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Exact result for the effective conductivity of a continuum percolation model 
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A random two-dimensional checkerboard of squares of conductivities 1 and 0 in proportions P and 
1 - P is considered. Classical duality implies that the effective conductivity obeys a* = vB at P = t. It is 
rigorously found here that to leading order as 0-+0, this exact result holds for all P in the interval 
(I-PoPe), where Pe :=:::0.59 is the site percolation probability, not just at P = t. In particular, 
a*(p,o)=VB+O(o), as 0-+0, which is argued to hold for complex 0 as well. The analysis is based on 
the identification of a "symmetric" backbone, which is statistically invariant under interchange of the 
components for any P E ( 1 -PoPe), like the entire checkerboard at P = t. This backbone is defined in 
terms of "choke points" for the current, which have been observed in an experiment. 

Composite conductors typically consist of conducting 
particles or inclusions randomly embedded in an insula
tor, such as metal particles in a polymer matrix, or sea 
ice, which consists of pure ice containing pockets of 
brine. Other materials with such structure include cer
mets, thick-film resistors, thermistors, and piezoresis
tors. 1 As the volume fraction P of conducting particles is 
increased from zero there is a minimal p, which coincides 
with the formation of a "connected" matrix of conduct
ing particles. Typically, just as this matrix is formed, 
there will be many places where the contact between con
ductors effectively occurs only at a point, such as for po
lyhedral particles. We say then that the minimal dimen
sion dm of the conducting matrix is one, since the dimen
sion of the current passing through the system at these 
points is one. As P is increased further, the degree of 
connectedness increases, for example, as particles may 
start to percolate via edges and then by faces, so that typ
ically dm will increase as well, with dm ~ d, where d is the 
dimension of the system. We say that the conducting 
matrix is fully connected if dm =d. In real materials, the 
effective conductivity a* of such composites can vary 
over orders of magnitude depending on the connected
ness of the conducting matrix. 1-3 In general it is difficult 
to accurately calculate a* for such materials. However, 
a very useful benchmark for isotropic random two
phase media in d =2 with conductivities al and a2 
arises from Keller-Dykhne interchange duality,4-6 
a*(al,a2)a*(a2,al )=ala2' In fact, with al = 1 and 
a 2 = 8 > 0 in proportions P and 1 - p, one has 

a*=V8 p=-'-
, 2 ' 

(1) 

when the geometry is invariant under interchange of the 
components at P = +. 

A class of models which has been successfully used to 
study the behavior of composite conductors, and for 
which the above results hold, is the symmetric-cell ma-
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terials of Miller. 7 In these models, all of space Rd is di
vided up into cells of various shapes, which are randomly 
assigned the conductivities 1 (white) and 8> 0 (black) 
with probabilities P and 1 - p. One model for which it is 
possible to precisely formulate the above-described con
nectivity questions is the random checkerboard in d = 2, 
where R2 is divided into unit squares (or cubes in R3). 

With S « I, we think of the white squares as conductors 
in proportion P and the black squares as insulators in pro
portion I-p. When p < I-pc, where Pc :::::0. 59 is the site 
percolation probability for the square lattice in d = 2, 
nearest-neighbor black squares percolate, i.e., the black 
squares form an insulating matrix and are connected 
along edges, which prevents the formation of any type of 
conducting matrix. When I-pc <p <Pc, there is an 
infinite phase of conducting squares which coexists with 
an infinite phase of insulating squares, where the coex
istence is made possible by allowing next-nearest
neighbor, as well as nearest-neighbor connections be
tween the squares. This generalized notion of connected
ness is called star connectedness. In this case, the con
ducting squares are connected at corner points, as well as 
along edges, so that the minimal dimension dm of the 
conducting matrix is equal to one. For p > Pc' nearest
neighbor conducting squares (connected along edges) per
colate, so that there is a fully connected conducting ma
trix with dm =2. 

Checkerboard models, both random and periodic ver
sions, have been studied by numerous authors, including 
the works in Refs. 5 and 8 -14. In the d = 2 random case 
formulated above, some of these works, particularly"those 
of Sheng and Kohn,8 Molchanov,9 and the rigorous re
sults of Kozlov, 10 have established a three-step form for 
a* as S-+O, 

j
O(SI), pE[O,I-Pe) 

a*{p,S)= O(SI/2), p E( I-PoPe) 

O(SO), P E(Pe,l]. 

(2) 
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More precisely, employing the variational formulation 
for u*, Kozlov lO proved that for p in the central interval 
1=(1-pc'Pc) there are constants CI(P»O and c2(P»0 
such that 

(3) 

and that this 0 (v&) behavior arises from corner connec
tions between conducting squares. Here we present the 
surprising rigorous result that for p throughout the cen
tral interval I, 

u*(p,B)=v'S+O(B), pEl, b---+O. (4) 

That is, the Keller-Dykhne duality result of v& is exact 
to leading order as B---+O for all p EI where corner con
nections dominate, not just at p = -}. One of the surpris
ing features of this result is that while u*(p,B) is mono
tonically increasing in y for B > 0, the leading-order 
coefficient in front of liB is independent o[p, and equals 
one. Recall that the duality result u * = v' B at p = -} was 
based on the interchange invariance of the geometry at 
p = -}. The analysis that we use to obtain (4), roughly 
speaking, shows how to extend interchange invariance 
away from p = -} where the full geometry no longer has 
this property. More precisely, we introduce a "sym
metric" backbone containing both conducting and insu
lating squares, which is present for all p EI and which is 
statistically interchange invariant even for p¥o-}. The 
definition of the symmetric backbone is based on the 
identification of what we call "choke points," which are 
special corner connections through which the current is 
forced to flow. As we discuss below, these "hot points" 
have been directly observed in experiments on actual 
mixtures of insulating and conducting particles and are 
physically characterized by high-electric-field concentra
tion and corresponding joule heating. We hope that the 
exact result (4) will be used as a benchmark for systems 
with unequal-volume fractions as (1) has been used for 
equal-volume fractions. 

It is important to remark that the checkerboard is not 
simply a specific model that has no bearing on the general 
class of composite conductors. The choke-point analysis, 
which is rigorously developed here for the checkerboard, 
gives a framework for studying effective properties of 
more general composites with only a partially connected 
conducting matrix, i.e., when dm < d. In fact, based on 
analysis of two- and three-dimensional random checker
boards, a scaling law for the effective conductivity of par
tially connected systems has been proposed.15 More pre
cisely, for systems in the same universality class as the 
random checkerboards, such as conducting polyhedral 
particles in an insulating matrix (in d =3), a natural gen
eralization of (2) has been investigated. In particular, it is 
proposed that u*-fjq as fj---+O, where q=(d-dm )/2 if 
o ~ d -dm ~ 2 and q = 1 if d -dm ~ 2. In this generaliza
tion, d m is related to the fractal dimension of the ap
propriate choke structure, thus applying to fractal ma
terials, or even to checkerboards at their percolation 
thresholds, which is not addressed in (2). In this last re
gard, separate, physical arguments are used below to pro
pose that for the d = 2 random checkerboard at criticali-

ty, u*( I-Pc,B)-&3/4 and u*(Pc,&)-&1/4 as &---+0. 
We wish to mention here that findings similar to the 

exact result (4) have been obtained by Fannjiang and 
Papanicolaou 16 for the case of advection-diffusion equa
tions, where the fluid velocity field has a random checker
board geometry. Motivated by our result, they found 
that for p E(1-pc'Pc) and &---+0 (where & is the diffusity 
of one of the fluids), the leading-order coefficient of the 
effective diffusivity as &---+0 is independent of p (for a 
slightly modified version of the problem). The methods 
they use are different from ours, and do not depend on 
duality. 

As a final remark before discussing how (4) is obtained, 
we note that it should certainly hold for complex &, 
which is a case of great interest, and which would agree 
with some numerical results in Ref. 8. However, the ar
guments which yield the result for real & do not immedi
ately extend to the complex case, as some parts are varia
tional in nature. A rigorous extension of (4) to complex & 
rests on the following conjecture: that for any pEl, 
u*(p,&) is analytic in z=IIS in some neighborhood of 
& = 0 in the complex & plane. Arguments supporting the 
conjecture are given below. 

We now focus on the analysis of percolation geometry 
which leads to (4). As current passes through the con
ducting phase when pEl, it is forced through a network 
of special corner connections between white squares 
which we call "choke points." These connections cannot 
be avoided by easier, alternate routes such as a chain of 
white squares connected only by edges, which we call an 
edge chain. The absence of an easier way around means 
that the current must be "blocked" by a "perpendicular" 
star-connected chain (star chain) of insulating black 
squares. Thus a choke point is characterized as the cen
tral vertex at the intersection of a horizontal white-star 
chain with a vertical black-star chain, or vice versa, as in 
Fig. 1. Such star chains may be chosen to contain only 
edge connections and choke points, that is, with no 
corner connections that are not chokes. This is because if 
there were any corner connections that were not chokes, 
then there exists an alternate route (white-edge chain) 
around the corner connection, which can then form part 
of the white-star chain. Now, due to the black-white 
symmetry in our definition, for any p EI the choke-point 

FIG. 1. Choke point at the intersection of a vertical black 
crossing and a horizontal white crossing (or vice versa.) 
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density C(p) is symmetric in p, i.e., C(p)=C( I-p). 
Note also that C(p)_O as p-l-pc or P-Pc' In other 
words, the average distance between choke points 
diverges asp-I-pc orp-pc' 

The key structure that we use to extend the duality re
sult (1) away from p = t is a type of backbone appropriate 
to the current situation where we have two coexisting 
percolating phases. Associated with each choke point is 
a white- and black-star chain. For any realization of the 
square conductivities, we define Q (p) for pEl to be the 
union of all the white- and black-star chains associated 
with the set of choke points. Due to the black-white 
symmetry inherent in the definition of choke point, the 
backbone Q(p) is "symmetric," i.e., it is statistically in
variant under the interchange of black and white 
(p _1 - p ), just as the checkerboard itself is statistically 
invariant under interchange at p =t. [A rigorous under
standing of the invariance of Q (p) can be obtained by 
noting that separated white chains which cross an L XL 
box alternate with black chains, which holds for all L.] 

The above geometrical observations are used as follows 
to obtain the result (4). First, from the inequalities in (3) 
and the analytical properties of a * (p, B) as a function of p 
and B, it is clear that for pEl, 

a*(p,B)=a(p)VB+O(B), B-O, (5) 

with a(p) > 0. (However, a rigorous proof involves adapt
ing techniques developed in Refs. 17 and 18.) Second, 
further exploitation of the variational method shows that 
the leading-order coefficient a(p) depends only on the 
choke-point configuration, or Q (p). The contributions to 
a* from all other structures are O(B), or more precisely, 
interchanging black and white in the islands off Q(p) can 
only affect a* to O(B). Finally, since the choke structure 
and Q(p) are statistically invariant under the interchange 
of black and white, a(p) must be symmetric, 

a(p)=a(1-p) . (6) 

In view of the interchange theorem, which for our check
erboard takes the form 

a*(p)a*( I-p )=B , (7) 

this symmetry of a(p) establishes the result (4). 
It should now be quite clear that it is the choke points 

which determine the behavior of a * for pEl. As men
tioned above, such structures are not simply mathemati
cal curiosities, but have been observed in an experiment 
which was explained in lectures given by Dykhne,9,19 and 
which we became aware of subsequent to our mathemati
cal findings. The goal of the experiment was to measure 
a* for a random mixture of copper (conducting) and 
graphite (relatively insulating) granules in equal-volume 
fractions, A dense layer of the particles was pressed into 
a flat, soft plastic support by applying pressure with a 
metal plate. The particles were squashed into each other 
and the plastic support, so that the surface density of par
ticles was greater than close-packing density. When 
current was passed through the system, the plastic sup
port melted at a few points, which were sparsely distri
buted (with respect to the dimensions of the granules). 

The melting of the plastic support made it impossible to 
measure a* for the system. These hot points occurred at 
places where two copper granules were just touching, be
ing separated by two graphite granules, in a configuration 
analogous to that at the center of Fig. 1. Such a "corner 
connection" between two copper granules was found to 
be separating regions where the copper granules were in 
full contact, as they had been pressed into each other. 
The hot points observed in the experiment correspond ex
actly to our choke points. 

The exact result (4) can be heuristically explained using 
a resistor-network interpretation of the white (conduct
ing) half Qw(p) of the symmetric backbone Q(p), as fol
lows. Consider an L XL sample A of the random check
erboard with pE(1-pc'Pc)=1. We say that two hor
izontal (or vertical) white crossings of A (chains) are 
separated (or independent) if there is a horizontal black 
crossing of A between them, otherwise the two white 
chains would be joined by an edge-connected white chain, 
which is like a perfectly conducting wire as B_O, and 
vice versa for separated black crossings. The union of 
any set W of separated horizontal and vertical white 
crossings with any corresponding black set B forms the 
analog for the backbone Q (p) of the node-link model of 
backbone structure.20,21 For B-O asymptotics, we can 
view each chain of W as a series network of resistors of 
conductivity vB. Furthermore, we can distinguish pri
mary chokes as those at the intersections of Wand B. 
All other chokes in A are called secondary, as they arise 
from loops on and interconnections between crossings in 
Wand B. The network of primary chokes forms a square 
lattice of these resistors, which has effective conductivity 
vB as L _ 00. As p varies in I, the average separation 
between resistors (chokes) varies (and diverges as P -Pc 
or I-pc), but due to the scale invariance of a* in d =2, 
this analysis still gives the correct leading-order behavior 
as B-O for pEl. This situation, where the node-link 
picture is sufficient, should be contrasted with that when 
P-Pc with fixed B, or p =Pc as B-O (see below), where a 
hierarchical node-link-blob picture is necessary,22-24 and 
one must consider secondary chokes as well. 

As mentioned before, the result (4) appears to hold for 
complex B, which is b~ed on the conjecture of analyticity 
of a * (p, B) in z = V 8 near B = 0. The mathematical 
reason behind the analyticity, we believe, goes as follows. 
The analytic structure of a * (p, 8) near B = ° is deter
mined by a spectral measure in an integral representation 
for a*(p,B).25,26 This measure depends only on the 
geometry of the checkerboard. At p = t, a" = VB, so the 
spectral measure yields analyticity. But the upshot of our 
geometrical analysis is that Q(p) is essentially invariant 
under change of scale, or as p changes. Furthermore, 
u*(p,.§) is analytic in p.27,28 Thus, the analyticity in 
z = VB at p = t should be true away from p ~ t as well. 
We note also that applicability of (4) to complex 8 can 
mQst likely be established directly (without analyticity in 
V8), using techniques of complex variables. 29 

We close with a discussion of the three-dimensional 
checkerboard and how it, and the d = 2 model, shed light 
on conduction in partially connected systems. Consider 
all of ]R3 divided into unit cubes with conductivities as-
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signed as in the d = 2 case. As p is increased from 0, we 
meet three threeholds p)::::::0.097, p;::::::0.137, and P: ::::::0.311 61,30 which correspond to the onset of corner, 
edge, and face percolation, with d m = 1 for 
pE/I=(p),p;), dm=2 for pE/2 =(p;,p:), and dm=3 
for pE/3 =(p:,I]. For pE/I , choke points are corner 
connections which lie at the intersection of a "horizon
tal" white chain and a vertical black "sheet," which is the 
analog of the black chain in Fig. 1. This sheet would be 
of minimal thickness 1, except where it is "pierced" by 
corner connections between white cubes on either side 
(other chokes). A similar definition holds for unavoidable 
edge connections for pEl 2' The choke structures 
defined in the above way control the asymptotics of 
u*(p,6) as they did in d =2. By extending Kozlov's vari
ational method to d = 3 with the above black sheets, and 
using the properties of the conductivity in the neighbor
hood of corner and edge connections in d =3,13,14,31,32 
one can obtain the following analog of (2) to d = 3 as 
6_0: 

0(61
), pE[O,p;) 

u*(p,6)= 0(6 112 ), p E(p;,p:) 

0(6°), pE(p:,I]. 

Note that there is no transition atp). 

(8) 

As mentioned above, a general scaling law for u*(p,6), 
which encompasses the results in (2) and (8), was noted in 
Ref. 15. While this scaling law should be viewed as a 
rigorous result for random checkerboards in d dimen
sions with p not equal to any critical point, it is tempting 
to extend its meaning beyond these cases, to where dm is 
nonintegral. Its applicability to checkerboards at criti
cality, to systems of polyhedral conducting particles, and 
to fractal structures, is explored in Ref. 15. It is interest
ing to view systems of polyhedral particles in d = 3, or 
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