulated light scattering methods ISLS . 8  

Isotherm data can be used to obtain the initial isothermal 
bulk modulus K o and its initial pressure derivative K o 

dK /d p  p 0  via an assumed EOS fitting form. ISLS sound 
speed measurements provide a more-or-less direct path to the 
isentropic elastic tensor, from which the isentropic bulk and 
shear moduli, as well as other engineering parameters can be 
extracted. Transformation between isothermal and isentropic 
parameters is straightforward Appendix A . Since isotherm 
data typically correspond to pressures of several or tens of 
GPa, determination of K o for comparison to sound speed

measurements generally requires extrapolation of the EOS fit 
to zero pressure, where differences between equations of 
state are most apparent.

B. Role of simulations

We think that application of molecular simulation tools 
for the calculation of appropriate thermophysical properties 
is a viable strategy for obtaining some of the information 
required as input to mesoscale equations of state. 9  Given a 
validated potential-energy surface, simulations can serve as a 
complement to experimental data by extending intervals in 
pressure and temperature for which information is available. 
Furthermore, in many cases, simulations provide the only 
realistic means to obtain key properties, e.g., for explosives 
that decompose upon melting, measurement of liquid-state 
properties is extremely difficult, if not impossible, due to fast 
reaction rates, which nevertheless correspond to time scales 
that must be resolved in mesoscale simulations of explosive 
shock initiation. 1 0  By contrast, molecular dynamics simula­
tions can frequently provide converged values for those 
properties on time scales below the chemical reaction induc­
tion times. Finally, since computational protocols can be de­
signed to mimic experiments, simulations can be used to 
interpret discrepancies between experimental results, or to 
determine which among competing analysis methods is most 
appropriate.

The thermophysical and mechanical properties of HMX
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FIG. 1. Chemical structure of HMX

have been the subject of a number of atomistic simulation 
studies. 1 1 - 2 0  Sewell1 2  used a rigid molecule force field, in 
conjunction with isothermal-isobaric Monte Carlo methods, 
to compute equilibrium lattice parameters and the room tem­
perature isotherm of /?-HMX and RDX. He obtained good 
agreement with the data of Olinger et al.6 for both materials. 
Sorescu et al. have developed a ‘‘transferable’’ intermolecu- 
lar force field, 2 1  and have applied it within a rigid-molecule 
framework to a number of high explosives, including 
HMX . 1 3 , 1 4  Lewis et al. 15 reported quantum chemistry-based 
predictions of crystal structures, and preliminary values of 
the bulk modulus, for all three HMX polymorphs.

Bedrov et al. have reported previously calculations of 
the structural properties of the three pure crystal 
polymorphs, 1 8 - 2 0  and the temperature dependent shear 
viscosity1 6  and thermal conductivity1 7  of the liquid phase. 
The calculations were performed using atomistic molecular 
dynamics methods with a fully flexible, quantum chemistry- 
based forcefield, for which particular attention was given to 
accurate representation of the torsional degrees of freedom 
associated with the important molecular conformations to en­
able study of all three crystal polymorphs with a single 
parameterization. 2 2  Good agreement with experiment was 
obtained for equilibrium lattice parameters, linear and volu­
metric coefficients of thermal expansion, and heats of subli­
mation AH s for each polymorph . 1 8 1 9  It was found that inclu­
sion of intramolecular flexibility is required to obtain the 
correct ordering of AHs among the three polymorphs . 1 8  The 
predicted melt thermal conductivity is consistent with data 
for the solid state at elevated temperatures . 1 7

C. Goals of the present study

The focus of the present work is determination of linear 
elastic properties of HMX polymorphs at room temperature 
and atmospheric pressure. For this purpose, molecular simu­
lations of all three polymorphs have been conducted using 
our validated quantum chemistry-based potential. 2 2  In par­
ticular, we calculate the room-temperature isotherm for each 
polymorph and extract the bulk modulus and its pressure 
derivative using commonly employed equation of state fit­
ting forms. In the case of /?-HMX, we compare our results to 
experiment and to other simulations. We apply formalism 
due to Rahman and Parrinello2 3  to compute directly the 
second-order elastic tensor at room temperature and pressure. 
We also compute the bulk modulus directly from volume

fluctuations. Beyond providing properties that are key ele­
ments in the description of the elastic response of HMX, we 
investigate 1  the level of internal consistency between val­
ues of the bulk modulus calculated directly from the elastic 
tensor and volume fluctuations to values obtained from the 
equation of state fitting forms, 2  the sensitivity of the latter 
to the form chosen and the details of how the fit is per­
formed, and 3  the agreement between predicted results and 
the available experimental data.

II. COMPUTATIONAL DETAILS

The present molecular simulation studies were per­
formed in the isothermal-isobaric (NpT)  statistical 
ensemble. 2 4  Periodic boundary conditions corresponding to a 
triclinic primary cell were used. The simulations were per­
formed using the same force field2 2  as in our previous studies 
of HMX . 1 6 - 2 0  We note that our simulations include all de­
grees of freedom other than covalent bond stretching mo­
tions, which were constrained to equilibrium values using the 
SHAKE algorithm . 2 4

The -, -, and -phases of HMX are monoclinic2 , 3  

(P2 1 /c or, equivalently, P2 1 /n space group, Z =  2 molecules 
per unit cell, symmetry axis= b ; 13 independent elastic 
coefficients25), orthorhombic4  (Fdd2, Z =  8 ; 9 independent 
elastic coefficients , and hexagonal5  (P6 1 , Z 6 , symmetry 
axis= c ; 5 independent elastic coefficients), respectively. Pri­
mary simulation cells containing 96 molecules were used for 
/3-HMX and <5-HMX, corresponding to 48 (4 X 3 X 4) and 16 
(4 4 1 ) unit cells, respectively. Primary cells containing 
64 molecules were used for a-HMX, corresponding to 8  (2 
X 1X 4) unit cells. Electrostatic interactions were treated us­
ing the standard Ewald summation. 2 4  Nonbonded interac­
tions were truncated at 9 A, 10 A, and 10 A for /?-, a-, and 
<5-HMX, respectively. A fixed time step size of one fs was 
used in all cases. Equilibration runs of one ns duration were 
performed, followed by production runs of 1 0  ns and 2  ns for 
p =  1  atm and p >  1  atm, respectively, during which data 
were collected for subsequent analysis. All of the calcula­
tions were performed at 295 K, with a thermostat coupling 
parameter of 0 . 0 1  fs_1.

Our initial approach, published in conference and work­
shop proceedings, 1 8 - 2 0  was to perform all simulations using 
the Rahman-Parrinello isothermal-isobaric approach to mo­
lecular dynamics (MD) , 2 6  as described by Martyna et al. ,21 
in which lattice degrees of freedom for the primary cell are 
explicitly coupled to an external barostat via the stress ten­
sor. However, this requires specification of a parameter cor­
responding to the strength of coupling to the barostat. We 
noted in the conference proceedings of Ref. 20 that, while 
the mean values of the lattice parameters were independent 
of the specific value chosen for this parameter, higher mo­
ments of the distributions did vary with the barostat cou­
pling, at least for the 2 -5  ns simulation times considered in 
our preliminary studies. This sensitivity is troublesome for 
our purposes, since calculation of the elastic tensor is based 
on a fluctuation analysis of the microscopic strain tensor. 
While the results may become independent of the barostat 
parameter chosen for sufficiently long simulations, it was not 
practical for us to perform a careful study of this behavior
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given the anticipated computational expense. Therefore, in 
the present study, which should be viewed as superseding the 
relevant sections of the conference and workshop proceed­
ings, we employed an approach in which isothermal- 
isochoric (NVT) molecular dynamics of the simulation cell 
contents was interspersed with isothermal-isobaric (NpT)  
Monte Carlo (MC) variations of the cell shape and volume. 
This is valid based on the parametric separability of the par­
tition function in the isothermal-isobaric ensemble, 2 8

Znpt=  I d V exp(— (3pV) I dq exp[-{3E (q;V )]

y =  2 p(V ){  3 [ ??- to - ?7 - 5 / 3 ] [ ? 7
-2/3

!]} '

dV  exp( — /3p V)Qnvt , (D

where (3=1/k T and Qnvt is the partition function in the 
NVT  ensemble. NVT

We used NVT  MD to sample the contents of the simu­
lation cell, and an N pT  MC algorithm to vary its shape and 
volume. The latter moves were carried out within a rigid- 
molecule framework as described previously, 1 2  using the 
atomic positions at the end of the preceding flexible mol­
ecule NVT  MD segment. In practice, 1 ps of NVT  MD simu­
lation was followed by a sequence of 100 N pT  MC steps. 
The Monte Carlo step size for a given thermodynamic state 
was adjusted to yield an acceptance probability of 40% - 
50%.

III. DATA ANALYSIS

A. Isothermal compression

There are two published measurements of the room tem­
perature isotherm for /?-HMX: a 1978 study by Olinger, 
Roof, and Cady, 6  and one in 1999 by Yoo and Cynn . 7  Ol­
inger et al. fit the isotherm to an equation of state (EOS,

p V
V0  V

[V 0 - s (V 0 -  V) ] 2  

based on the hugoniot jump conditions, 2 9

V Up
7 T = 1 _  T T , P = P 0  + P0 UpUs >V U

2

3

where V is specific volume, Us and Up are the pseudoshock 
velocity and pseudoparticle velocity, respectively; p is den­
sity; and ‘‘0 ’’ denotes the reference state (atmospheric pres­
sure in the present case . The fitting parameters c  and s in 
Eq. (2) are related to the bulk modulus K o and its initial 
pressure derivative K ’o as K o =  p oc 2  and K'o =  4 s — 1, respec­
tively.

Yoo and Cynn analyzed their data using the third-order 
Birch-Murnaghan (BM) EOS , 3 0

p (V )  =  2 K[?7-7 /3 - ? r 5 /3 ] [ 1 + i ( K ' - 4 ) ( J7 - 2 3 - 1 ) ] ,
4

where i j=  V/ V0  is the compression ratio at pressure p . We 
note that the third-order BM EOS can be written as a linear 
function in K o and K oK o via the transformation,

x = [ ? r 2/3-  1 ] - i  -  3 , (5)

for which the slope and intercept are K o and 3K oK'o/4, re­
spectively. We refer to this form of the BM EOS as BM- 
linear. In this plane, low-pressure data points are more 
heavily weighted than high pressure ones.

Menikoff and Sewell3 1  reported recently a re-analysis of 
the Olinger et al . 6  and Yoo and Cynn7  experiments, applying 
both equations of state Eqs. 2 and 4 to both data sets, to 
determine which data set and fitting form combination is 
most consistent with the preponderance of other data for 
HMX and HMX-based plastic-bonded explosives . 3 2  We ap­
plied all three fitting forms Eqs. 2 , 4 , and 5 to iso­
therms for /?-, a-, and <5-HMX obtained from our simulations 
and to the two simulation /?-HMX isotherms extracted from 
Fig. 3(b) of Sorescu et al. (Ref. 14. We also fit the two 
experimental -HMX isotherms to Eq. 5 , since this was not 
included in the work of Menikoff and Sewell.

B. Elastic tensor, volume fluctuations, 
and isotropic moduli

Published information about the elastic tensor for 
/?-HMX is limited to a partial determination due to Zaug , 8  

based on a fit to isentropic sound speeds obtained from im­
pulsive stimulated light scattering (ISLS) measurements at 
two temperatures. With only two experimental samples of 
similar orientations available, however, only five of the thir­
teen nonzero elastic constants could be accurately deter­
mined ( C 11, C 15, C33, C35, and C 55). To determine a com­
plete set of elastic coefficients corresponding to a globally 
optimized fit would require additional measurements for dif­
ferent crystal orientations. Zaug used only quasilongitudinal 
sound speeds in his fitting procedure, due to low signal to 
noise in the quasitransverse modes and ambiguity in distin­
guishing between them in his data. We note that the fitted 
values of the elastic coefficients were adjusted to yield agree­
ment with isentropic sound speeds, but were normalized us­
ing the isothermal bulk modulus K o =  12.5 GPa reported in a 
conference proceeding by Yoo and Cynn, 3 3  which would ap­
pear to be too small based on the analysis due to Menikoff
and Sewell. 3 1

Rahman and Parrinello2 3  showed that the fourth-rank 
elastic tensor for an anisotropic crystalline solid can be cal­
culated using fluctuations of the microscopic strain tensor,

V
Sijkl k t  ( Eije kl)> (6 )

where S j kli and C j  are elements of the compliance tensor 
and strain tensor, respectively, and V is the average volume 
at a given temperature T and, implicitly, pressure p ). Equa­
tion 6  is readily constructed from a suitably large set of 
observations from an isothermal-isobaric simulation. The 
fourth-rank elastic tensor can be contracted to second-rank 
form using Voigt notation and, following the treatment de­
scribed by Tsai, 3 4  the stiffness tensor C is simply the matrix 
inverse of the compliance S (see Appendix B). The particular 
form expected for C is determined by the symmetry class for 
a given crystal (e.g., monoclinic, orthorhombic, and hexago­
nal for /?-, a-, and <5-HMX, respectively, and can be used as

2
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TABLE I. Equilibrium lattice parameters and molecular volumes for HMX polymorphs.

Polymorph a (A) b (A) c (A) deg deg deg V (A3)

p Sim.a 6.531 10.521 7.634 90.00 98.84 90.00 259.18
Expt.b 6.5347 11.0296 7.3549 90 102.69 90 258.6

a Sim.a 14.995 23.975 6.058 90.0 90.0 90.0 272.16
Expt.c 15.14 23.89 5.913 90 90 90 267.3

S Sim.a 7.62 7.61 33.57 89.99 90.01 1 2 0 . 0 281.17
Expt.d 7.711 7.711 32.553 90 90 1 2 0 279.4

“Uncertainties are ±2 or smaller for the last digit given. 
bReference 3. 
cReference 4. 
dReference 5.

a partial check for convergence of the simulation results. 
Henceforth in the main text and Table III we use Voigt 
second-rank notation exclusively, and therefore use C ij 

rather than the slightly more cumbersome C ij .
Given the elastic tensor and Voigt notation definitions 

given in Eq. B4 , we can obtain Reuss average, isotropic 
bulk and shear moduli,

K R 1 = [S11 + S 22 + S 33 + 2 ( S 12+ S 13 + S 2 3 ) ] ’

GR 1 = H [ S 11 + S22 + S33 (S12 + S 13 + S 2 3 )

+ 4( S 44 +  S 55 + S 6^]> 7

corresponding to conditions of uniform stress the appropri­
ate choice for comparison to isotherm data . The bulk modu­
lus can also be expressed directly from the volume fluctua­
tions,

K v
(V )k T

(8 )

where a V is the variance of the volume distribution corre­
sponding to a given pressure and temperature obtained di­
rectly from simulations. Volume distributions for all three 
polymorphs were described accurately by Gaussian func­
tions, indicating that finite-size effects on the predicted 
moduli are small.

IV. RESULTS AND DISCUSSION

A. Equilibrium lattice parameters 
and molecular volumes

Calculated and measured lattice parameters and molecu­
lar volumes at 295 K and one atmosphere obtained from 
simulation are summarized for each HMX polymorph and 
compared to experiment in Table I. The experimental deter­
minations for all three polymorphs were made under thermo­
dynamic conditions identical to those of the simulations. The 
results are for the most part in good agreement with experi­
ment. The maximum error in any single lattice length is 
4.6%, for b in /3-HMX; presumably this discrepancy could 
be reduced by empirical adjustment of force field parameters, 
which were fit to quantum chemical calculations rather than 
to experimental data. The average error in molecular volume 
is 0.9%. The small differences between the present predic­

tions and those reported previously1 8  are due to the use of 
slightly different cutoff and Ewald parameters.

B. /?-HMX isotherm

The measured -HMX isotherms and the one calculated 
in the present work are shown in Fig. 2 . The solid line pass­
ing through the simulation results is a fit of the third-order 
BM-linear equation of state using Eq. 5 . The agreement 
between experiment and simulation is reasonably good; at 
the highest pressure considered here, 10.6 GPa, the percent 
difference between our compression ratio and the measure­
ments of Yoo and Cynn7  is 4.6%, with the simulated iso­
therm being somewhat stiffer than experiment. The discrep­
ancy is much smaller for comparison to the data of Olinger 
et al.6

Application of Eq. 3 to the -HMX isotherm from 
simulations leads to the Us-  Up curve shown in Fig. 3, 
where negative curvature in the simulation results is clearly 
evident filled circles . While such behavior would be 
anomalous for metals, it is actually expected for pressures 
below about one GPa in the case of polyatomic molecular 
crystals, due to complicated molecular packings and in­
tramolecular flexibility, and has in fact been reported for the

FIG. 2. Isotherms for -HMX. Open circles: simulation; triangles: Olinger 
et al. Ref. 6  ; squares: Yoo and Cynn Ref. 7 . Solid line is the third-order 
Birch-Murnaghan fit [Eq. (4)] to simulation results, fit via Eq. (5)

V

Downloaded 26 Aug 2009 to 155.97.13.46. Redistribution subject to AIP lic en se  or copyright; s e e  http://jcp.aip.org/jcp/copyright.jsp

http://jcp.aip.org/jcp/copyright.jsp


J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 A molecular dynamics simulation study of elastic properties of HMX 7421

5500

2500 -I----------- 1----------- 1----------- 1-----------,-----------.-----
0 200 400 600 800 1000

Up (m/s)

FIG. 3. /3-HMX isotherms in the psuedo-(Us, Up) plane [Eq. (3)]. Solid line 
is a quadratic fit to the simulation results. Dashed lines are linear fits to Eq. 
(3. See text for details.

high explosive pentaerythritol tetranitrate (PETN) where 
careful studies were performed for low levels of 
compression. 3 5  By contrast, the experimental results for 
/3-HMX in the Us -  Up plane do not exhibit significant cur­
vature due to lack of data at pressures below about one 
GPa. 3 6  Thus, estimates of isothermal sound speeds, and

hence isothermal bulk moduli, based on extrapolation of 
these data are likely to be too large. The consequence of 
employing a linear fit and the lack of low-pressure data on 
the calculated isothermal bulk modulus can be seen in Fig. 3 
by comparing a linear fit ( Us =  c +  sU p , dashed lines) of the 
simulation data over the experimental pressure range (p 
>1.6G Pa) to a quadratic fit ( Us= c  +  sU p +  tU 2p, solid line) 
of the same data over the entire pressure range. The Up =  0 
intercepts, which yield c and hence the initial isothermal 
bulk modulus (K o =  p oc2), differ considerably between the 
two fits. Hence, the details are important when the goal is to 
make comparison to ambient sound speed data.

C. Bulk moduli and pressure derivatives

Results for the bulk modulus and its pressure derivative 
for all three HMX polymorphs are summarized in Table II. 
For all data sets, we include fits to the Us-  Up form [Eq. (2)] 
and both weighting schemes for the third-order Birch- 
Murnaghan equation of state Eqs. 4 and 5 . In the case of 
the experimental data, values for the moduli based on Eqs.
2 and 4 were taken from the reanalysis of Menikoff and 

Sewell. 3 1  Two sets of results are included in the case of Yoo 
and Cynn, since they reported on the basis of shifts in the

TABLE II. Bulk modulus and its pressure derivative for HMX polymorphs.a

P a s

Source Methodb Ko KO Ko Ko Ko Ko
Experiment

Olinger et al. (Ref. 6 ) BM 8.4 26.2
BM-linear 1 0 . 6 18.1

Us -  Up 13.4 9.4

Yoo and Cynn (<12 GPa) (Ref. 1) BM 16.1 6 . 8

BM-linear 16.0 1.3
Us -  Up 1 1 . 2 5.1

Yoo and Cynn (<21 GPa (Ref. 1) BM 14.5 8 . 1

BM-linear 14.1 8 . 6

Us -  Up 11.5 5.6

Simulation
Sorescu, P2j /c (Ref. 14) BM 9.6 2 2 . 0

BM-linear 10.9 18.4
Us -  Up 1 2 . 2 1 1 . 8

Sorescu, P2j /n (Ref. 14) BM 1 1 . 6 20.9
BM-linear 13.4 16.6

Us -  Up 14.8 1 0 . 8

Lewis et al. Ref. 15 QC 12.5 38.6 48.0

This work fluctuations 15.1 14.1 1 1 . 8

BM 16.3 11.4 15.5 13.9 14.1 0.4
BM-linear 15.5 1 2 . 1 14.3 14.0 12.0 8 . 1

Us -  Up 15.6 1 1 . 0 14.1 16.8 12.3 4.1

aKo in GPa, K'o is dimensionless.
bBM=from Birch-Murnaghan EOS [Eq. (4)]. BM-linear=from Birch-Murnaghan EOS [Eq. (5]. Us-  Up = from Us-  Up EOS [Eq. (2)]. QC=from quantum 
chemical calculations (Ref. 15). Fluctuations = from equilibrium volume fluctuations [Eq. (8 )] or, equivalently, the equilibrium elastic tensor [using Eq. (1)] 
at atmospheric pressure.
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Raman spectra a phase transition with zero volume change at 
12 GPa. Simulation results for the isotherm due to Sorescu 
et al. 14 were extracted by hand from Fig. 3(b) of their work. 
Predictions of the bulk modulus obtained directly from the 
elastic coefficients using Eq. (7) and from the volume fluc­
tuations using Eq. (8 ) were equal to within error bars; thus, 
only a single value is included.

A few general observations are in order. First, tabulated 
values of the initial bulk modulus vary by almost a factor of
2, from 8.4 to 17.5 GPa, while values of the pressure deriva­
tive vary by almost a factor of 5; even within a given data 
set, there is significant scatter in these parameters. In prac­
tice, the fits are most sensitive at ambient conditions; for 
high pressures, the differences among them are lessened. 
This underscores the need for high-precision data, with in­
formation extending down to low pressures if the objective is 
accurate predictions of the initial bulk modulus.

Among the experimental sets, the Yoo and Cynn7  iso­
therm leads to more consistent predictions for both K o and 
K 'o . Menikoff and Sewell3 1  provided a thorough discussion 
of the two experimental isotherms. Although they obtained 
values of K o and K o that disagreed significantly with those 
reported by Yoo and Cynn, they found that their data, fit 
using the third-order Birch-Murnaghan equation of state, 
leads to better overall agreement with the other HMX data 
than does the set of Olinger et al.6 In particular, the isotherm 
of Olinger et al. leads to the prediction of a stiffer equation 
of state than is obtained from shock hugoniot data3 7  for 
pressed HMX, which is aphysical since the shock hugoniot 
locus should always lie above the isotherm in the (V,p ) 
plane. As our interest is in the initial bulk modulus and pres­
sure derivative, we make our principal comparisons between 
the Yoo and Cynn results for p  12 GPa, for which 
16.0 G Pa<K o<  17.2 GPa and 5 .7<K'o< 7.3.

Results obtained using the two calculated isotherms of 
Sorescu et al . 1 4  and from the quantum chemistry-based cold 
curve calculations of Lewis et al.1 5  yield predictions of the 
/3-HMX bulk modulus 9.6 G Pa<K o<  14.8 GPa. These val­
ues are generally consistent with values derived from the 
Olinger et al.6 isotherm, i.e., roughly 3 GPa lower than the 
Yoo and Cynn results for p  27 GPa. An interesting obser­
vation is that the isotherms of Sorescu et al. are sensitive to 
whether the P2 j /c or P2 j /n space group setting is chosen, 
even though the two are formally equivalent. This is appar­
ently due to the use of independent crystal structure determi­
nations for the two space groups, 2 , 3  with associated small 
differences in measured molecular geometries, that were 
used as input to their rigid-molecule simulations. These dif­
ferences led in turn to slightly different partial atomic 
charges used in the potential-energy function for the two

38cases.
Bulk moduli for -HMX obtained from the present 

simulations yield moduli consistent with the Yoo and Cynn 
results, namely, 15.1 G Pa<K o<  16.3 GPa, and 11.0<K'o 

12.1. The calculated pressure derivative is somewhat 
higher than the Yoo and Cynn set, consistent with the stiffer 
overall isotherm predicted from the simulations. Bulk moduli 
obtained from the elastic tensor, via Eq. 7 , and from vol­
ume fluctuations of the simulation cell, Eq. 8  , agree to

TABLE III. Elastic coefficients and isotropic shear modulus (G) for HMX 
polymorphs. 3

Expt.b fi a

C11 2 0 . 8 22.2 0.3 30.6 0.5 14.5 0.7(C11 C2 2)
C 22 26.9 23.9 0.5 23.3 0.8 14.0 0.8(C22 C1 1)
C 33 18.5 23.4 0.5 31.4 0.2 18.0 0.9
C 44 4.2 9.2 0.2 0.80 0.04 4.4 0.2(C44 C55)
C 55 6 . 1 1 1 . 1  0 . 1 3.3 0.1 4.4 0.2(C55 C44)
C 66 2.5 1 0 . 1  0 . 1 3.3 0.2 2.3±0.4(C 6 6 = C1 1 - C1 2)
C 12 4.8 9.6 0.7 5.7±0.7 10.3 0.5
C13 12.5 13.2 0.3 13.8 0.7 10.6 0.7(C13 C23)
C23 5.8 13.0 0.2 6.0 0.3 10.3 0.4(C23 C13)
C15 0.5 0.1 0.3
C25 1.9 4.7 0.2
C35 1.9 1 . 6  0 . 2

C46 2.9 2.5 0.3
G 7.0 2.4 2.9

aIn GPa. For a-HMX, a, b, and c are directed along the x, y, and z axes, 
respectively, in a right-handed Cartesian frame. For -HMX, a is directed 
along x, b is along y, and c is in the xz plane. For (5-HMX, a is directed 
along x, b is in the xy plane, and c is along the z axis. 

bWell-determined experimental values (see text) are in bold. Zaug (Ref. 8 ) 
chose a different orientation in his experiments on -HMX; we have trans­
formed the elastic tensor presented in his study to coincide with the choice 
made in the present work.

cSymmetry-dictated equivalencies of the elastic coefficients for -HMX 
hexagonal crystal lattice are indicated.

within 0.1 GPa (thus, only a single value is shown)- Values 
obtained in this way should represent the ‘‘true’’ initial bulk 
modulus, since they sample microscopic fluctuations at 1  

atm. This is borne out by the fits to the isotherm. Moreover, 
fitting forms that emphasize the low-pressure regions of the 
equation of state i.e., Eq. 5 yield values of the bulk modu­
lus in closer agreement to the fluctuation-based values than 
does the Birch-Murnaghan fit using Eq. (4  directly. That 
this trend is not upheld in the simulation data of Sorescu 
et al . 1 4  probably arises because they did not include low- 
pressure states in their study. Their main objective was to 
validate their potential against the isotherm of Olinger et al. ,6 
so no low-pressure simulations were performed.

D. /i-HMX elastic tensor

The calculated isothermal elastic tensor for /3-HMX is 
compared in Table III to the one reported by Zaug , 8  corre­
sponding to isentropic conditions orientation specified in 
footnote a of the tab le . Uncertainties in the calculated elastic 
coefficients represent one standard deviation in values pre­
dicted from five contiguous two nanosecond simulation se­
quences from the overall ten nanosecond simulation. Formal 
expectations, corresponding to perfect experimental align­
ment for the chosen crystal orientation, are that nine of the 
thirteen elastic coefficients would be sampled in Zaug’s ex­
periment; see Appendix C. In practice, however, his mea­
surements determined uniquely five of the thirteen elastic 
constants. These coefficients— C n ,  C33, C 55, C 15, and 
C35—are indicated in bold in the experimental column, and 
the comparison between the two sets is most meaningful for 
those particular C j . Acceptable agreement (percent differ­
ence of - 2 0 % or less) is obtained for C n , C33, and C35. 
The agreement is less good for C55, where the experimental
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value is only 55% the calculated one. Similar discrepancies 
are seen for some of the elements of the elastic tensor that 
were not determined uniquely in the experiment.

As noted earlier, values of the bulk modulus obtained 
from the elastic tensor are consistent with those obtained 
directly from an analysis of volume fluctuations, and these 
define lower limits to the values extracted from our calcu­
lated isotherms, which include significant low-pressure infor­
mation.

E. Results for a- and d-HMX

There are no experimental determinations or previous 
theoretical predictions of the isotherms or elastic tensors for 
a- and <5-HMX. Starting from the experimental crystal struc­
ture for -HMX , 4  we observed a phase transition between
0.2 and 0.5 GPa characterized by sharp changes in the lattice 
parameters. In light of this, we restrict the equation of state 
fits for -HMX discussed below to pressures less than 0.2 
GPa four pressures . While there was no apparent disconti­
nuity in the <5-HMX isotherm, examination of the individual 
lattice parameters indicated a gradual, symmetry-class pre­
serving shift that occurs between 1.0 and 2.4 GPa. For this 
reason, and in analogy with restricting our fits of the Yoo and 
Cynn1  data to pressures below 12 GPa, we restrict our fits for 
<5-HMX to 1.0 GPa and below (six pressures). Pressure- 
induced phase changes are common in organic crystals, and 
have been identified for the high explosives -HMX1  and 
hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) . 6 , 3 9  This is un­
surprising, since anisotropy leads to significant shear strains 
even under hydrostatic loading.

Values of the bulk modulus extracted from the a- and 
-HMX isotherms, with fits restricted to the intervals speci­

fied above, are included in Table II. As for /3-HMX, the bulk 
moduli extracted from the a- and <5-HMX isotherms are con­
sistent with values derived from the elastic tensor and analy­
sis of volume fluctuations. There is an approximately linear 
correlation between bulk modulus and crystal density, with 
Kô > K oa,(«*0.93 K of})>Koi5(«*0.18 KojS). This stands in 
contrast to the quantum chemistry-based predictions of 
Lewis et al . , 1 5  who obtained zero Kelvin values K o(i 
= 10.2-12.5 GPa, K oa=  38.6 GPa, and K oS= 48.0 GPa 
from a fit of the cold curve to K = V ~  1d2E / dV 2, where V is 
the specific volume and E is potential energy. Lewis et al. 
cautioned that their predictions should only be regarded as 
rough estimates due to geometric constraints on crystal lat­
tice parameters imposed in their study, which would be ex­
pected in general to lead to overestimates of the bulk moduli. 
The values reported in the present work should be much 
more reliable.

Room temperature elastic tensors for a- and <5-HMX are 
given in Table III. There are no previous reports concerning 
the elastic coefficients for those polymorphs. The results in­
dicate considerable anisotropy in the diagonal elements of 
the tensor for a-HMX ( C 1̂  C 3 3 ~ L 3 C 22; C55̂  C 6 6  

~ 5  C44), in contrast to the case o ^ -H M X  where strong 
anisotropy is not observed. This difference presumably arises 
due to the qualitatively different molecular packings in the 
two polymorphs and, insofar as anisotropies in the elastic 
tensor may have analogs in plastic deformation mechanisms,

may have ramifications for the energetics of slip systems in 
the two materials. This is an issue with practical importance, 
since differences in mechanical slip systems within a given 
crystal polymorph have been considered in attempts to ex­
plain orientational dependencies of shock response and deto­
nation thresholds in PETN4 0  and nitromethane. 4 1  For 
<5-HMX, which is of hexagonal symmetry, formal symmetry- 
based relations exist among the elements of the elastic ten­
sor. These are indicated in Table III, and expectations are 
fulfilled with the exception of C 66, for which the predicted 
value 2.3 GPa differs by -  1.6 GPa from the expected value.

Isotropic shear moduli calculated using Eq. 1 for all 
three HMX polymorphs are included at the bottom of Table
III. Interestingly, the predicted shear moduli for - and 
<5-HMX are significantly smaller, by more than a factor of 2, 
than the value for /3-HMX. In a forthcoming conference pro­
ceeding, Tappan et al.42 report resonant ultrasound measure­
ments of the longitudinal and transverse sound speeds in 
pressed samples of HMX (not single crystal). The longitudi­
nal and shear wave sound speeds, cl and cs , respectively, are 
related to the bulk and shear moduli via K = c 2p and G 
= c2,,p. The value Tappan et al.42 obtained for the bulk modu­
lus of /3-HMX at room temperature, 3.1 GPa under a con­
stant load of 5.6 MPa, is significantly smaller than any re­
ported value for a single crystal. This is not surprising since 
their pressed sample had a porosity of about 4.4%, and sound 
speeds are highly sensitive to porosity. It is interesting, how­
ever, that they observed a significant decrease in the apparent 
bulk and shear moduli upon transformation from (3- to 
<5-HMX at ~  185 °C. This is consistent with the present re­
sults, and may be of interest with respect to understanding 
the increased shock sensitivity of <5-HMX relative to 
/3-HMX.

V. CONCLUSIONS

We have used a high level quantum chemistry-based 
intra- and intermolecular force field to predict the isotherms, 
isothermal elastic coefficients, and derived isotropic moduli 
of the three pure polymorphs of HMX at atmospheric pres­
sure and 295 K. Equation of state fitting forms employed in 
the two previous experimental studies of the /3-HMX iso­
therm were applied to the simulation data. The predicted 
elastic coefficients and derived bulk moduli for /3-HMX are 
in reasonable agreement with the available experimental 
data. Based on this work and a preceding analysis due to 
Menikoff and Sewell, 3 1  we think that the best value for the 
ambient isothermal bulk modulus of /3-HMX should be in­
creased by ~ 3  GPa to 15-16 GPa. There are no comparable 
data available for comparison for a- and <5-HMX, and thus 
the present results comprise the only published information 
concerning the elastic coefficients and single crystal isotropic 
moduli for those polymorphs. An interesting observation is 
that the calculated shear moduli for - and -HMX are sig­
nificantly smaller than for /3-HMX (^ 2 .5 -3  GPa versus 1 
GPa . Bulk moduli calculated from analyses of volume fluc­
tuations are consistent with those extracted directly from the 
elastic tensor, and these are in acceptable agreement with 
values extracted from equation of state fitting forms. How­
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ever, extracting the initial bulk modulus from an equation of 
state is highly sensitive to the fitting form chosen, to the 
method used to perform the fit, and to the interval of data 
considered. In order to obtain a reliable initial bulk modulus 
from the isotherm for organic crystals such as HMX, it is 
necessary to have high-precision information corresponding 
to pressures below about 1 GPa in order to resolve the rapid 
change in compressibility at low levels of compression. Of 
the fitting forms and weighting schemes considered, we 
found that the third-order Birch-Murnaghan equation of 
state, fit with a weighting scheme that emphasizes low- 
pressure data, consistently yields initial moduli in closest 
agreement with values obtained from microscopic fluctua­
tions which correspond to the true thermodynamic param­
eter.

For HMX the temperature derivatives of the lattice pa­
rameters have been measured , 4 4  and are as follows: 0.29 
X 10^5 /K, 11.60X 10^5 /K, and 2.30X 10^5/K for a , b , and 
c , respectively; and 2.58x 10_5/K for /?.

We note that the fluid dynamic analog for the bulk 
modulus is

VT 2  

Ks =  K t + — (0 K t)  2, A5

where c is the specific heat at constant volume and, in this 
case, is the volumetric coefficient of thermal expansion. 
Substituting the isotropic average values for HMX, one find 
that K S is 5% greater than K T . This affects the isotropic 
sound speeds by roughly 2 %.
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APPENDIX A: ISOTHERMAL AND ISENTROPIC 
ELASTIC TENSORS

For a crystal the isothermal and isentropic elastic tensors 
can be related through the use of thermodynamic identities. 4 3  

The result is

- - VoT .  _ .  _
Cs= C t+ — {C t : m ( C T : C ), c

A1

where CS and C T are the fourth rank isentropic and isother­
mal elastic tensors, respectively, C is the second rank thermal 
strain tensor, and c is the specific heat at constant strain. 
The thermal strain tensor can be obtained from x-ray diffrac­
tion determination of the crystal lattice parameters as a func­
tion of temperature. The strain tensor is defined in terms of 
the second rank transformation tensor from fractional (crys- 
tallographic) to Cartesian coordinates h by

e =  2[ (h0Tr  1 hThhn 1

h0  1 ], 

and the thermal strain tensor is

C AT)

A2

A3

For a monoclinic crystal, such as -HMX,

( a 0  c c o sM

O b  0 , (A4)

0 0 c sin f3 }

where a , b , and c are lattice lengths and ft is the monoclinic 
angle. The columns of h  are the Cartesian lattice vectors a, b, 
and c.

APPENDIX B: RELATIONSHIP BETWEEN 
COMPLIANCE AND ELASTIC TENSOR 
IN THE PRESENT WORK

The stiffness and compliance tensors relate tensoral 
stress and strain e via

Ci j = C ijkl :Ckl and Cij =  S ijkl:Ckl. (B1) 
In this case, the fundamental relation between the stiffness 
tensor C and compliance tensor S is

SijklC klmn~ H  SimSjn +  SinSjm) . (B2)
Since the stress and strain are symmetric tensors, we can 
express them using Voigt notation (x x 1, x22—x2, x 3 3  

= x 3, x 2 3 = x 3 2 = x 4, x 13= x 3 1 = x 5, x 1 2 = x 21= x 6), and define 
C ij'kl—C V(aa),V(b), where V(a ) and V(b ) denote the Voigt 
indices, e.g., 11—»1 or 23 = 32—>4, etc. This allows us to 
write <7 ; = C ijS l and e ~  S j t r i , which is the common way of 
presenting the elastic coefficients i.e., as symmetric 6  6  

matrices . It does not follow in general, however, that S and 
C in second-rank form are related through simple matrix 
inversion, due to ambiguity in how one defines the con­
tracted stress and strain. That is, Cij,k̂ C V(a),V(b) does not
imply that S ij,kl =  Sv(a),V(b) .

Following Tsai, 3 4  we defined

E = (S 1 1 ,S2 2 ,SVV,2 S2 V,2 S 1 V,2 S 1 2 ) T>

11 , 22 , 33 , 23 , 13 , 12 T,

for which

B3

Sij,kl =  Sv(a),v(b), for V{a) and V {b )=  1 ,2 , or 3;

2 Sij,kl~Sv(a),v(b), for V {a )=  1,2, or 3 and V(b')

4.5, or 6  and vice versa ;

4 Sij,kl~Sv(a),v(b), for V{a) and V(b)

4.5, or 6 ; and

C ij,kl C V(a),V(b) for all combinations of V a and V b .
(B4)

With this choice, the second-rank stiffness and compliance 
are in fact simple matrix inverses of one another.
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APPENDIX C: SOUND SPEEDS AND ELASTIC 
TENSOR: ANALYSIS OF ZAUG’S EXPERIMENT 
(REF. 8)

The sound speeds are determined by the acoustic tensor,

k ipip =  C pip+ 8 ija pq. (C1)

For a wave propagating in the n direction, if one defines the 
matrix

b(n) ij =  npk ipjpnq , (C2)

then the sound speeds are the solution to the equation

det(b(n)y — p c 2 Sij) =  0; (C3)

or, in terms of the stiffness tensor,

det.c(n)iJ- ( p c 2  -  a nn) S ij \=0, (C4)

where

c(n) ij =  npC ipjpnq . (C5)

At ambient conditions the stress a nn is small compared to 
the modulus, K 0  c2, and can be neglected. For a mono­
clinic crystal only 13 of the components of the stiffness ten­
sor are nonzero. In terms of Voigt indices for the stiffness 
tensor, the sound speeds of a monoclinic crystal are the ei­
genvalues of the matrix b (n) with components,

b 11 = n 1C11 + n2C66 + n3C55+ 2 n 1n3C15 , 

b 2 2  = n 1 C 6 6  + n 2C 22 + n\ C 44+2 n 1n 3  C 4 5 , 

b33= n 1C55 + n2C44 + n\ C33+ 2n 1n 3 C3 5  ,
C6

b 12_  b21 n2n3( C46 + C 2 5 ) + n 1n2( C12 + C 6 ^> 

b 13 = b31= n 1C15 + n2C46 + n3C 35+ n 1n A C13 + C 5 5 ), 

b23 = b32= n2n3( C44+ C 2 3 ) + n 1n A C25 + C4^'

The ISLS measurements of Zaug8  for /3-HMX are for acous­
tic waves propagating in the plane normal to the (0 , 1 ,0 ) face. 
With n = (cos 0,0,sin 0), the matrix reduces to

b n = cos2  (0) C n + sin2  (#) C 55+ sin( 20) C 15, 

b22= cos2  (#  )C  6 6  + sin2  (#  )C  44+ sin( 20) C 46,

B3 3 = cos2  (0  )C  55+  sin2  ( 6 » )C  33+  s in  20) C 3 5  ,
C7

b 1 2 _  b 2 1  0,

b n = b 3 1  = cos2 ( 0 )C 1 ^ s i n ^ ) C 3 ^  !sin ( 2 0 )(C 1 3 + C 5 5 ),

b23= b32 = 0i

We note that in this plane, b depends formally on nine of the 
thirteen independent components for the stiffness tensor with 
monoclinic symmetry: C n , C 3 3 , C 4 4 , C 5 5 , C 6 6 , C 1 3 , C 1 5 , 
C 35, and C 46. To determine the four other components 
(C 12, C22, C23, and C25), measurements of the sound speed

in another plane would be needed. Empirically, the measured 
sound speeds are only sensitive to five of the nine elastic 
tensor elements identified above.
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